MATD01 Fields and Groups Assignment 5 Solutions

1.

(a) Let $\alpha \in K$ be root of f(x). We show that α is a repeated root of f(x) if and only if $f'(\alpha) = 0$. Indeed, since α is a root of f(x), there is $g(x) \in K[x]$ such that $f(x) = (x - \alpha)g(x)$. Then

$$f'(x) = g(x) + (x - \alpha)g'(x).$$

Substituting α for x we see that $f'(\alpha) = 0$ if and only if $g(\alpha) = 0$. On the other hand, $g(\alpha) = 0$ if and only if $(x - \alpha) | g(x)$. We leave it to the reader to check that $(x - \alpha) | g(x)$ is equivalent to $(x - \alpha)^2 | f(x)$.

(b) The polynomial f'(x) = 1 has no roots in any extension of \mathbb{F}_p , so that f(x) cannot have a repeated root in any extension of \mathbb{F}_p . Since f(x) is monic and splits over K, we have

 $f(x) = (x - \alpha_1) \cdots (x - \alpha_{\deg(f(x))})$

for some $\alpha_1, \ldots, \alpha_{\deg(f(x))} \in K$. Since f(x) has no repeated roots in K, the α_i $(1 \le i \le \deg(f(x)))$ are distinct.

(c) Suppose f(x) has a repeated root α is some extension K of F. Then $f'(\alpha) = 0$. Since f(x) is irreducible and has α as a root, it follows that $f(x) \mid f'(x)$. (Indeed, f(x) generates the kernel of the map $F[x] \longrightarrow K$ given by $g(x) \mapsto g(\alpha)$ - see Question 3(b) of Assignment 3.) Writing f'(x) = f(x)g(x), comparing degrees (and in view of the fact that the degree of f'(x) is less than the degree of f), it follows that g(x) = 0 and hence, f'(x) = 0.

If *F* has characteristic zero, then $f'(x) \neq 0$ for any irreducible f(x) (as $\deg(f(x)) > 0$). It follows that f(x) has no repeated roots.

2.

(b) True. Indeed, $F(\alpha_1, ..., \alpha_n)$ is a subfield of K which contains F and $\alpha_1, ..., \alpha_{n-1}$, hence it contains $F(\alpha_1, ..., \alpha_{n-1})$. Combining with $\alpha_n \in F(\alpha_1, ..., \alpha_n)$, we get that

 $F(\alpha_1,\ldots,\alpha_{n-1})(\alpha_n) \subset F(\alpha_1,\ldots,\alpha_n).$

On the other hand, $F(\alpha_1, \ldots, \alpha_{n-1})(\alpha_n)$ is a subfield of K which contains α_n and $F(\alpha_1, \ldots, \alpha_{n-1})$, hence α_n , F, and $\alpha_1, \ldots, \alpha_{n-1}$. It follows that

$$F(\alpha_1,\ldots,\alpha_n) \subset F(\alpha_1,\ldots,\alpha_{n-1})(\alpha_n).$$

(c) The equivalence of (i) and (ii) is clear: $F(\alpha)$ is a field so that (i) implies (ii). Conversely, if $F[\alpha]$ is a field, then it is a subfield of K that contains F and α , hence $F(\alpha) \subset F[\alpha]$. The inclusion $F[\alpha] \subset F(\alpha)$ is always true (any subring of K containing F and α contains $F[\alpha]$).

We now establish equivalence of (ii) and (iii). Recall that if R is any PID, an ideal of R is maximal and nonzero if and only if it is prime and nonzero. If R is not a field, then zero is not a maximal ideal of R. Thus if R is a PID which is not a

⁽a) true (why?)

field, then an ideal *I* of *R* is maximal if and only if it is prime and nonzero. Apply this to R = F[x] and $I = \ker(ev_{\alpha})$ where $ev_{\alpha} : F[x] \longrightarrow K$ is the evaluation (at α) map $f(x) \mapsto f(\alpha)$. It follows that

$$\ker(ev_{\alpha})$$
 is nonzero and prime if and only if it is maximal.

