
MATD01 Fields and Groups
Assignment 5

Solutions

1.
(a) Let α ∈ K be root of f(x). We show that α is a repeated root of f(x) if and only

if f ′(α) = 0. Indeed, since α is a root of f(x), there is g(x) ∈ K[x] such that
f(x) = (x− α)g(x). Then

f ′(x) = g(x) + (x− α)g′(x).
Substituting α for x we see that f ′(α) = 0 if and only if g(α) = 0. On the other
hand, g(α) = 0 if and only if (x− α)

∣∣ g(x). We leave it to the reader to check that
(x− α)

∣∣ g(x) is equivalent to (x− α)2
∣∣ f(x).

(b) The polynomial f ′(x) = 1 has no roots in any extension of Fp, so that f(x) cannot
have a repeated root in any extension of Fp. Since f(x) is monic and splits over K,
we have

f(x) = (x− α1) · · · (x− αdeg(f(x))

for some α1, . . . , αdeg(f(x) ∈ K. Since f(x) has no repeated roots in K, the αi (1 ≤
i ≤ deg(f(x)) are distinct.

(c) Suppose f(x) has a repeated root α is some extension K of F . Then f ′(α) = 0.
Since f(x) is irreducible and has α as a root, it follows that f(x)

∣∣ f ′(x). (Indeed,
f(x) generates the kernel of the map F [x] −→ K given by g(x) 7→ g(α) - see
Question 3(b) of Assignment 3.) Writing f ′(x) = f(x)g(x), comparing degrees
(and in view of the fact that the degree of f ′(x) is less than the degree of f ), it
follows that g(x) = 0 and hence, f ′(x) = 0.

IfF has characteristic zero, then f ′(x) 6= 0 for any irreducible f(x) (as deg(f(x)) >
0). It follows that f(x) has no repeated roots.

2.
(a) true (why?)
(b) True. Indeed, F (α1, . . . , αn) is a subfield of K which contains F and α1, ..., αn−1,

hence it contains F (α1, . . . , αn−1). Combining with αn ∈ F (α1, . . . , αn), we get that

F (α1, . . . , αn−1)(αn) ⊂ F (α1, . . . , αn).

On the other hand, F (α1, . . . , αn−1)(αn) is a subfield of K which contains αn and
F (α1, . . . , αn−1), hence αn, F , and α1, . . . , αn−1. It follows that

F (α1, . . . , αn) ⊂ F (α1, . . . , αn−1)(αn).

(c) The equivalence of (i) and (ii) is clear: F (α) is a field so that (i) implies (ii). Con-
versely, if F [α] is a field, then it is a subfield of K that contains F and α, hence
F (α) ⊂ F [α]. The inclusion F [α] ⊂ F (α) is always true (any subring of K contain-
ing F and α contains F [α]).

We now establish equivalence of (ii) and (iii). Recall that if R is any PID, an
ideal of R is maximal and nonzero if and only if it is prime and nonzero. If R is
not a field, then zero is not a maximal ideal of R. Thus if R is a PID which is not a
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field, then an ideal I of R is maximal if and only if it is prime and nonzero. Apply
this to R = F [x] and I = ker(evα) where evα : F [x] −→ K is the evaluation (at α)
map f(x) 7→ f(α). It follows that

(1) ker(evα) is nonzero and prime if and only if it is maximal.

On the other hand, the first isomorphism theorem gives an isomorphism

F [x]/ ker(evα) −→ Im(evα) = F [α].

Being a subring of a field, F [α] is an integral domain, so that F [x]/ ker(evα) is an
integral domain as well. Hence ker(evα) is a prime ideal of F [x]. Combining with
Eq. (1) (since primality of ker(evα) is automatic), we get that

(2) ker(evα) is nonzero if and only if it is maximal.

The first statement in Eq. (2) is equivalent to (iii), while the second statement
holds if and only if F [x]/ ker(evα) (or equivalently, F [α]) is a field.

