MATD01 Fields and Groups

Assignment 7

Due Sunday March 15 at 10:00 pm (to be submitted on Crowdmark)

Notes: Please write your solutions neatly and clearly. Note that due to time limitations, only some questions will be graded.

- **1.** Let *F* be any field, $\alpha \in F$ a nonzero element and $n \ge 1$. Let *K* be a splitting field of $x^n \alpha$ over *F*. Show that *K* contains a splitting field of $x^n 1$ over *F*. (Hint: Fix an *n*-th root β_0 of α in *K*. If β is any *n*-th root of α in *K*, is β/β_0 an *n*-th root of unity?)
- **2.** (a) Let K/F be a field extension. Let $\alpha, \beta \in K$ be algebraic over F with $[F(\alpha) : F] = m$ and $[F(\beta) : F] = n$. Show that $[F(\alpha, \beta) : F] \leq mn$.
 - (b) Suppose moreover that gcd(m, n) = 1. Show that $[F(\alpha, \beta) : F] = mn$.

(c) Let p be a prime number. Let K be a splitting field of $x^p - 2$ over \mathbb{Q} .* Find $[K : \mathbb{Q}]$.

(d) Show that $\sum_{i=0}^{p-1} x^i$ is irreducible in $\mathbb{Q}(\sqrt[p]{2})[x]$ and $x^p - 2$ is irreducible in $\mathbb{Q}(\zeta_p)[x]$, where ζ_p is a primitive *p*-th root of unity.

- **3.** (This question will definitely be graded.) In each part, find the degree of the extension K/F.
 - (a) $\mathbb{C} \supset K$ = the splitting field of $x^3 4$ over $F = \mathbb{Q}$
 - (b) $\mathbb{C} \supset K$ = the splitting field of $x^4 4$ over $F = \mathbb{Q}$
 - (c) $\mathbb{C} \supset K$ = the splitting field of $x^6 2$ over $F = \mathbb{Q}$
 - (d) K = a splitting field of $x^{10} 2$ over $F = \mathbb{F}_5$ (Hint: Is $x^{10} 2 = (x^2 2)^5$? Is 2 a square in \mathbb{F}_5 ?)
 - (e) \overline{K} = a splitting field of $x^5 2$ over $F = \mathbb{F}_3$
- **4.** Let $F \subset K \subset L$ be fields. Suppose K/F is algebraic and $\alpha \in L$ is algebraic over K. Show that α is algebraic over F. (Hint: Let $f(x) = \sum_{i=0}^{n} a_i x^i \in K[x]$ be the minimal polynomial of α over K. Consider the field extensions $F \subset F(a_0, ..., a_n) \subset F(a_0, ..., a_n)(\alpha)$. Remember every finite extension is algebraic.)
- **5.** (a) Let L/F be a field extension. Suppose $\alpha, \beta \in L$ are algebraic over F. Show that $\alpha\beta, \alpha + \beta$ and $1/\alpha$ (if $\alpha \neq 0$ for the last one) are also algebraic over F. Conclude that the set

 $K := \{ \alpha \in L : \alpha \text{ is algebraic over } F \}$

is a subfield of *L*. Is *K* an algebraic extension of *F*? (b) Let

 $K = \{ \alpha \in \mathbb{R} : \alpha \text{ is algebraic over } \mathbb{Q} \}.$

^{*}Since every two splitting fields of $x^p - 2$ over \mathbb{Q} are isomorphic, we may assume without loss of generality that *K* is the one contained in \mathbb{C} .

By Part (a), *K* is an algebraic extension of \mathbb{Q} . Show that the extension K/\mathbb{Q} is not finite. (In particular, not every algebraic extension is finite. Hint: Suppose $[K : \mathbb{Q}] = n$. Let $\sqrt[n+1]{2}$ be a real n + 1-th root of 2. Is $\mathbb{Q}(\sqrt[n+1]{2}) \subset K$? Remember every finite extension is algebraic.)

(c) Recall that we say a field K is algebraically closed if every element of K[x] has a root in K. Taking it for granted that \mathbb{C} is algebraically closed, show that

$$\overline{\mathbb{Q}} := \{ \alpha \in \mathbb{C} : \alpha \text{ is algebraic over } \mathbb{Q} \}$$

is an algebraically closed algebraic extension of \mathbb{Q} . (An algebraically closed algebraic extension of a field *F* is called an algebraic closure of *F*. Hint: Problem 4.)

- 6. Let F be a field and p a prime number. Determine if each statement below is true or false. No explanation is necessary (but make sure you know why each statement is true or false).
 - (a) Every $f(x) \in F[x]$ has a unique splitting field over *F*.
 - (b) If *K* and *K'* are two splitting fields of $f(x) \in F[x]$ over *F*, then there exists a unique isomorphism $K \to K'$ which restricts to identity on *F*.
 - (c) If *K* and *K'* are two splitting fields of $f(x) \in F[x]$ over *F*, then there exists an isomorphism $K \to K'$ which restricts to identity on *F*.
 - (d) If $f(x) \in F[x]$ is irreducible and separable (i.e. has no repeated roots) and K and K' are splitting fields of f(x) over F, then there are $\deg(f(x))$ isomorphisms $K \to K'$ which restrict to identity on F.
 - (e) If f(x) is separable and K and K' are splitting fields of f(x) over F, then there are [K : F] isomorphisms $K \to K'$ which restrict to identity on F.
 - (f) Given any fields K and K' with $q = p^n$ elements, there are n isomorphisms $K \to K'$. (Hint: Apply (d) to $f(x) = x^q x$ and $F = \mathbb{F}_p$.)

Extra Practice Problems: The following problems are for your practice. They are not to be handed in for grading.

- 1. Galois Theory by J. Rotman, second edition: Exercises # 68-77
- 2. (a) Let F be a field of characteristic p over which xⁿ 1 splits. Find the number of distinct n-th roots of unity in F. (Hint: You may want to start with writing n as p^am, where a ≥ 0 and p ∤ m.)
 (b) Let F be any field and μ_n(F) the set of n-th roots of unity in F. Let α ∈ F. Show that if α has an n-th root in F, then there is a bijection between μ_n(F) and the set of n-th roots of α in F.
 (b) Suppose F is finite. Let α ∈ F. Factor x^{p^a} α as a product of irreducibles in

F[x]. (Hint: If the Fröbenius map $\beta \to \beta^p$ an automorphism of F?)