MATD01 Fields and Groups

Assignment 7

Due Sunday March 15 at 10:00 pm
(to be submitted on Crowdmark)

Notes: Please write your solutions neatly and clearly. Note that due to time limitations, only some questions will be graded.

1. Let F be any field, $\alpha \in F$ a nonzero element and $n \geq 1$. Let K be a splitting field of $x^{n}-\alpha$ over F. Show that K contains a splitting field of $x^{n}-1$ over F. (Hint: Fix an n-th root β_{0} of α in K. If β is any n-th root of α in K, is β / β_{0} an n-th root of unity?)
2. (a) Let K / F be a field extension. Let $\alpha, \beta \in K$ be algebraic over F with $[F(\alpha)$: $F]=m$ and $[F(\beta): F]=n$. Show that $[F(\alpha, \beta): F] \leq m n$.
(b) Suppose moreover that $\operatorname{gcd}(m, n)=1$. Show that $[F(\alpha, \beta): F]=m n$.
(c) Let p be a prime number. Let K be a splitting field of $x^{p}-2$ over \mathbb{Q}.* Find $[K: \mathbb{Q}]$.
(d) Show that $\sum_{i=0}^{p-1} x^{i}$ is irreducible in $\mathbb{Q}(\sqrt[p]{2})[x]$ and $x^{p}-2$ is irreducible in $\mathbb{Q}\left(\zeta_{p}\right)[x]$, where ζ_{p} is a primitive p-th root of unity.
3. (This question will definitely be graded.) In each part, find the degree of the extension K / F.
(a) $\mathbb{C} \supset K=$ the splitting field of $x^{3}-4$ over $F=\mathbb{Q}$
(b) $\mathbb{C} \supset K=$ the splitting field of $x^{4}-4$ over $F=\mathbb{Q}$
(c) $\mathbb{C} \supset K=$ the splitting field of $x^{6}-2$ over $F=\mathbb{Q}$
(d) $K=$ a splitting field of $x^{10}-2$ over $F=\mathbb{F}_{5}$ (Hint: Is $x^{10}-2=\left(x^{2}-2\right)^{5}$? Is 2 a square in \mathbb{F}_{5} ?)
(e) $K=$ a splitting field of $x^{5}-2$ over $F=\mathbb{F}_{3}$
4. Let $F \subset K \subset L$ be fields. Suppose K / F is algebraic and $\alpha \in L$ is algebraic over K. Show that α is algebraic over F. (Hint: Let $f(x)=\sum_{i=0}^{n} a_{i} x^{i} \in K[x]$ be the minimal polynomial of α over K. Consider the field extensions $F \subset F\left(a_{0}, \ldots, a_{n}\right) \subset$ $F\left(a_{0}, \ldots, a_{n}\right)(\alpha)$. Remember every finite extension is algebraic.)
5. (a) Let L / F be a field extension. Suppose $\alpha, \beta \in L$ are algebraic over F. Show that $\alpha \beta, \alpha+\beta$ and $1 / \alpha$ (if $\alpha \neq 0$ for the last one) are also algebraic over F. Conclude that the set

$$
\begin{equation*}
K:=\{\alpha \in L: \alpha \text { is algebraic over } F\} \tag{1}
\end{equation*}
$$

is a subfield of L. Is K an algebraic extension of F ?
(b) Let

$$
K=\{\alpha \in \mathbb{R}: \alpha \text { is algebraic over } \mathbb{Q}\}
$$

[^0]By Part (a), K is an algebraic extension of \mathbb{Q}. Show that the extension K / \mathbb{Q} is not finite. (In particular, not every algebraic extension is finite. Hint: Suppose $[K: \mathbb{Q}]=n$. Let $\sqrt[n+1]{2}$ be a real $n+1$-th root of 2 . Is $\mathbb{Q}(\sqrt[n+1]{2}) \subset K$? Remember every finite extension is algebraic.)
(c) Recall that we say a field K is algebraically closed if every element of $K[x]$ has a root in K. Taking it for granted that \mathbb{C} is algebraically closed, show that

$$
\overline{\mathbb{Q}}:=\{\alpha \in \mathbb{C}: \alpha \text { is algebraic over } \mathbb{Q}\}
$$

is an algebraically closed algebraic extension of \mathbb{Q}. (An algebraically closed algebraic extension of a field F is called an algebraic closure of F. Hint: Problem 4.)
6. Let F be a field and p a prime number. Determine if each statement below is true or false. No explanation is necessary (but make sure you know why each statement is true or false).
(a) Every $f(x) \in F[x]$ has a unique splitting field over F.
(b) If K and K^{\prime} are two splitting fields of $f(x) \in F[x]$ over F, then there exists a unique isomorphism $K \rightarrow K^{\prime}$ which restricts to identity on F.
(c) If K and K^{\prime} are two splitting fields of $f(x) \in F[x]$ over F, then there exists an isomorphism $K \rightarrow K^{\prime}$ which restricts to identity on F.
(d) If $f(x) \in F[x]$ is irreducible and separable (i.e. has no repeated roots) and K and K^{\prime} are splitting fields of $f(x)$ over F, then there are $\operatorname{deg}(f(x))$ isomorphisms $K \rightarrow K^{\prime}$ which restrict to identity on F.
(e) If $f(x)$ is separable and K and K^{\prime} are splitting fields of $f(x)$ over F, then there are $[K: F]$ isomorphisms $K \rightarrow K^{\prime}$ which restrict to identity on F.
(f) Given any fields K and K^{\prime} with $q=p^{n}$ elements, there are n isomorphisms $K \rightarrow K^{\prime}$. (Hint: Apply (d) to $f(x)=x^{q}-x$ and $F=\mathbb{F}_{p}$.)

Extra Practice Problems: The following problems are for your practice. They are not to be handed in for grading.

1. Galois Theory by J. Rotman, second edition: Exercises \# 68-77
2. (a) Let F be a field of characteristic p over which $x^{n}-1$ splits. Find the number of distinct n-th roots of unity in F. (Hint: You may want to start with writing n as $p^{a} m$, where $a \geq 0$ and $p \nmid m$.)
(b) Let F be any field and $\mu_{n}(F)$ the set of n-th roots of unity in F. Let $\alpha \in F$. Show that if α has an n-th root in F, then there is a bijection between $\mu_{n}(F)$ and the set of n-th roots of α in F.
(b) Suppose F is finite. Let $\alpha \in F$. Factor $x^{p^{a}}-\alpha$ as a product of irreducibles in $F[x]$. (Hint: If the Fröbenius map $\beta \rightarrow \beta^{p}$ an automorphism of F ?)

[^0]: *Since every two splitting fields of $x^{p}-2$ over \mathbb{Q} are isomorphic, we may assume without loss of generality that K is the one contained in \mathbb{C}.