Finally, we turn our attention to the equivalence of (iii) and (iv). Let us first
show that (iii) implies (iv). Let α be algebraic over F . Let g(x) ∈ F [x] be the
minimal polynomial of α over F . Thus g(x) is monic, irreducible (in F [x]), and
generates the kernel of evα : F [x] −→ K. Let n = deg(g(x)). We have an isomor-
phism

(3) F [x]/(g(x)) −→ F [α] = F (α) f(x) 7→ f(α),

where f(x) = f(x) + (g(x)) is the image of f(x) in F [x]/(g(x)) under the quotient
map. Note that this isomorphism of rings is also an isomorphism of vector spaces
over F (make sure you understand this sentence and agree with it; in particular,
how is F [x]/(g(x)) considered as a vector space over F ?). The set {xj : 0 ≤ j < n}
is a basis of F [x]/(g(x)) as a vector space over F . Indeed, given any f(x) ∈ F [x],
let r(x) be the remainder of f(x) in division by g(x). Then r(x) is an F -linear
combination of {xj : 0 ≤ j < n}, so that r(x) is an F -linear combination of {xj :

0 ≤ j < n} (if r(x) =
n−1∑
j=0

ajx
j , then r(x) =

n−1∑
j=0

ajx
j). Moreover, f(x) = r(x) (why?).

This shows that {xj : 0 ≤ j < n} spans F [x]/(g(x)) as a vector space over F . For

linear independence, note that if
n−1∑
j=0

ajx
j = 0 for some a0, ...an−1 ∈ F , then

n−1∑
j=0

ajxj = 0

in F [x]/(g(x)), which means
n−1∑
j=0

ajx
j ∈ (g(x)). Since g(x) has degree n, it follows

that
n−1∑
j=0

ajx
j = 0, i.e. all the aj are zero.

We have established that {xj : 0 ≤ j < n} is a basis of F [x]/(g(x)) as a vector
space over F . In view of the isomorphism Eq. (3), {αj : 0 ≤ j < n} is a basis
of F (α) as a vector space over F . In particular, F (α) is an n-dimensional vector
space over F , i.e. [F (α) : F ] = n.
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What remains is to show that (iv) implies (iii). This is easy: if F (α) is a finite
extension of F , say of degree n, then the elements αj (0 ≤ j ≤ n) must be F -
linearly dependent (why?), i.e. there must be a0, ..., an ∈ F , not all zero, such that
n∑
j=0

ajα
j = 0. Then α is a root of the nonzero polynomial

n∑
j=0

ajx
j ∈ F [x].

3.
(a) By Eisenstein criterion for prime 3, the polynomial is irreducible in Q[x]. The

polynomial is primitive (i.e. the gcd of its coefficients is 1) so it is also irreducible
in Z[x].

(b) Irreducible by Eisenstein criterion for prime p. (Remark: Corollary 42 of Rotman
is incorrect as stated, e.g. xn − bn is not irreducible for any b ∈ Z and n > 1.)

(c) (i) is irreducible since it is of degree 2 and with no rational roots (use the qua-
dratic formula). (Note: Let a ∈ Z. By Problem 63 of Rotman, every rational
root of xn − a is actually an integer. This n

√
a is rational if and only if it is an

integer, i.e. if and only if a = bn for some b ∈ Z. )
(ii) 6x3−3x−18 is irreducible over Q[x] if and only if 2x3−x−6 is. Being of degree

3, the latter is irreducible if and only if it has no rational roots. By Problem 63,
the rational roots of 2x3− x− 6 must be of the forms (1) an integer a dividing
6, and (2) a/2 with a = ±1,±3. A simple check shows that none of these are
roots of 2x3 − x− 6.

(iii) The degree is 3 so we only need to check if the polynomial has any roots in Q.
In view of Problem 63 the only candidates for a root are ±1, neither of which
is a root. Thus the polynomial is indeed irreducible.

(d) In view of Gauss lemma (Theorem 39), it is enough to show that f(x) cannot be
expressed as g(x)h(x) for any g(x), h(x) ∈ Z[x] of positive degree. If one of the
factors is of degree 1, then f(x) has a rational root. In view of Problem 63, the
only possible rational roots of f(x) are ±1. Neither of these is a root.

