MATD01 Fields and Groups

Assignment 5

Solutions

1.

(a) Let $\alpha \in K$ be root of $f(x)$. We show that α is a repeated root of $f(x)$ if and only if $f^{\prime}(\alpha)=0$. Indeed, since α is a root of $f(x)$, there is $g(x) \in K[x]$ such that $f(x)=(x-\alpha) g(x)$. Then

$$
f^{\prime}(x)=g(x)+(x-\alpha) g^{\prime}(x)
$$

Substituting α for x we see that $f^{\prime}(\alpha)=0$ if and only if $g(\alpha)=0$. On the other hand, $g(\alpha)=0$ if and only if $(x-\alpha) \mid g(x)$. We leave it to the reader to check that $(x-\alpha) \mid g(x)$ is equivalent to $(x-\alpha)^{2} \mid f(x)$.
(b) The polynomial $f^{\prime}(x)=1$ has no roots in any extension of \mathbb{F}_{p}, so that $f(x)$ cannot have a repeated root in any extension of \mathbb{F}_{p}. Since $f(x)$ is monic and splits over K, we have

$$
f(x)=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{\operatorname{deg}(f(x)}\right)
$$

for some $\alpha_{1}, \ldots, \alpha_{\operatorname{deg}(f(x)} \in K$. Since $f(x)$ has no repeated roots in K, the $\alpha_{i}(1 \leq$ $i \leq \operatorname{deg}(f(x))$ are distinct.
(c) Suppose $f(x)$ has a repeated root α is some extension K of F. Then $f^{\prime}(\alpha)=0$. Since $f(x)$ is irreducible and has α as a root, it follows that $f(x) \mid f^{\prime}(x)$. (Indeed, $f(x)$ generates the kernel of the map $F[x] \longrightarrow K$ given by $g(x) \mapsto g(\alpha)$ - see Question 3(b) of Assignment 3.) Writing $f^{\prime}(x)=f(x) g(x)$, comparing degrees (and in view of the fact that the degree of $f^{\prime}(x)$ is less than the degree of f), it follows that $g(x)=0$ and hence, $f^{\prime}(x)=0$.

If F has characteristic zero, then $f^{\prime}(x) \neq 0$ for any irreducible $f(x)$ (as $\operatorname{deg}(f(x))>$ 0). It follows that $f(x)$ has no repeated roots.
2.
(a) true (why?)
(b) True. Indeed, $F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is a subfield of K which contains F and $\alpha_{1}, \ldots, \alpha_{n-1}$, hence it contains $F\left(\alpha_{1}, \ldots, \alpha_{n-1}\right)$. Combining with $\alpha_{n} \in F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, we get that

$$
F\left(\alpha_{1}, \ldots, \alpha_{n-1}\right)\left(\alpha_{n}\right) \subset F\left(\alpha_{1}, \ldots, \alpha_{n}\right)
$$

On the other hand, $F\left(\alpha_{1}, \ldots, \alpha_{n-1}\right)\left(\alpha_{n}\right)$ is a subfield of K which contains α_{n} and $F\left(\alpha_{1}, \ldots, \alpha_{n-1}\right)$, hence α_{n}, F, and $\alpha_{1}, \ldots, \alpha_{n-1}$. It follows that

$$
F\left(\alpha_{1}, \ldots, \alpha_{n}\right) \subset F\left(\alpha_{1}, \ldots, \alpha_{n-1}\right)\left(\alpha_{n}\right)
$$

(c) The equivalence of (i) and (ii) is clear: $F(\alpha)$ is a field so that (i) implies (ii). Conversely, if $F[\alpha]$ is a field, then it is a subfield of K that contains F and α, hence $F(\alpha) \subset F[\alpha]$. The inclusion $F[\alpha] \subset F(\alpha)$ is always true (any subring of K containing F and α contains $F[\alpha]$).

