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MATDO1 Fields and Groups
Assignment 7

Solutions

1. Let f(x) = 2™ — . Suppose

n

f(2) =]t - 5.

i=1

in K|z]. Since « is nonzero, each f; is nonzero. Then

H(x_ﬂt):/)}nﬂ(ﬁlx_ﬁz):;f(ﬁll): (ﬂlx)”_a _ ar® — o 1,
1

i=1 b i=1 @ @
so that 2" — 1 splits over K.
(a) We have

F ¢ F(a) C Fla,8) = F(a)(8).

Let f be the minimal polynomial of 5 over F. Then deg(f) = [F(8) : F| = n.
The minimal polynomial of 5 over F'(«) divides f (why?), hence its degree is at
most n. Thus [F(a)(B) : F(a)] < n (why?). The degree formula applied to the
extensions Eq. (1) gives the result.

(b) By the degree formula applied to Eq. (1) and F' C F(3) C F(a, ) we see
that both m and n divide [F(a, 5) : F]. Since m and n are relatively prime, it
follows that mn divides [F(«, 5) : F|. Combining with Part (a) we get [F(a, () :
F] = mn.

(c) By Problem 1, K contains a splitting field of 2 — 1 over Q. Let o € K be a
root of 27 —2 and ¢ € K a primitive p-th root of unity (see the remark below). Then
K = F(o, () (Why?). The minimal polynomials of a and ¢ over Q are respectively
aP — 2 (irreducible by Eisenstein) and the p-th cyclotomic polynomial; they are
respectively of degrees p and p — 1. Thus [Q(«) : Q] = pand [Q(() : Q] =p — 1.
Since p is a prime, p and p — 1 are relatively prime. By Part (b), [Q(«,() : Q] =
p(p —1).

REMARK. Let L be an extension of Q in which 2" — 1 splits. Then the group of
n-th roots of unity in L is cyclic of order n. At this stage of the course, we can see
this by using the fact that every two splitting fields of 2™ — 1 are Q are isomorphic.
Indeed, let L' C L be a splitting field of 2™ — 1 over Q. Then the group of n-th
roots of unity in L' is the same as the group of n-th roots of unity in L. Now L' is
isomorphic to the splitting field of 2™ — 1 over QQ in C. In the latter field we know
the group of n-th roots of unity is cyclic of order n.

Soon we shall see that any finite subgroup of the multiplicative group of units
of a field is cyclic. This means that for any n, the group of n-th roots of unity in
any field is cyclic. Since #" — 1 has no repeated roots in characteristic zero (just
look at the derivative), in any splitting field it has n roots and those roots form a

cyclic group of order n.
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(d) Let f(z) be the minimal polynomial of ¢, over Q({/2). Applying the degree
formula to

Q C Q(V2) C Q(V2,¢,) = Q(V2)(¢),

in view of Part (c) we get

el e = (003 - (/3 < QY26
deg((2)) = [Q(V2,6) QVB)) = S me oS =

p—1 p—1
Since Y- ' is in Q[z] C Q(+/2)[z] and vanishes at (,, we have f(z) | 3 z'. Com-
i=0 i=0

-1 -1
paring degrees and leading coefficients we see that f(z) = > 2. Thus > 2’ is
=0

i=0
irreducible over Q(¥/2).
The argument for irreducibility of 2? — 2 over Q((,) is similar and we leave it

to the reader. (Now you will be looking at Q C Q(¢,) C Q(¥/2,¢,) = Q((,)(/2).)

(a) Let a be the real root of z* — 4. Let w be a primitive 3rd root of 1 in C. Then
K = Q(a,w) (why?). The polynomial 2* — 4 has no rational roots (as being
monic with integral coefficients any rational root of it is an integer (Exercise
63 of Rotman), and #® — 4 has no roots in Z). Being of degree 3, % — 4 is thus
irreducible over Q. Thus [Q(«) : Q] = 3. On the other hand, [Q(w) : Q] = 2
(why?), which implies [Q(a,w) : Q(a)] < 2 (why?). Since Q(«) C R and
Q(a,w) ¢ R, we must have [Q(«,w) : Q(«)] = 2. By the degree formula,

[Q(e,w) : Q] = [Q(a,w) : Q)] - [Q(ev) : Q] = 6.

(b) We have z* — 4 = (22 —2)(2? +2). The roots of * — 4 are ++/2, +iy/2. We have
K = Q(v/2,4) and

[Q(V2,i) : Q] = [Q(v2,i) : Q(V2)] - [Q(V2) : Q] =2 -2 = 4.