On the other hand, the first isomorphism theorem gives an isomorphism

$$F[x]/\ker(ev_{\alpha}) \longrightarrow Im(ev_{\alpha}) = F[\alpha].$$

Being a subring of a field, $F[\alpha]$ is an integral domain, so that $F[x]/\ker(ev_{\alpha})$ is an integral domain as well. Hence $\ker(ev_{\alpha})$ is a prime ideal of F[x]. Combining with Eq. (1) (since primality of $\ker(ev_{\alpha})$ is automatic), we get that

$ker(ev_{\alpha})$ is nonzero if and only if it is maximal.

The first statement in Eq. (2) is equivalent to (iii), while the second statement holds if and only if $F[x]/\ker(ev_{\alpha})$ (or equivalently, $F[\alpha]$) is a field.

Finally, we turn our attention to the equivalence of (iii) and (iv). Let us first show that (iii) implies (iv). Let α be algebraic over F. Let $g(x) \in F[x]$ be the minimal polynomial of α over F. Thus g(x) is monic, irreducible (in F[x]), and generates the kernel of $ev_{\alpha} : F[x] \longrightarrow K$. Let $n = \deg(g(x))$. We have an isomorphism

$$F[x]/(g(x)) \longrightarrow F[\alpha] = F(\alpha) \qquad \overline{f(x)} \mapsto f(\alpha),$$

where f(x) = f(x) + (g(x)) is the image of f(x) in F[x]/(g(x)) under the quotient map. Note that this isomorphism of rings is also an isomorphism of vector spaces over F (make sure you understand this sentence and agree with it; in particular, how is F[x]/(g(x)) considered as a vector space over F?). The set $\{\overline{x}^j : 0 \le j < n\}$ is a basis of F[x]/(g(x)) as a vector space over F. Indeed, given any $f(x) \in F[x]$, let r(x) be the remainder of f(x) in division by g(x). Then r(x) is an F-linear combination of $\{x^j : 0 \le j < n\}$, so that $\overline{r(x)}$ is an F-linear combination of $\{\overline{x}^j : 0 \le j < n\}$, so that $\overline{r(x)}$ is an F-linear combination of $\{\overline{x}^j : 0 \le j < n\}$, so that $\overline{r(x)} = \sum_{j=0}^{n-1} a_j \overline{x}^j$). Moreover, $\overline{f(x)} = \overline{r(x)}$ (why?). This shows that $\{\overline{x}^j : 0 \le j < n\}$ spans F[x]/(g(x)) as a vector space over F. For linear independence, note that if $\sum_{j=0}^{n-1} a_j \overline{x}^j = 0$ for some $a_0, ...a_{n-1} \in F$, then

$$\sum_{j=0}^{n-1} a_j x^j = 0$$

in F[x]/(g(x)), which means $\sum_{j=0}^{n-1} a_j x^j \in (g(x))$. Since g(x) has degree n, it follows

that $\sum_{j=0}^{n-1} a_j x^j = 0$, i.e. all the a_j are zero.

We have established that $\{\overline{x}^j : 0 \le j < n\}$ is a basis of F[x]/(g(x)) as a vector space over F. In view of the isomorphism Eq. (3), $\{\alpha^j : 0 \le j < n\}$ is a basis of $F(\alpha)$ as a vector space over F. In particular, $F(\alpha)$ is an *n*-dimensional vector space over F, i.e. $[F(\alpha) : F] = n$.

(1)

(2)

(3)

What remains is to show that (iv) implies (iii). This is easy: if $F(\alpha)$ is a finite extension of F, say of degree n, then the elements α^j ($0 \le j \le n$) must be F-linearly dependent (why?), i.e. there must be $a_0, ..., a_n \in F$, not all zero, such that $\sum_{j=0}^n a_j \alpha^j = 0$. Then α is a root of the nonzero polynomial $\sum_{j=0}^n a_j x^j \in F[x]$.

3.