We now establish equivalence of (ii) and (iii). Recall that if R is any PID, an ideal of R is maximal and nonzero if and only if it is prime and nonzero. If R is not a field, then zero is not a maximal ideal of R. Thus if R is a PID which is not a
field, then an ideal I of R is maximal if and only if it is prime and nonzero. Apply this to $R=F[x]$ and $I=\operatorname{ker}\left(e v_{\alpha}\right)$ where $e v_{\alpha}: F[x] \longrightarrow K$ is the evaluation (at α) map $f(x) \mapsto f(\alpha)$. It follows that

$$
\operatorname{ker}\left(e v_{\alpha}\right) \text { is nonzero and prime if and only if it is maximal. }
$$

On the other hand, the first isomorphism theorem gives an isomorphism

$$
F[x] / \operatorname{ker}\left(e v_{\alpha}\right) \longrightarrow \operatorname{Im}\left(e v_{\alpha}\right)=F[\alpha] .
$$

Being a subring of a field, $F[\alpha]$ is an integral domain, so that $F[x] / \operatorname{ker}\left(e v_{\alpha}\right)$ is an integral domain as well. Hence $\operatorname{ker}\left(e v_{\alpha}\right)$ is a prime ideal of $F[x]$. Combining with Eq. (1) (since primality of $\operatorname{ker}\left(e v_{\alpha}\right)$ is automatic), we get that

$$
\operatorname{ker}\left(e v_{\alpha}\right) \text { is nonzero if and only if it is maximal. }
$$

The first statement in Eq. (2) is equivalent to (iii), while the second statement holds if and only if $F[x] / \operatorname{ker}\left(e v_{\alpha}\right)$ (or equivalently, $F[\alpha]$) is a field.

Finally, we turn our attention to the equivalence of (iii) and (iv). Let us first show that (iii) implies (iv). Let α be algebraic over F. Let $g(x) \in F[x]$ be the minimal polynomial of α over F. Thus $g(x)$ is monic, irreducible (in $F[x]$), and generates the kernel of $e v_{\alpha}: F[x] \longrightarrow K$. Let $n=\operatorname{deg}(g(x))$. We have an isomorphism

$$
F[x] /(g(x)) \longrightarrow F[\alpha]=F(\alpha) \quad \overline{f(x)} \mapsto f(\alpha)
$$

where $\overline{f(x)}=f(x)+(g(x))$ is the image of $f(x)$ in $F[x] /(g(x))$ under the quotient map. Note that this isomorphism of rings is also an isomorphism of vector spaces over F (make sure you understand this sentence and agree with it; in particular, how is $F[x] /(g(x))$ considered as a vector space over F ?). The set $\left\{\bar{x}^{j}: 0 \leq j<n\right\}$ is a basis of $F[x] /(g(x))$ as a vector space over F. Indeed, given any $f(x) \in F[x]$, let $r(x)$ be the remainder of $f(x)$ in division by $g(x)$. Then $r(x)$ is an F-linear combination of $\left\{x^{j}: 0 \leq j<n\right\}$, so that $\overline{r(x)}$ is an F-linear combination of $\left\{\bar{x}^{j}\right.$: $0 \leq j<n\}$ (if $r(x)=\sum_{j=0}^{n-1} a_{j} x^{j}$, then $\overline{r(x)}=\sum_{j=0}^{n-1} a_{j} \bar{x}^{j}$). Moreover, $\overline{f(x)}=\overline{r(x)}$ (why?). This shows that $\left\{\bar{x}^{j}: 0 \leq j<n\right\}$ spans $F[x] /(g(x))$ as a vector space over F. For linear independence, note that if $\sum_{j=0}^{n-1} a_{j} \bar{x}^{j}=0$ for some $a_{0}, \ldots a_{n-1} \in F$, then

$$
\overline{\sum_{j=0}^{n-1} a_{j} x^{j}}=0
$$

in $F[x] /(g(x))$, which means $\sum_{j=0}^{n-1} a_{j} x^{j} \in(g(x))$. Since $g(x)$ has degree n, it follows that $\sum_{j=0}^{n-1} a_{j} x^{j}=0$, i.e. all the a_{j} are zero.