Now we will argue that f(x) does not factor as a product of two polynomials
in Z[x] of degree > 1. If it does, the two factors must both be of degree 2. Suppose

x4 − 10x2 + 1 = (ax2 + bx+ c)(a′x2 + b′x+ c′)

with a, b, c, a′, b′, c′ ∈ Z. Comparing the coefficients of x4 on the two sides we get
aa′ = 1, so a = a′ = ±1. We may assume that a = a′ = 1 (if necessary, multiple the
two factors by -1). Comparing the coefficients of x3 (resp. the constant terms) we
get b′ + b = 0 (resp. c = c′ = ±1). Thus our factorization looks like

x4 − 10x2 + 1 = (x2 + bx+ c)(x2 − bx+ c), where c = ±1.

Comparing coefficients of x2 we get −b2 ± 2 = −10, so that b2 ∈ {8, 12}. But b ∈ Z
so this is absurd.

(e) By Gauss lemma it is enough to show that the polynomial f(x) = x3 + 70000x +
4000 does not factor in Z[x] as a product of two polynomials of positive degree.
For this, it is enough to show that the polynomial is irreducible after passing to
F7[x]. Reducing mod 7, we get the polynomial

x3 + 3 ∈ F7[x].
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This polynomial is irreducible as it is of degree 3 and has no root in F7. Indeed,
for any nonzero α ∈ F7, we have

(α3)2 = α6 why?
= 1,

so that α3 = ±1 (the only solutions to x2 − 1 = 0 in the field F7 are ±1).

REMARK. (1) Checking irreducibility of a given polynomial over a finite field
is usually easier than that over Z. In the worst case scenario, it can always be done
brute-force in a finite number of operations. After all, there are only finitely many
polynomials of bounded degree with coefficients in a finite field.

(2) The original polynomial in this question was x3 + 70000x + 4. For that
polynomial, the only candidates for a rational root are±1,±2,±4. None of those is
a root so the polynomial has no rational root and being of degree 3, it is irreducible
in Q[x].

(f) x9 − 13 is irreducible in Q[x] by Eisenstein crieterion with p = 13. We will show
that x9 − 13 is not irreducible in F29[x]. In fact, x9 − 13 has a root in F29. Consider
the map ψ : F×29 −→ F×29 given by α 7→ α9. This is a group homomorphism. Its
kernel consists of those α ∈ F29 which satisfy α9 = 1. This is equivalent to the
order of α (as an element of F×29) dividing 9. Since the order of every element of
F×29 divides |F×29| = 28, it follows that ker(ψ) = {1}. Thus ψ is injective, and hence
surjective (why?). In particular, there is α ∈ F29 such that α9 = 13.

(g) Recall that in a ring of characteristic prime p, the map r 7→ rp is a ring homomor-
phism. Applying this to Fp[x], we have

(xp
2

+ 2xp + x+ 3)p = xp
3

+ 2pxp
2

+ xp + 3p = xp
3

+ 2xp
2

+ xp + 3

(recall that ap = a for any a ∈ Fp). Thus the given polynomial is not irreducible.
(h) Same as Part (g). (In any field F of characteristic p with its prime field denoted

by F0, one has ap = a for any element a of F0. This is because one has a (unique)
isomorphism Fp ' F0.)

4.
(a) First we recall a few facts from group theory. Let G be a group, with the operation

written in multiplicative notation and the identity denoted by e. Recall that for
any g ∈ G, the order of g, usually denoted by |g|, is defined as follows:

- if there is a positive integer n such that gn = e, then |g| is defined to be the
smallest such n;

- otherwise, i.e. if there is no positive integer n such that gn = e, then we define
|g| :=∞.