- (a) By Eisenstein criterion for prime 3, the polynomial is irreducible in $\mathbb{Q}[x]$. The polynomial is primitive (i.e. the gcd of its coefficients is 1) so it is also irreducible in $\mathbb{Z}[x]$.
- (b) Irreducible by Eisenstein criterion for prime p. (Remark: Corollary 42 of Rotman is incorrect as stated, e.g. $x^n b^n$ is not irreducible for any $b \in \mathbb{Z}$ and n > 1.)
- (c) (i) is irreducible since it is of degree 2 and with no rational roots (use the quadratic formula). (Note: Let $a \in \mathbb{Z}$. By Problem 63 of Rotman, every rational root of $x^n a$ is actually an integer. This $\sqrt[n]{a}$ is rational if and only if it is an integer, i.e. if and only if $a = b^n$ for some $b \in \mathbb{Z}$.)
 - (ii) $6x^3-3x-18$ is irreducible over $\mathbb{Q}[x]$ if and only if $2x^3-x-6$ is. Being of degree 3, the latter is irreducible if and only if it has no rational roots. By Problem 63, the rational roots of $2x^3 x 6$ must be of the forms (1) an integer *a* dividing 6, and (2) a/2 with $a = \pm 1, \pm 3$. A simple check shows that none of these are roots of $2x^3 x 6$.
 - (iii) The degree is 3 so we only need to check if the polynomial has any roots in \mathbb{Q} . In view of Problem 63 the only candidates for a root are ± 1 , neither of which is a root. Thus the polynomial is indeed irreducible.
- (d) In view of Gauss lemma (Theorem 39), it is enough to show that f(x) cannot be expressed as g(x)h(x) for any $g(x), h(x) \in \mathbb{Z}[x]$ of positive degree. If one of the factors is of degree 1, then f(x) has a rational root. In view of Problem 63, the only possible rational roots of f(x) are ± 1 . Neither of these is a root.

Now we will argue that f(x) does not factor as a product of two polynomials in $\mathbb{Z}[x]$ of degree > 1. If it does, the two factors must both be of degree 2. Suppose

$$x^{4} - 10x^{2} + 1 = (ax^{2} + bx + c)(a'x^{2} + b'x + c')$$

with $a, b, c, a', b', c' \in \mathbb{Z}$. Comparing the coefficients of x^4 on the two sides we get aa' = 1, so $a = a' = \pm 1$. We may assume that a = a' = 1 (if necessary, multiple the two factors by -1). Comparing the coefficients of x^3 (resp. the constant terms) we get b' + b = 0 (resp. $c = c' = \pm 1$). Thus our factorization looks like

$$x^{4} - 10x^{2} + 1 = (x^{2} + bx + c)(x^{2} - bx + c), \text{ where } c = \pm 1.$$

Comparing coefficients of x^2 we get $-b^2 \pm 2 = -10$, so that $b^2 \in \{8, 12\}$. But $b \in \mathbb{Z}$ so this is absurd.

(e) By Gauss lemma it is enough to show that the polynomial $f(x) = x^3 + 70000x + 4000$ does not factor in $\mathbb{Z}[x]$ as a product of two polynomials of positive degree. For this, it is enough to show that the polynomial is irreducible after passing to $\mathbb{F}_7[x]$. Reducing mod 7, we get the polynomial

$$x^3 + 3 \in \mathbb{F}_7[x].$$

This polynomial is irreducible as it is of degree 3 and has no root in \mathbb{F}_7 . Indeed, for any nonzero $\alpha \in \mathbb{F}_7$, we have

$$(\alpha^3)^2 = \alpha^6 \stackrel{\text{why?}}{=} 1,$$

so that $\alpha^3 = \pm 1$ (the only solutions to $x^2 - 1 = 0$ in the field \mathbb{F}_7 are ± 1).

REMARK. (1) Checking irreducibility of a given polynomial over a finite field is usually easier than that over \mathbb{Z} . In the worst case scenario, it can always be done brute-force in a finite number of operations. After all, there are only finitely many polynomials of bounded degree with coefficients in a finite field.

(2) The original polynomial in this question was $x^3 + 70000x + 4$. For that polynomial, the only candidates for a rational root are $\pm 1, \pm 2, \pm 4$. None of those is a root so the polynomial has no rational root and being of degree 3, it is irreducible in $\mathbb{Q}[x]$.