We have established that $\left\{\bar{x}^{j}: 0 \leq j<n\right\}$ is a basis of $F[x] /(g(x))$ as a vector space over F. In view of the isomorphism Eq. (3), $\left\{\alpha^{j}: 0 \leq j<n\right\}$ is a basis of $F(\alpha)$ as a vector space over F. In particular, $F(\alpha)$ is an n-dimensional vector space over F, i.e. $[F(\alpha): F]=n$.

What remains is to show that (iv) implies (iii). This is easy: if $F(\alpha)$ is a finite extension of F, say of degree n, then the elements $\alpha^{j}(0 \leq j \leq n)$ must be F linearly dependent (why?), i.e. there must be $a_{0}, \ldots, a_{n} \in F$, not all zero, such that $\sum_{j=0}^{n} a_{j} \alpha^{j}=0$. Then α is a root of the nonzero polynomial $\sum_{j=0}^{n} a_{j} x^{j} \in F[x]$.
3.
(a) By Eisenstein criterion for prime 3, the polynomial is irreducible in $\mathbb{Q}[x]$. The polynomial is primitive (i.e. the gcd of its coefficients is 1) so it is also irreducible in $\mathbb{Z}[x]$.
(b) Irreducible by Eisenstein criterion for prime p. (Remark: Corollary 42 of Rotman is incorrect as stated, e.g. $x^{n}-b^{n}$ is not irreducible for any $b \in \mathbb{Z}$ and $n>1$.)
(c) (i) is irreducible since it is of degree 2 and with no rational roots (use the quadratic formula). (Note: Let $a \in \mathbb{Z}$. By Problem 63 of Rotman, every rational root of $x^{n}-a$ is actually an integer. This $\sqrt[n]{a}$ is rational if and only if it is an integer, i.e. if and only if $a=b^{n}$ for some $b \in \mathbb{Z}$.)
(ii) $6 x^{3}-3 x-18$ is irreducible over $\mathbb{Q}[x]$ if and only if $2 x^{3}-x-6$ is. Being of degree 3 , the latter is irreducible if and only if it has no rational roots. By Problem 63, the rational roots of $2 x^{3}-x-6$ must be of the forms (1) an integer a dividing 6 , and (2) $a / 2$ with $a= \pm 1, \pm 3$. A simple check shows that none of these are roots of $2 x^{3}-x-6$.
(iii) The degree is 3 so we only need to check if the polynomial has any roots in \mathbb{Q}. In view of Problem 63 the only candidates for a root are ± 1, neither of which is a root. Thus the polynomial is indeed irreducible.
(d) In view of Gauss lemma (Theorem 39), it is enough to show that $f(x)$ cannot be expressed as $g(x) h(x)$ for any $g(x), h(x) \in \mathbb{Z}[x]$ of positive degree. If one of the factors is of degree 1, then $f(x)$ has a rational root. In view of Problem 63, the only possible rational roots of $f(x)$ are ± 1. Neither of these is a root.

Now we will argue that $f(x)$ does not factor as a product of two polynomials in $\mathbb{Z}[x]$ of degree >1. If it does, the two factors must both be of degree 2 . Suppose

$$
x^{4}-10 x^{2}+1=\left(a x^{2}+b x+c\right)\left(a^{\prime} x^{2}+b^{\prime} x+c^{\prime}\right)
$$

with $a, b, c, a^{\prime}, b^{\prime}, c^{\prime} \in \mathbb{Z}$. Comparing the coefficients of x^{4} on the two sides we get $a a^{\prime}=1$, so $a=a^{\prime}= \pm 1$. We may assume that $a=a^{\prime}=1$ (if necessary, multiple the two factors by -1). Comparing the coefficients of x^{3} (resp. the constant terms) we get $b^{\prime}+b=0$ (resp. $c=c^{\prime}= \pm 1$). Thus our factorization looks like

$$
x^{4}-10 x^{2}+1=\left(x^{2}+b x+c\right)\left(x^{2}-b x+c\right), \quad \text { where } c= \pm 1 .
$$