(Why is [Q(v/2,7) : Q(+/2)] = 2?)

(c) We have K = Q(v/2,¢), where v/2 is a real 6th root of 2 and ¢ a primitive 6th
root of unity. Since [Q(¢) : Q] = (6) = 2, we have [Q(v/2,() : Q(v/2)] < 2.
Since Q(+/2) is real and Q(4/2, C) is not, Q(¥2) # Q(¥/2,¢). Thus [Q(V2,C) :
Q(v/2)] = 2. By the degree formula

Q(V2.0): QI =[Q(V2,(): Q(V2)]- [@(V2) : Q =2-6 =12.
([Q(v/2) : Q] = 6 because 2 — 2 is irreducible over Q by Eisenstein criterion.)
(d) In F;[z], we have
70 —2 = (22 - 2)°
so that any splitting field of z'° — 2 over Fj is also a splitting field of 2* — 2

over F5. Let v/2 denote one of the roots of 22 — 2 in K. Then K = IF5(\/§).
Note that 2 is not a square in F3, so that z? — 2 has no root in F5. Thus z? — 2
is irreducible over F5 and [F5(v/2) : F5] = 2.

(e) Let abe arootof z° —2 = z° + 1,i.e. a® = —1. Then (—a)® = 1, so that —« is
a root of 2° — 1. Conversely, if § is a root of z° — 1, then —f is a root of z° + 1.
It follows that K is also a splitting field of 2° — 1 over Fj.
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Let f(z) = 2° — 1. Note that f has no repeated roots. Indeed, the only root of
f'(xz) = 5x* is zero, which is not a root of f. Let 15 be the set of roots of f in
K. Then 5 is a subgroup of K* (as the set of n-th roots of unity in any field
F forms a subgroup of F'*), and has order 5 (because f splits in K and has no
repeated roots). Take an element ( € s with ¢ # 1. Then 1 # [(] ] |us| = 5.
Since 5 is a prime number, we get |(| = 5, so that x5 is cyclic and generated
by (. It follows that K = F5(().

Let d = [F3(() : F5]. We have

P—1l=@-DE*+2*+22+2+1)
so ¢ isaroot of x* + 23 + 2% + x + 1. Thus d < 4 (why?). We shall show that in
fact, d = 4. Indeed, since 15 is a subgroup of F5(()*, by Lagrange’s theorem
|us| | [F3(¢)*]. Thatis, 5 | 3¢ — 1 (since [F3(¢)| = 3%). Combining with d < 4
we easily see that the only possibility is d = 4.

Let f(z) = > a;2' € K[z] be the minimal polynomial of a over K. Let F' =

=0
F(agp,...,a,). Then « is algebraic over I’ (why?), so that F’(«) is a finite exten-
sion of . On the other hand, since K/F is algebraic, every q; is algebraic over
F, hence F’ is a finite extension of F. By the degree formula, F’(«) is a finite ex-
tension of F, and hence an algebraic extension of F. In particular, a« € F'(«a) is
algebraic over F.

(a) Since a and (8 are algebraic over F, the extension F(«, 3)/F is finite and
hence algebraic. Thus every element of F(«, ), and in particular, the ele-
ments a3, a + 5 and 1/«, are algebraic over F.

That

K :={a € L: «aisalgebraic over F'}
is a subfield is now immediate: K contains +1 and is closed under addition,
multiplication, and taking multiplicative inverses for nonzero elements.
It is clear that K contains F' (every a € F'is a root of z — a € F[z]). Also, by
definition, every element of K is algebraic over F), so that K is an algebraic
extension of F

(b) Let

K :={a € R : ais algebraic over Q}.
Let n be any positive integer. Let {/2 be a real root of 2™ — 2. Then /2 € K.
Consider the subfield Q(/2) of K. By Eisenstein criterion, 2™ —2 is irreducible
over Q, so that [Q(3/2) : Q] = n. Since Q(¥/2) C K, it follows that dimg(K) >
n (where dimg(K’) means the dimension of K as a vector space over Q). Since
this is true for all n, it follows that dimg(K) is infinite.

(c) By (a) we know Q is an algebraic extension of Q. Take a polynomial f €
Q[z] C CJz] of positive degree. Since C is algebraically closed, f has a root
a in C. Then « is algebraic over Q. Since Q is algebraic over Q, in view of
Problem 4 it follows that « is algebraic over Q. Hence « belongs to Q.

(a) False
(b) False
(c) True



(d) False
(e) True
(f) True