- (f) $x^9 13$ is irreducible in $\mathbb{Q}[x]$ by Eisenstein crieterion with p = 13. We will show that $x^9 13$ is not irreducible in $\mathbb{F}_{29}[x]$. In fact, $x^9 13$ has a root in \mathbb{F}_{29} . Consider the map $\psi : \mathbb{F}_{29}^{\times} \longrightarrow \mathbb{F}_{29}^{\times}$ given by $\alpha \mapsto \alpha^9$. This is a group homomorphism. Its kernel consists of those $\alpha \in \mathbb{F}_{29}$ which satisfy $\alpha^9 = 1$. This is equivalent to the order of α (as an element of \mathbb{F}_{29}^{\times}) dividing 9. Since the order of every element of \mathbb{F}_{29}^{\times} divides $|\mathbb{F}_{29}^{\times}| = 28$, it follows that ker $(\psi) = \{1\}$. Thus ψ is injective, and hence surjective (why?). In particular, there is $\alpha \in \mathbb{F}_{29}$ such that $\alpha^9 = 13$.
- (g) Recall that in a ring of characteristic prime p, the map $r \mapsto r^p$ is a ring homomorphism. Applying this to $\mathbb{F}_p[x]$, we have

$$(x^{p^2} + 2x^p + x + 3)^p = x^{p^3} + 2^p x^{p^2} + x^p + 3^p = x^{p^3} + 2x^{p^2} + x^p + 3$$

(recall that $a^p = a$ for any $a \in \mathbb{F}_p$). Thus the given polynomial is not irreducible.

(h) Same as Part (g). (In any field *F* of characteristic *p* with its prime field denoted by F_0 , one has $a^p = a$ for any element *a* of F_0 . This is because one has a (unique) isomorphism $\mathbb{F}_p \simeq F_0$.)

- (a) First we recall a few facts from group theory. Let *G* be a group, with the operation written in multiplicative notation and the identity denoted by *e*. Recall that for any $g \in G$, the order of *g*, usually denoted by |g|, is defined as follows:
 - if there is a positive integer n such that $g^n = e$, then |g| is defined to be the smallest such n;
 - otherwise, i.e. if there is no positive integer *n* such that $g^n = e$, then we define $|g| := \infty$.

If |g| = n, then for any integer a one has $g^a = e$ if and only if $n \mid a$. More generally, $g^a = g^b$ if and only if $a \equiv b \pmod{n}$. The subgroup $\langle g \rangle := \{g^k : k \in \mathbb{Z}\}$ has then exactly n distinct elements, namely

$$q^k \qquad (1 \le k \le n)$$

(or *k* coming from any complete set of residues mod *n*). If $|g| = \infty$, then the elements g^k ($k \in \mathbb{Z}$) are all distinct, and $\langle g \rangle$ has infinitely many elements. In either case $|\langle g \rangle| = |g|$.

⁴.

Suppose |g| is finite. There is a formula that relates the order of a power of *g* to the order of *g*:

$$|g^k| = \frac{|g|}{\gcd(|g|,k)}.$$

In particular, $|g^k|$ divides |g|, and moreover $|g^k| = |g|$ if and only if gcd(|g|, k) = 1. Since $\langle g \rangle$ is finite and $\langle g^k \rangle \leq \langle g \rangle$, we have $\langle g^k \rangle = \langle g \rangle$ if and only if $|\langle g^k \rangle| = |\langle g \rangle|$, i.e. if and only if $|g^k| = |g|$. Thus g^k is a generator of the cyclic group $\langle g \rangle$ if and only if gcd(|g|, k) = 1. In particular, if *G* is a cyclic group of order *n* generated by *g*, then *G* has exactly $\varphi(n)$ (= the number of positive integers $\leq n$ which are relatively prime to *n*) generators, namely the elements

$$g^k \qquad (1 \le k \le n, \ gcd(n,k) = 1).$$

Now back to the homework question. The group μ_n of the *n*-roots of unity (i.e. 1) in \mathbb{C} is a cyclic group of order *n*, generated by $e^{2\pi i/n}$. It has $\varphi(n)$ generators

$$e^{2\pi i k/n}$$
 $(1 \le k \le n, gcd(n,k) = 1).$

These are the primitive *n*-th roots of unity.