Comparing coefficients of x^{2} we get $-b^{2} \pm 2=-10$, so that $b^{2} \in\{8,12\}$. But $b \in \mathbb{Z}$ so this is absurd.
(e) By Gauss lemma it is enough to show that the polynomial $f(x)=x^{3}+70000 x+$ 4000 does not factor in $\mathbb{Z}[x]$ as a product of two polynomials of positive degree. For this, it is enough to show that the polynomial is irreducible after passing to $\mathbb{F}_{7}[x]$. Reducing mod 7, we get the polynomial

$$
x^{3}+3 \in \mathbb{F}_{7}[x] .
$$

This polynomial is irreducible as it is of degree 3 and has no root in \mathbb{F}_{7}. Indeed, for any nonzero $\alpha \in \mathbb{F}_{7}$, we have

$$
\left(\alpha^{3}\right)^{2}=\alpha^{6} \stackrel{\text { why? }}{=} 1,
$$

so that $\alpha^{3}= \pm 1$ (the only solutions to $x^{2}-1=0$ in the field \mathbb{F}_{7} are ± 1).
REMARK. (1) Checking irreducibility of a given polynomial over a finite field is usually easier than that over \mathbb{Z}. In the worst case scenario, it can always be done brute-force in a finite number of operations. After all, there are only finitely many polynomials of bounded degree with coefficients in a finite field.
(2) The original polynomial in this question was $x^{3}+70000 x+4$. For that polynomial, the only candidates for a rational root are $\pm 1, \pm 2, \pm 4$. None of those is a root so the polynomial has no rational root and being of degree 3 , it is irreducible in $\mathbb{Q}[x]$.
(f) $x^{9}-13$ is irreducible in $\mathbb{Q}[x]$ by Eisenstein crieterion with $p=13$. We will show that $x^{9}-13$ is not irreducible in $\mathbb{F}_{29}[x]$. In fact, $x^{9}-13$ has a root in \mathbb{F}_{29}. Consider the map $\psi: \mathbb{F}_{29}^{\times} \longrightarrow \mathbb{F}_{29}^{\times}$given by $\alpha \mapsto \alpha^{9}$. This is a group homomorphism. Its kernel consists of those $\alpha \in \mathbb{F}_{29}$ which satisfy $\alpha^{9}=1$. This is equivalent to the order of α (as an element of \mathbb{F}_{29}^{\times}) dividing 9 . Since the order of every element of \mathbb{F}_{29}^{\times}divides $\left|\mathbb{F}_{29}^{\times}\right|=28$, it follows that $\operatorname{ker}(\psi)=\{1\}$. Thus ψ is injective, and hence surjective (why?). In particular, there is $\alpha \in \mathbb{F}_{29}$ such that $\alpha^{9}=13$.
(g) Recall that in a ring of characteristic prime p, the map $r \mapsto r^{p}$ is a ring homomorphism. Applying this to $\mathbb{F}_{p}[x]$, we have

$$
\left(x^{p^{2}}+2 x^{p}+x+3\right)^{p}=x^{p^{3}}+2^{p} x^{p^{2}}+x^{p}+3^{p}=x^{p^{3}}+2 x^{p^{2}}+x^{p}+3
$$

(recall that $a^{p}=a$ for any $a \in \mathbb{F}_{p}$). Thus the given polynomial is not irreducible.
(h) Same as Part (g). (In any field F of characteristic p with its prime field denoted by F_{0}, one has $a^{p}=a$ for any element a of F_{0}. This is because one has a (unique) isomorphism $\mathbb{F}_{p} \simeq F_{0}$.)
4.
(a) First we recall a few facts from group theory. Let G be a group, with the operation written in multiplicative notation and the identity denoted by e. Recall that for any $g \in G$, the order of g, usually denoted by $|g|$, is defined as follows:

- if there is a positive integer n such that $g^{n}=e$, then $|g|$ is defined to be the smallest such n;
- otherwise, i.e. if there is no positive integer n such that $g^{n}=e$, then we define $|g|:=\infty$.
If $|g|=n$, then for any integer a one has $g^{a}=e$ if and only if $n \mid a$. More generally, $g^{a}=g^{b}$ if and only if $a \equiv b(\bmod n)$. The subgroup $\langle g\rangle:=\left\{g^{k}: k \in \mathbb{Z}\right\}$ has then exactly n distinct elements, namely

$$
g^{k} \quad(1 \leq k \leq n)
$$

(or k coming from any complete set of residues $\bmod n$). If $|g|=\infty$, then the elements $g^{k}(k \in \mathbb{Z})$ are all distinct, and $\langle g\rangle$ has infinitely many elements. In either case $|\langle g\rangle|=|g|$.

Suppose $|g|$ is finite. There is a formula that relates the order of a power of g to the order of g :

$$
\left|g^{k}\right|=\frac{|g|}{g c d(|g|, k)}
$$

In particular, $\left|g^{k}\right|$ divides $|g|$, and moreover $\left|g^{k}\right|=|g|$ if and only if $g c d(|g|, k)=1$. Since $\langle g\rangle$ is finite and $\left\langle g^{k}\right\rangle \leq\langle g\rangle$, we have $\left\langle g^{k}\right\rangle=\langle g\rangle$ if and only if $\left|\left\langle g^{k}\right\rangle\right|=|\langle g\rangle|$, i.e. if and only if $\left|g^{k}\right|=|g|$. Thus g^{k} is a generator of the cyclic group $\langle g\rangle$ if and only if $\operatorname{gcd}(|g|, k)=1$. In particular, if G is a cyclic group of order n generated by g, then G has exactly $\varphi(n)(=$ the number of positive integers $\leq n$ which are relatively prime to n) generators, namely the elements

$$
g^{k} \quad(1 \leq k \leq n, \operatorname{gcd}(n, k)=1) .
$$

Now back to the homework question. The group μ_{n} of the n-roots of unity (i.e. $1)$ in \mathbb{C} is a cyclic group of order n, generated by $e^{2 \pi i / n}$. It has $\varphi(n)$ generators

$$
e^{2 \pi i k / n} \quad(1 \leq k \leq n, \operatorname{gcd}(n, k)=1)
$$

These are the primitive n-th roots of unity.
(b) For simplicity, let us write ζ for ζ_{n}. First note that since K_{n} contains every root of $x^{n}-1$, in particular, it contains ζ. Therefore, being a subfield of \mathbb{C} which contains ζ (and \mathbb{Q}), the field K_{n} contains $\mathbb{Q}(\zeta)$. On the other hand, every complex root of $x^{n}-1$ is power of ζ, hence belongs to $\mathbb{Q}(\zeta)$. Thus $x^{n}-1$ splits over the field $\mathbb{Q}(\zeta)$. It follows that $K_{n}=\mathbb{Q}(\zeta)$. (By definition of K_{n}, the polynomial $x^{n}-1$ does not split over any proper subfield of K_{n}.)
(c) We go through $1 \leq n \leq 9$ one by one. In each case, we write ζ for a primitive n-th root of unity.

