
MATD01 Fields and Groups
Assignment 7

Solutions

1. Let f(x) = xn − α. Suppose

f(x) =
n∏

i=1

(x− βi),

in K[x]. Since α is nonzero, each βi is nonzero. Then
n∏

i=1

(x− βi
β1

) =
1

βn
1

n∏
i=1

(β1x− βi) =
1

α
· f(β1x) =

(β1x)
n − α
α

=
αxn − α

α
= xn − 1,

so that xn − 1 splits over K.

2. (a) We have

(1) F ⊂ F (α) ⊂ F (α, β) = F (α)(β).

Let f be the minimal polynomial of β over F . Then deg(f) = [F (β) : F ] = n.
The minimal polynomial of β over F (α) divides f (why?), hence its degree is at
most n. Thus [F (α)(β) : F (α)] ≤ n (why?). The degree formula applied to the
extensions Eq. (1) gives the result.

(b) By the degree formula applied to Eq. (1) and F ⊂ F (β) ⊂ F (α, β) we see
that both m and n divide [F (α, β) : F ]. Since m and n are relatively prime, it
follows that mn divides [F (α, β) : F ]. Combining with Part (a) we get [F (α, β) :
F ] = mn.

(c) By Problem 1, K contains a splitting field of xp − 1 over Q. Let α ∈ K be a
root of xp−2 and ζ ∈ K a primitive p-th root of unity (see the remark below). Then
K = F (α, ζ) (why?). The minimal polynomials of α and ζ over Q are respectively
xp − 2 (irreducible by Eisenstein) and the p-th cyclotomic polynomial; they are
respectively of degrees p and p − 1. Thus [Q(α) : Q] = p and [Q(ζ) : Q] = p − 1.
Since p is a prime, p and p − 1 are relatively prime. By Part (b), [Q(α, ζ) : Q] =
p(p− 1).

REMARK. Let L be an extension of Q in which xn− 1 splits. Then the group of
n-th roots of unity in L is cyclic of order n. At this stage of the course, we can see
this by using the fact that every two splitting fields of xn−1 are Q are isomorphic.
Indeed, let L′ ⊂ L be a splitting field of xn − 1 over Q. Then the group of n-th
roots of unity in L′ is the same as the group of n-th roots of unity in L. Now L′ is
isomorphic to the splitting field of xn − 1 over Q in C. In the latter field we know
the group of n-th roots of unity is cyclic of order n.

Soon we shall see that any finite subgroup of the multiplicative group of units
of a field is cyclic. This means that for any n, the group of n-th roots of unity in
any field is cyclic. Since xn − 1 has no repeated roots in characteristic zero (just
look at the derivative), in any splitting field it has n roots and those roots form a
cyclic group of order n.
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(d) Let f(x) be the minimal polynomial of ζp over Q( p
√
2). Applying the degree

formula to
Q ⊂ Q(

p
√
2) ⊂ Q(

p
√
2, ζp) = Q(

p
√
2)(ζp),

in view of Part (c) we get

deg(f(x)) = [Q(
p
√
2, ζp) : Q(

p
√
2)] =

[Q( p
√
2, ζp) : Q]

[Q( p
√
2) : Q]

= p− 1.

Since
p−1∑
i=0

xi is in Q[x] ⊂ Q( p
√
2)[x] and vanishes at ζp, we have f(x)

∣∣ p−1∑
i=0

xi. Com-

paring degrees and leading coefficients we see that f(x) =
p−1∑
i=0

xi. Thus
p−1∑
i=0

xi is

irreducible over Q( p
√
2).

The argument for irreducibility of xp − 2 over Q(ζp) is similar and we leave it
to the reader. (Now you will be looking at Q ⊂ Q(ζp) ⊂ Q( p

√
2, ζp) = Q(ζp)(

p
√
2).)

3. (a) Let α be the real root of x3 − 4. Let ω be a primitive 3rd root of 1 in C. Then
K = Q(α, ω) (why?). The polynomial x3 − 4 has no rational roots (as being
monic with integral coefficients any rational root of it is an integer (Exercise
63 of Rotman), and x3 − 4 has no roots in Z). Being of degree 3, x3 − 4 is thus
irreducible over Q. Thus [Q(α) : Q] = 3. On the other hand, [Q(ω) : Q] = 2
(why?), which implies [Q(α, ω) : Q(α)] ≤ 2 (why?). Since Q(α) ⊂ R and
Q(α, ω) 6⊂ R, we must have [Q(α, ω) : Q(α)] = 2. By the degree formula,

[Q(α, ω) : Q] = [Q(α, ω) : Q(α)] · [Q(α) : Q] = 6.

(b) We have x4−4 = (x2−2)(x2+2). The roots of x4−4 are±
√
2,±i

√
2. We have

K = Q(
√
2, i) and

[Q(
√
2, i) : Q] = [Q(

√
2, i) : Q(

√
2)] · [Q(

√
2) : Q] = 2 · 2 = 4.