- (b) For simplicity, let us write ζ for ζ_n. First note that since K_n contains every root of xⁿ − 1, in particular, it contains ζ. Therefore, being a subfield of C which contains ζ (and Q), the field K_n contains Q(ζ). On the other hand, every complex root of xⁿ − 1 is power of ζ, hence belongs to Q(ζ). Thus xⁿ − 1 splits over the field Q(ζ). It follows that K_n = Q(ζ). (By definition of K_n, the polynomial xⁿ − 1 does not split over any proper subfield of K_n.)
- (c) We go through $1 \le n \le 9$ one by one. In each case, we write ζ for a primitive *n*-th root of unity.
 - n = 1: $\mu_1 = \{1\}, \zeta = 1$, and the minimal polynomial of ζ is x 1.
 - n = 2: $\mu_2 = \{1, -1\}$, the only primitive root is $\zeta = -1$, and its minimal polynomial is x + 1.
 - n = 3: We have $x^3 1 = (x 1)(x^2 + x + 1)$. Since $\zeta \neq 1$, it is a root of $x^2 + x + 1$. This polynomial is irreducible in $\mathbb{Q}[x]$ (why?) and hence is the minimal polynomial of ζ (over \mathbb{Q}).
 - n = 4: We have $x^4 1 = (x^2 1)(x^2 + 1)$. Since $\zeta^2 \neq 1$ (why?), it follows that ζ is a root of $x^2 + 1$. This polynomial is irreducible in $\mathbb{Q}[x]$ (why?) and hence is the minimal polynomial of ζ .
 - n = 5: $x^5 1 = (x 1)(x^4 + x^3 + x^2 + x + 1)$ and ζ is a root of $x^4 + x^3 + x^2 + x + 1$. The polynomial $x^4 + x^3 + x^2 + x + 1$ is irreducible over \mathbb{Q} (recall that $x^{p-1} + x^{p-2} + \cdots + 1$ is irreducible in $\mathbb{Q}[x]$ if p is prime). Hence it is the minimal polynomial of ζ .
 - n = 6: We have $x^6 1 = (x^3 1)(x^3 + 1) = (x^3 1)(x + 1)(x^2 x + 1)$. Since ζ is a primitive 6th root of unity, it is not a root of $x^3 1$ or x + 1, and hence must be a root of $x^2 x + 1$. This polynomial is irreducible over \mathbb{Q} (why?) and hence is the minimal polynomial of ζ .
 - n = 7: This is similar to n = 5 case. The minimal polynomial is $\frac{x^7-1}{x-1} = x^6 + x^5 + \cdots + x + 1$.
 - n = 8: We have $x^8 1 = (x^4 1)(x^4 + 1)$. Since ζ is a primitive 8th root of unity, it must be a root of $x^4 + 1$. We claim that $x^4 + 1$ is irreducible in $\mathbb{Q}[x]$

(and hence is the minimal polynomial of ζ). Indeed, use the same trick as the one used when we proved irreducibility of $\frac{x^p-1}{x-1}$: since the map $\mathbb{Q}[x] \longrightarrow \mathbb{Q}[x]$ defined by $f(x) \mapsto f(x+1)$ is an isomorphism, we can equivalently show that $(x+1)^4 + 1$ is irreducible. The constant term of $(x+1)^4 + 1$ is 2 and its leading coefficient is 1, so we can hope that Eisenstien criterion with p = 2 might apply. Let us calculate the coefficients of $(x+1)^4 + 1 \mod 2$. Of course, the exponent here is small enough that one can just expand and see that the intermediate coefficients are all even (they are 4,6,4), so Eisenstein criterion for prime 2 indeed applies and $(x+1)^4 + 1$ (and hence $x^4 + 1$) is irreducible. But let us try to avoid expanding $(x+1)^4 + 1$.

Working mod 2, since 2 is a prime number and 4 is a power of 2, we have

$$(x+1)^4 + 1 = ((x+1)+1)^4 = (x+2)^4 = x^4.$$

Thus the coefficients of $(x + 1)^4 + 1$ are indeed all multiples of 2, except for the leading coefficient. (See the remark below for a more detailed explanation.)