- $n=1: \mu_{1}=\{1\}, \zeta=1$, and the minimal polynomial of ζ is $x-1$.
- $n=2: \mu_{2}=\{1,-1\}$, the only primitive root is $\zeta=-1$, and its minimal polynomial is $x+1$.
- $n=3$: We have $x^{3}-1=(x-1)\left(x^{2}+x+1\right)$. Since $\zeta \neq 1$, it is a root of $x^{2}+x+1$. This polynomial is irreducible in $\mathbb{Q}[x]$ (why?) and hence is the minimal polynomial of ζ (over \mathbb{Q}).
- $n=4$: We have $x^{4}-1=\left(x^{2}-1\right)\left(x^{2}+1\right)$. Since $\zeta^{2} \neq 1$ (why?), it follows that ζ is a root of $x^{2}+1$. This polynomial is irreducible in $\mathbb{Q}[x]$ (why?) and hence is the minimal polynomial of ζ.
- $n=5: x^{5}-1=(x-1)\left(x^{4}+x^{3}+x^{2}+x+1\right)$ and ζ is a root of $x^{4}+x^{3}+$ $x^{2}+x+1$. The polynomial $x^{4}+x^{3}+x^{2}+x+1$ is irreducible over \mathbb{Q} (recall that $x^{p-1}+x^{p-2}+\cdots+1$ is irreducible in $\mathbb{Q}[x]$ if p is prime). Hence it is the minimal polynomial of ζ.
- $n=6$: We have $x^{6}-1=\left(x^{3}-1\right)\left(x^{3}+1\right)=\left(x^{3}-1\right)(x+1)\left(x^{2}-x+1\right)$. Since ζ is a primitive 6 th root of unity, it is not a root of $x^{3}-1$ or $x+1$, and hence must be a root of $x^{2}-x+1$. This polynomial is irreducible over \mathbb{Q} (why?) and hence is the minimal polynomial of ζ.
$-n=7$: This is similar to $n=5$ case. The minimal polynomial is $\frac{x^{7}-1}{x-1}=$ $x^{6}+x^{5}+\cdots+x+1$.
- $n=8$: We have $x^{8}-1=\left(x^{4}-1\right)\left(x^{4}+1\right)$. Since ζ is a primitive 8 th root of unity, it must be a root of $x^{4}+1$. We claim that $x^{4}+1$ is irreducible in $\mathbb{Q}[x]$
(and hence is the minimal polynomial of ζ). Indeed, use the same trick as the one used when we proved irreducibility of $\frac{x^{p}-1}{x-1}$: since the map $\mathbb{Q}[x] \longrightarrow \mathbb{Q}[x]$ defined by $f(x) \mapsto f(x+1)$ is an isomorphism, we can equivalently show that $(x+1)^{4}+1$ is irreducible. The constant term of $(x+1)^{4}+1$ is 2 and its leading coefficient is 1 , so we can hope that Eisenstien criterion with $p=2$ might apply. Let us calculate the coefficients of $(x+1)^{4}+1 \bmod 2$. Of course, the exponent here is small enough that one can just expand and see that the intermediate coefficients are all even (they are 4,6,4), so Eisenstein criterion for prime 2 indeed applies and $(x+1)^{4}+1$ (and hence $x^{4}+1$) is irreducible. But let us try to avoid expanding $(x+1)^{4}+1$.
Working mod 2 , since 2 is a prime number and 4 is a power of 2 , we have

$$
(x+1)^{4}+1=((x+1)+1)^{4}=(x+2)^{4}=x^{4}
$$

Thus the coefficients of $(x+1)^{4}+1$ are indeed all multiples of 2 , except for the leading coefficient. (See the remark below for a more detailed explanation.)
REMARK. Here is a more expanded version of the calculation of the coefficients of $f(x)=(x+1)^{4}+1 \bmod 2$. What we are doing is the following: we are calculating the image of $f(x)$ under the map $\mathbb{Z}[x] \longrightarrow \mathbb{F}_{2}[x]$ which reduces the coefficients mod 2; in other words, in the notation of your textbook (see page 38), the image of $f(x)$ under the map $\pi^{*}: \mathbb{Z}[x] \longrightarrow \mathbb{F}_{2}[x]$, where $\pi: \mathbb{Z} \longrightarrow \mathbb{F}_{2}$ is the quotient map (= reduction mod 2 map). The key ingredients are that (i) π^{*} is a ring map, and (ii) since the characteristic of $\mathbb{F}_{2}[x]$ is 2 and prime, the map $\mathbb{F}_{2}[x] \longrightarrow \mathbb{F}_{2}[x]$ given by $g(x) \mapsto g(x)^{2}$ is a ring homomorphism. Since a composition of ring homomorphisms is a ring homomorphism, the map $\mathbb{F}_{2}[x] \longrightarrow \mathbb{F}_{2}[x]$ given by $g(x) \mapsto g(x)^{2^{k}}$ is a ring homomorphism for any k. The polynomial $(x+1)^{4}+1$ in Eq. (4) is an element of $\mathbb{F}_{2}[x]$; it is the image of $(x+1)^{4}+1 \in \mathbb{Z}[x]$ under π^{*}. Here we used the fact that π^{*} is a ring map:

$$
\pi^{*}\left((x+1)^{4}+1\right)=\left(\pi^{*}(x+1)\right)^{4}+\pi^{*}(1)=(x+1)^{4}+1
$$