If |g| = n, then for any integer a one has ga = e if and only if n
∣∣ a. More generally,

ga = gb if and only if a ≡ b (mod n). The subgroup 〈g〉 := {gk : k ∈ Z} has then
exactly n distinct elements, namely

gk (1 ≤ k ≤ n)

(or k coming from any complete set of residues mod n). If |g| = ∞, then the
elements gk (k ∈ Z) are all distinct, and 〈g〉 has infinitely many elements. In either
case |〈g〉| = |g|.
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Suppose |g| is finite. There is a formula that relates the order of a power of g
to the order of g:

|gk| = |g|
gcd(|g|, k)

.

In particular,|gk| divides |g|, and moreover |gk| = |g| if and only if gcd(|g|, k) = 1.
Since 〈g〉 is finite and 〈gk〉 ≤ 〈g〉, we have 〈gk〉 = 〈g〉 if and only if |〈gk〉| = |〈g〉|, i.e.
if and only if |gk| = |g|. Thus gk is a generator of the cyclic group 〈g〉 if and only if
gcd(|g|, k) = 1. In particular, if G is a cyclic group of order n generated by g, then
G has exactly ϕ(n) ( = the number of positive integers ≤ n which are relatively
prime to n) generators, namely the elements

gk (1 ≤ k ≤ n, gcd(n, k) = 1).

Now back to the homework question. The group µn of the n-roots of unity (i.e.
1) in C is a cyclic group of order n, generated by e2πi/n. It has ϕ(n) generators

e2πik/n (1 ≤ k ≤ n, gcd(n, k) = 1).

These are the primitive n-th roots of unity.
(b) For simplicity, let us write ζ for ζn. First note that since Kn contains every root of

xn − 1, in particular, it contains ζ . Therefore, being a subfield of C which contains
ζ (and Q), the field Kn contains Q(ζ). On the other hand, every complex root of
xn − 1 is power of ζ , hence belongs to Q(ζ). Thus xn − 1 splits over the field Q(ζ).
It follows that Kn = Q(ζ). (By definition of Kn, the polynomial xn − 1 does not
split over any proper subfield of Kn.)

(c) We go through 1 ≤ n ≤ 9 one by one. In each case, we write ζ for a primitive n-th
root of unity.

- n = 1 : µ1 = {1}, ζ = 1, and the minimal polynomial of ζ is x− 1.
- n = 2 : µ2 = {1,−1}, the only primitive root is ζ = −1, and its minimal

polynomial is x+ 1.
- n = 3 : We have x3 − 1 = (x − 1)(x2 + x + 1). Since ζ 6= 1, it is a root of
x2 + x + 1. This polynomial is irreducible in Q[x] (why?) and hence is the
minimal polynomial of ζ (over Q).

- n = 4 : We have x4 − 1 = (x2 − 1)(x2 + 1). Since ζ2 6= 1 (why?), it follows that
ζ is a root of x2 + 1. This polynomial is irreducible in Q[x] (why?) and hence
is the minimal polynomial of ζ .

- n = 5 : x5 − 1 = (x − 1)(x4 + x3 + x2 + x + 1) and ζ is a root of x4 + x3 +
x2 + x + 1. The polynomial x4 + x3 + x2 + x + 1 is irreducible over Q (recall
that xp−1 + xp−2 + · · · + 1 is irreducible in Q[x] if p is prime). Hence it is the
minimal polynomial of ζ .

- n = 6 : We have x6 − 1 = (x3 − 1)(x3 + 1) = (x3 − 1)(x+ 1)(x2 − x+ 1). Since
ζ is a primitive 6th root of unity, it is not a root of x3 − 1 or x + 1, and hence
must be a root of x2−x+1. This polynomial is irreducible over Q (why?) and
hence is the minimal polynomial of ζ .