REMARK. Here is a more expanded version of the calculation of the coefficients of $f(x) = (x+1)^4 + 1 \mod 2$. What we are doing is the following: we are calculating the image of f(x) under the map $\mathbb{Z}[x] \longrightarrow \mathbb{F}_2[x]$ which reduces the coefficients mod 2; in other words, in the notation of your textbook (see page 38), the image of f(x) under the map $\pi^* : \mathbb{Z}[x] \longrightarrow \mathbb{F}_2[x]$, where $\pi : \mathbb{Z} \longrightarrow \mathbb{F}_2$ is the quotient map (= reduction mod 2 map). The key ingredients are that (i) π^* is a ring map, and (ii) since the characteristic of $\mathbb{F}_2[x]$ is 2 and prime, the map $\mathbb{F}_2[x] \longrightarrow \mathbb{F}_2[x]$ given by $g(x) \mapsto g(x)^2$ is a ring homomorphism. Since a composition of ring homomorphisms is a ring homomorphism for any k. The polynomial $(x + 1)^4 + 1$ in Eq. (4) is an element of $\mathbb{F}_2[x]$; it is the image of $(x + 1)^4 + 1 \in \mathbb{Z}[x]$ under π^* . Here we used the fact that π^* is a ring map:

$$\pi^*((x+1)^4 + 1) = (\pi^*(x+1))^4 + \pi^*(1) = (x+1)^4 + 1$$

(where the first occurrence of $(x + 1)^4 + 1$ in the last line is an element of $\mathbb{Z}[x]$ and the second an element of $\mathbb{F}_2[x]$). The fact that $\mathbb{F}_2[x]$ is of characteristic 2 and (4 is a power of 2) implies that in $\mathbb{F}_2[x]$,

$$(x+1)^4 + 1 = ((x+1)+1)^4.$$

The rest of the computation in Eq. (4) is clear. In the end, we have obtained that

$$\pi^*((x+1)^4 + 1) = x^4.$$

On recalling the definition of π^* (which reduces the coefficients mod 2), we conclude that the coefficient of x^4 in $(x + 1)^4 + 1 \in \mathbb{Z}[x]$ is 1 mod 2 while the other coefficients are all 0 mod 2.

- n = 9: We have $x^9 - 1 = (x^3 - 1)(x^6 + x^3 + 1)$. Every primitive 9th root of unity must be a root of $x^6 + x^3 + 1$. We show that $x^6 + x^3 + 1$ is irreducible (and hence the minimal polynomial of any primitive 9th root of unity). Let's see if the same trick as before works: consider

$$(x+1)^6 + (x+1)^3 + 1.$$

(4)

The constant term is 3 so we are hoping that we can apply Eisenstein criterion for prime 3. Working mod 3, since 3 is a prime number, we have

$$(x+1)^{6} + (x+1)^{3} + 1 = ((x+1)^{2} + (x+1) + 1)^{3} = (x^{2} + 3x + 3)^{3} = x^{6}$$

Thus the coefficients of $(x + 1)^6 + (x + 1)^3 + 1$ are all divisible by 3, except the leading coefficient which is 1 mod 3. Eisenstein criterion for p = 3 indeed applies. (Make sure you are okay with the last few lines of the argument starting with "working mod 3". See the remark in n = 8 case.)

For all $1 \le n \le 9$, the degree of the minimal polynomial of ζ is $\varphi(n)$, so that $[K_n : \mathbb{Q}] = [\mathbb{Q}(\zeta) : \mathbb{Q}] = \varphi(n)$ (by Problem 2). We shall see later that this is in fact true for all n.

REMARK. Note that for each $1 \le n \le 9$, the primitive *n*-th roots of unity have the same minimal polynomial over \mathbb{Q} (that is, for each *n*, the minimal polynomial is the same for all primitive *n*-th roots of unity). More precisely, for each *n* above, this minimal polynomial factors over \mathbb{C} as

$$\prod_{|\zeta|=n} (x-\zeta)$$

where the product is over the primitive *n*-th roots of unity in \mathbb{C} . We shall see later that this is in general true for any positive integer *n*.

- (d) Since the minimal polynomial of ζ_9 over \mathbb{Q} (i.e $x^6 + x^3 + 1$) has degree 6, by the argument given in the solution to Problem 2 the elements ζ_9^j ($0 \le j \le 5$) form a basis of $\mathbb{Q}(\zeta_9)$ (= K_9) over \mathbb{Q} .
- (e) Let ζ be a primitive *n*-th root of unity (here *n* is an arbitrary positive integer). Let g(x) be the minimal polynomial of ζ over \mathbb{Q} . Since $K_n = \mathbb{Q}(\zeta)$, in view of Problem 2, we have $[K_n : \mathbb{Q}] = \deg(g(x))$. We shall show that $\deg(g(x)) \leq \varphi(n)$.