(where the first occurrence of $(x+1)^{4}+1$ in the last line is an element of $\mathbb{Z}[x]$ and the second an element of $\left.\mathbb{F}_{2}[x]\right)$. The fact that $\mathbb{F}_{2}[x]$ is of characteristic 2 and (4 is a power of 2) implies that in $\mathbb{F}_{2}[x]$,

$$
(x+1)^{4}+1=((x+1)+1)^{4} .
$$

The rest of the computation in Eq. (4) is clear. In the end, we have obtained that

$$
\pi^{*}\left((x+1)^{4}+1\right)=x^{4}
$$

On recalling the definition of π^{*} (which reduces the coefficients mod 2), we conclude that the coefficient of x^{4} in $(x+1)^{4}+1 \in \mathbb{Z}[x]$ is $1 \bmod 2$ while the other coefficients are all $0 \bmod 2$.

- $n=9$: We have $x^{9}-1=\left(x^{3}-1\right)\left(x^{6}+x^{3}+1\right)$. Every primitive 9th root of unity must be a root of $x^{6}+x^{3}+1$. We show that $x^{6}+x^{3}+1$ is irreducible (and hence the minimal polynomial of any primitive 9th root of unity). Let's see if the same trick as before works: consider

$$
(x+1)^{6}+(x+1)^{3}+1 .
$$

The constant term is 3 so we are hoping that we can apply Eisenstein criterion for prime 3 . Working mod 3 , since 3 is a prime number, we have
$(x+1)^{6}+(x+1)^{3}+1=\left((x+1)^{2}+(x+1)+1\right)^{3}=\left(x^{2}+3 x+3\right)^{3}=x^{6}$.
Thus the coefficients of $(x+1)^{6}+(x+1)^{3}+1$ are all divisible by 3 , except the leading coefficient which is $1 \bmod 3$. Eisenstein criterion for $p=3$ indeed applies. (Make sure you are okay with the last few lines of the argument starting with "working $\bmod 3$ ". See the remark in $n=8$ case.)
For all $1 \leq n \leq 9$, the degree of the minimal polynomial of ζ is $\varphi(n)$, so that $\left[K_{n}: \mathbb{Q}\right]=[\mathbb{Q}(\zeta): \mathbb{Q}]=\varphi(n)$ (by Problem 2). We shall see later that this is in fact true for all n.
REMARK. Note that for each $1 \leq n \leq 9$, the primitive n-th roots of unity have the same minimal polynomial over \mathbb{Q} (that is, for each n, the minimal polynomial is the same for all primitive n-th roots of unity). More precisely, for each n above, this minimal polynomial factors over \mathbb{C} as

$$
\prod_{|\zeta|=n}(x-\zeta)
$$

where the product is over the primitive n-th roots of unity in \mathbb{C}. We shall see later that this is in general true for any positive integer n.
(d) Since the minimal polynomial of ζ_{9} over \mathbb{Q} (i.e $x^{6}+x^{3}+1$) has degree 6 , by the argument given in the solution to Problem 2 the elements $\zeta_{9}^{j}(0 \leq j \leq 5)$ form a basis of $\mathbb{Q}\left(\zeta_{9}\right)\left(=K_{9}\right)$ over \mathbb{Q}.
(e) Let ζ be a primitive n-th root of unity (here n is an arbitrary positive integer). Let $g(x)$ be the minimal polynomial of ζ over \mathbb{Q}. Since $K_{n}=\mathbb{Q}(\zeta)$, in view of Problem 2, we have $\left[K_{n}: \mathbb{Q}\right]=\operatorname{deg}(g(x))$. We shall show that $\operatorname{deg}(g(x)) \leq \varphi(n)$.