(Why is [Q(
√
2, i) : Q(

√
2)] = 2?)

(c) We have K = Q( 6
√
2, ζ), where 6

√
2 is a real 6th root of 2 and ζ a primitive 6th

root of unity. Since [Q(ζ) : Q] = ϕ(6) = 2, we have [Q( 6
√
2, ζ) : Q( 6

√
2)] ≤ 2.

Since Q( 6
√
2) is real and Q( 6

√
2, ζ) is not, Q( 6

√
2) 6= Q( 6

√
2, ζ). Thus [Q( 6

√
2, ζ) :

Q( 6
√
2)] = 2. By the degree formula

[Q(
6
√
2, ζ) : Q] = [Q(

6
√
2, ζ) : Q(

6
√
2)] · [Q(

6
√
2) : Q] = 2 · 6 = 12.

([Q( 6
√
2) : Q] = 6 because x6 − 2 is irreducible over Q by Eisenstein criterion.)

(d) In F5[x], we have
x10 − 2 = (x2 − 2)5

so that any splitting field of x10 − 2 over F5 is also a splitting field of x2 − 2

over F5. Let
√
2 denote one of the roots of x2 − 2 in K. Then K = F5(

√
2).

Note that 2 is not a square in F5, so that x2 − 2 has no root in F5. Thus x2 − 2

is irreducible over F5 and [F5(
√
2) : F5] = 2.

(e) Let α be a root of x5 − 2 = x5 + 1, i.e. α5 = −1. Then (−α)5 = 1, so that −α is
a root of x5 − 1. Conversely, if β is a root of x5 − 1, then −β is a root of x5 + 1.
It follows that K is also a splitting field of x5 − 1 over F3.
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Let f(x) = x5 − 1. Note that f has no repeated roots. Indeed, the only root of
f ′(x) = 5x4 is zero, which is not a root of f . Let µ5 be the set of roots of f in
K. Then µ5 is a subgroup of K× (as the set of n-th roots of unity in any field
F forms a subgroup of F×), and has order 5 (because f splits in K and has no
repeated roots). Take an element ζ ∈ µ5 with ζ 6= 1. Then 1 6= |ζ|

∣∣ |µ5| = 5.
Since 5 is a prime number, we get |ζ| = 5, so that µ5 is cyclic and generated
by ζ . It follows that K = F3(ζ).
Let d = [F3(ζ) : F3]. We have

x5 − 1 = (x− 1)(x4 + x3 + x2 + x+ 1)

so ζ is a root of x4 + x3 + x2 + x+1. Thus d ≤ 4 (why?). We shall show that in
fact, d = 4. Indeed, since µ5 is a subgroup of F3(ζ)

×, by Lagrange’s theorem
|µ5|

∣∣ |F3(ζ)
×|. That is, 5

∣∣ 3d − 1 (since |F3(ζ)| = 3d). Combining with d ≤ 4
we easily see that the only possibility is d = 4.

4. Let f(x) =
n∑

i=0

aix
i ∈ K[x] be the minimal polynomial of α over K. Let F ′ =

F (a0, ..., an). Then α is algebraic over F ′ (why?), so that F ′(α) is a finite exten-
sion of F ′. On the other hand, since K/F is algebraic, every ai is algebraic over
F , hence F ′ is a finite extension of F . By the degree formula, F ′(α) is a finite ex-
tension of F , and hence an algebraic extension of F . In particular, α ∈ F ′(α) is
algebraic over F .

5. (a) Since α and β are algebraic over F , the extension F (α, β)/F is finite and
hence algebraic. Thus every element of F (α, β), and in particular, the ele-
ments αβ, α + β and 1/α, are algebraic over F .
That

K := {α ∈ L : α is algebraic over F}
is a subfield is now immediate: K contains ±1 and is closed under addition,
multiplication, and taking multiplicative inverses for nonzero elements.
It is clear that K contains F (every a ∈ F is a root of x − a ∈ F [x]). Also, by
definition, every element of K is algebraic over F , so that K is an algebraic
extension of F

(b) Let
K := {α ∈ R : α is algebraic over Q}.

Let n be any positive integer. Let n
√
2 be a real root of xn − 2. Then n

√
2 ∈ K.

Consider the subfield Q( n
√
2) ofK. By Eisenstein criterion, xn−2 is irreducible

over Q, so that [Q( n
√
2) : Q] = n. Since Q( n

√
2) ⊂ K, it follows that dimQ(K) ≥

n (where dimQ(K) means the dimension of K as a vector space over Q). Since
this is true for all n, it follows that dimQ(K) is infinite.

(c) By (a) we know Q is an algebraic extension of Q. Take a polynomial f ∈
Q[x] ⊂ C[x] of positive degree. Since C is algebraically closed, f has a root
α in C. Then α is algebraic over Q. Since Q is algebraic over Q, in view of
Problem 4 it follows that α is algebraic over Q. Hence α belongs to Q.

6. (a) False
(b) False
(c) True
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(d) False
(e) True
(f) True