Since ζ is a root of $x^n - 1$ and g(x) is the minimal polynomial of ζ , we have $g(x) \mid x^n - 1$ (make sure you agree with this!). Let $\alpha \in \mathbb{C}$ be a root of g(x). It follows from $g(x) \mid x^n - 1$ that α is also a root of $x^n - 1$, i.e. α is an *n*-th root of unity. In fact, we claim that α must be a primitive *n*-th root of unity, for if $\alpha^k = 1$ for some $1 \leq k < n$, then the minimal polynomial of α , which is g(x) (why?), must divide $x^k - 1$. But then ζ will also be a root of $x^k - 1$, contradicting the fact that it is a primitive *n*-th root of unity.

We have proved that any complex root of g(x) is a primitive *n*-th root of unity. Since g(x) has no repeated roots (why?) and it splits over \mathbb{C} , we have

$$\begin{split} \deg(g(x)) &= \text{the number of distinct roots of } g(x) \text{ in } \mathbb{C} \\ &\leq \text{the number of primitive } n\text{-th roots of unity in } \mathbb{C} \\ &= \varphi(n). \end{split}$$

REMARK. Here we proved that every root of g(x) is a primitive *n*-th root of unity. To prove that $\deg(g(x)) = \varphi(n)$, we would also need to prove that every primitive *n*-th root of unity is a root of g(x).

5.

8

(a) Writing ζ instead of ζ_n for simplicity, the roots of $x^n - 2$ in \mathbb{C} are the numbers $\alpha \zeta^j$ $(0 \le j < n)$ (and we have $x^n - 2 = \prod_{0 \le j < n} (x - \alpha \zeta^j)$). The splitting field K contains all these roots, so that it contains α and ζ (why ζ ?). Thus $\mathbb{Q}(\alpha, \zeta) \subset K$. On the

all these roots, so that it contains α and ζ (why ζ ?). Thus $\mathbb{Q}(\alpha, \zeta) \subset K$. On the other hand, $x^n - 2$ already splits over $\mathbb{Q}(\alpha, \zeta)$, hence $\mathbb{Q}(\alpha, \zeta) = K$.

(b) Firstly, it is clear that $\mathbb{Q}(\alpha)$ and $\mathbb{Q}(\zeta)$ are both contained in $K = \mathbb{Q}(\alpha, \zeta)$ (do you agree?). We want to show that $\mathbb{Q}(\alpha)$ and $\mathbb{Q}(\zeta)$ are both proper subfield of K. By Eisenstien criterion with p = 2, the polynomial $x^n - 2$ is irreducible over \mathbb{Q} . Thus $[\mathbb{Q}(\alpha) : \mathbb{Q}] = n$. Combining with our first observation that $\mathbb{Q}(\alpha) \subset K$ it follows that $[K : \mathbb{Q}] \ge n$ (remember from linear algebra that if W is a subspace of V, then $\dim(W) \le \dim(V)$). We know from Part (e) of the previous question that $[\mathbb{Q}(\zeta) : \mathbb{Q}] \le \varphi(n) < n$ (since n > 1), so that $\mathbb{Q}(\zeta) \ne K$.

To see that $\mathbb{Q}(\alpha) \neq K$, first let us work with a specific *n*-th root of 2, namely a real *n*-th root of 2, which we denote by α_0 . Since α_0 is real, we have $\mathbb{Q}(\alpha_0) \subset \mathbb{R}$. Since $n \geq 3$, some of the *n*-th roots of 2 are not real, so that $K \notin \mathbb{R}$. Thus $\mathbb{Q}(\alpha_0) \neq K$. Since $\mathbb{Q}(\alpha_0) \subsetneq K$ and $[\mathbb{Q}(\alpha) : \mathbb{Q}] = n$, we have $[K : \mathbb{Q}] > n$. Now for any *n*-th root α of 2, $[\mathbb{Q}(\alpha) : \mathbb{Q}] = n$, so that $\mathbb{Q}(\alpha) \neq K$.