- n = 7 : This is similar to n = 5 case. The minimal polynomial is x7−1
x−1 =

x6 + x5 + · · ·+ x+ 1.
- n = 8 : We have x8 − 1 = (x4 − 1)(x4 + 1). Since ζ is a primitive 8th root of

unity, it must be a root of x4 + 1. We claim that x4 + 1 is irreducible in Q[x]
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(and hence is the minimal polynomial of ζ). Indeed, use the same trick as the
one used when we proved irreducibility of xp−1

x−1 : since the map Q[x] −→ Q[x]
defined by f(x) 7→ f(x + 1) is an isomorphism, we can equivalently show
that (x + 1)4 + 1 is irreducible. The constant term of (x + 1)4 + 1 is 2 and its
leading coefficient is 1, so we can hope that Eisenstien criterion with p = 2
might apply. Let us calculate the coefficients of (x+1)4 +1 mod 2. Of course,
the exponent here is small enough that one can just expand and see that the
intermediate coefficients are all even (they are 4,6,4), so Eisenstein criterion
for prime 2 indeed applies and (x + 1)4 + 1 (and hence x4 + 1) is irreducible.
But let us try to avoid expanding (x+ 1)4 + 1.
Working mod 2, since 2 is a prime number and 4 is a power of 2, we have

(4) (x+ 1)4 + 1 = ((x+ 1) + 1)4 = (x+ 2)4 = x4.

Thus the coefficients of(x+1)4+1 are indeed all multiples of 2, except for the
leading coefficient. (See the remark below for a more detailed explanation.)

REMARK. Here is a more expanded version of the calculation of the coeffi-
cients of f(x) = (x+1)4+1 mod 2. What we are doing is the following: we are
calculating the image of f(x) under the map Z[x] −→ F2[x] which reduces the
coefficients mod 2; in other words, in the notation of your textbook (see page
38), the image of f(x) under the map π∗ : Z[x] −→ F2[x], where π : Z −→ F2

is the quotient map (= reduction mod 2 map). The key ingredients are that (i)
π∗ is a ring map, and (ii) since the characteristic of F2[x] is 2 and prime, the
map F2[x] −→ F2[x] given by g(x) 7→ g(x)2 is a ring homomorphism. Since
a composition of ring homomorphisms is a ring homomorphism, the map
F2[x] −→ F2[x] given by g(x) 7→ g(x)2

k is a ring homomorphism for any k.
The polynomial (x+ 1)4 + 1 in Eq. (4) is an element of F2[x]; it is the image of
(x+ 1)4 + 1 ∈ Z[x] under π∗. Here we used the fact that π∗ is a ring map:

π∗((x+ 1)4 + 1) = (π∗(x+ 1))4 + π∗(1) = (x+ 1)4 + 1

(where the first occurrence of (x+ 1)4 + 1 in the last line is an element of Z[x]
and the second an element of F2[x]). The fact that F2[x] is of characteristic 2
and (4 is a power of 2) implies that in F2[x],

(x+ 1)4 + 1 = ((x+ 1) + 1)4.

The rest of the computation in Eq. (4) is clear. In the end, we have obtained
that

π∗((x+ 1)4 + 1) = x4.

On recalling the definition of π∗ (which reduces the coefficients mod 2), we
conclude that the coefficient of x4 in (x + 1)4 + 1 ∈ Z[x] is 1 mod 2 while the
other coefficients are all 0 mod 2.

– n = 9 : We have x9 − 1 = (x3 − 1)(x6 + x3 + 1). Every primitive 9th root of
unity must be a root of x6 + x3 + 1. We show that x6 + x3 + 1 is irreducible
(and hence the minimal polynomial of any primitive 9th root of unity). Let’s
see if the same trick as before works: consider

(x+ 1)6 + (x+ 1)3 + 1.
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The constant term is 3 so we are hoping that we can apply Eisenstein criterion
for prime 3. Working mod 3, since 3 is a prime number, we have

(x+ 1)6 + (x+ 1)3 + 1 = ((x+ 1)2 + (x+ 1) + 1)3 = (x2 + 3x+ 3)3 = x6.

Thus the coefficients of (x + 1)6 + (x + 1)3 + 1 are all divisible by 3, except
the leading coefficient which is 1 mod 3. Eisenstein criterion for p = 3 indeed
applies. (Make sure you are okay with the last few lines of the argument
starting with “working mod 3”. See the remark in n = 8 case.)
For all 1 ≤ n ≤ 9, the degree of the minimal polynomial of ζ is ϕ(n), so that
[Kn : Q] = [Q(ζ) : Q] = ϕ(n) (by Problem 2). We shall see later that this is in
fact true for all n.