Since ζ is a root of $x^{n}-1$ and $g(x)$ is the minimal polynomial of ζ, we have $g(x) \mid x^{n}-1$ (make sure you agree with this!). Let $\alpha \in \mathbb{C}$ be a root of $g(x)$. It follows from $g(x) \mid x^{n}-1$ that α is also a root of $x^{n}-1$, i.e. α is an n-th root of unity. In fact, we claim that α must be a primitive n-th root of unity, for if $\alpha^{k}=1$ for some $1 \leq k<n$, then the minimal polynomial of α, which is $g(x)$ (why?), must divide $x^{k}-1$. But then ζ will also be a root of $x^{k}-1$, contradicting the fact that it is a primitive n-th root of unity.

We have proved that any complex root of $g(x)$ is a primitive n-th root of unity. Since $g(x)$ has no repeated roots (why?) and it splits over \mathbb{C}, we have

$$
\begin{aligned}
\operatorname{deg}(g(x)) & =\text { the number of distinct roots of } g(x) \text { in } \mathbb{C} \\
& \leq \text { the number of primitive } n \text {-th roots of unity in } \mathbb{C} \\
& =\varphi(n)
\end{aligned}
$$

REMARK. Here we proved that every root of $g(x)$ is a primitive n-th root of unity. To prove that $\operatorname{deg}(g(x))=\varphi(n)$, we would also need to prove that every primitive n-th root of unity is a root of $g(x)$.
5.
(a) Writing ζ instead of ζ_{n} for simplicity, the roots of $x^{n}-2$ in \mathbb{C} are the numbers $\alpha \zeta^{j}$ $(0 \leq j<n)$ (and we have $x^{n}-2=\prod_{0 \leq j<n}\left(x-\alpha \zeta^{j}\right)$). The splitting field K contains all these roots, so that it contains α and ζ (why ζ ?). Thus $\mathbb{Q}(\alpha, \zeta) \subset K$. On the other hand, $x^{n}-2$ already splits over $\mathbb{Q}(\alpha, \zeta)$, hence $\mathbb{Q}(\alpha, \zeta)=K$.
(b) Firstly, it is clear that $\mathbb{Q}(\alpha)$ and $\mathbb{Q}(\zeta)$ are both contained in $K=\mathbb{Q}(\alpha, \zeta)$ (do you agree?). We want to show that $\mathbb{Q}(\alpha)$ and $\mathbb{Q}(\zeta)$ are both proper subfield of K. By Eisenstien criterion with $p=2$, the polynomial $x^{n}-2$ is irreducible over \mathbb{Q}. Thus $[\mathbb{Q}(\alpha): \mathbb{Q}]=n$. Combining with our first observation that $\mathbb{Q}(\alpha) \subset K$ it follows that $[K: \mathbb{Q}] \geq n$ (remember from linear algebra that if W is a subspace of V, then $\operatorname{dim}(W) \leq \operatorname{dim}(V)$). We know from Part (e) of the previous question that $[\mathbb{Q}(\zeta): \mathbb{Q}] \leq \varphi(n)<n$ (since $n>1$), so that $\mathbb{Q}(\zeta) \neq K$.

To see that $\mathbb{Q}(\alpha) \neq K$, first let us work with a specific n-th root of 2 , namely a real n-th root of 2 , which we denote by α_{0}. Since α_{0} is real, we have $\mathbb{Q}\left(\alpha_{0}\right) \subset \mathbb{R}$. Since $n \geq 3$, some of the n-th roots of 2 are not real, so that $K \not \subset \mathbb{R}$. Thus $\mathbb{Q}\left(\alpha_{0}\right) \neq$ K. Since $\mathbb{Q}\left(\alpha_{0}\right) \subsetneq K$ and $[\mathbb{Q}(\alpha): \mathbb{Q}]=n$, we have $[K: \mathbb{Q}]>n$. Now for any n-th root α of $2,[\mathbb{Q}(\alpha): \mathbb{Q}]=n$, so that $\mathbb{Q}(\alpha) \neq K$.