REMARK. Note that for each 1 ≤ n ≤ 9, the primitive n-th roots of unity
have the same minimal polynomial over Q (that is, for each n, the minimal
polynomial is the same for all primitive n-th roots of unity). More precisely,
for each n above, this minimal polynomial factors over C as∏

|ζ|=n

(x− ζ),

where the product is over the primitive n-th roots of unity in C. We shall see
later that this is in general true for any positive integer n.

(d) Since the minimal polynomial of ζ9 over Q (i.e x6 + x3 + 1) has degree 6, by the
argument given in the solution to Problem 2 the elements ζj9 (0 ≤ j ≤ 5) form a
basis of Q(ζ9) (= K9) over Q.

(e) Let ζ be a primitive n-th root of unity (here n is an arbitrary positive integer). Let
g(x) be the minimal polynomial of ζ over Q. Since Kn = Q(ζ), in view of Problem
2, we have [Kn : Q] = deg(g(x)). We shall show that deg(g(x)) ≤ ϕ(n).

Since ζ is a root of xn − 1 and g(x) is the minimal polynomial of ζ , we have
g(x)

∣∣ xn − 1 (make sure you agree with this!). Let α ∈ C be a root of g(x). It
follows from g(x)

∣∣ xn − 1 that α is also a root of xn − 1, i.e. α is an n-th root of
unity. In fact, we claim that α must be a primitive n-th root of unity, for if αk = 1
for some 1 ≤ k < n, then the minimal polynomial of α, which is g(x) (why?), must
divide xk − 1. But then ζ will also be a root of xk − 1, contradicting the fact that it
is a primitive n-th root of unity.

We have proved that any complex root of g(x) is a primitive n-th root of unity.
Since g(x) has no repeated roots (why?) and it splits over C, we have

deg(g(x)) = the number of distinct roots of g(x) in C
≤ the number of primitive n-th roots of unity in C
= ϕ(n).

REMARK. Here we proved that every root of g(x) is a primitive n-th root of
unity. To prove that deg(g(x)) = ϕ(n), we would also need to prove that every
primitive n-th root of unity is a root of g(x).
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5.
(a) Writing ζ instead of ζn for simplicity, the roots of xn − 2 in C are the numbers αζj

(0 ≤ j < n) (and we have xn − 2 =
∏

0≤j<n
(x− αζj)). The splitting field K contains

all these roots, so that it contains α and ζ (why ζ?). Thus Q(α, ζ) ⊂ K. On the
other hand, xn − 2 already splits over Q(α, ζ), hence Q(α, ζ) = K.

(b) Firstly, it is clear that Q(α) and Q(ζ) are both contained in K = Q(α, ζ) (do you
agree?). We want to show that Q(α) and Q(ζ) are both proper subfield of K. By
Eisenstien criterion with p = 2, the polynomial xn − 2 is irreducible over Q. Thus
[Q(α) : Q] = n. Combining with our first observation that Q(α) ⊂ K it follows
that [K : Q] ≥ n (remember from linear algebra that if W is a subspace of V ,
then dim(W ) ≤ dim(V )). We know from Part (e) of the previous question that
[Q(ζ) : Q] ≤ ϕ(n) < n (since n > 1), so that Q(ζ) 6= K.

To see that Q(α) 6= K, first let us work with a specific n-th root of 2, namely a
real n-th root of 2, which we denote by α0. Since α0 is real, we have Q(α0) ⊂ R.
Since n ≥ 3, some of the n-th roots of 2 are not real, so that K 6⊂ R. Thus Q(α0) 6=
K. Since Q(α0) ( K and [Q(α) : Q] = n, we have [K : Q] > n. Now for any n-th
root α of 2, [Q(α) : Q] = n, so that Q(α) 6= K.


