MATD01 Fields and Groups

Assignment 8

Solutions

1. (a) Since f has coefficients in F, we have $\hat{\sigma}^{*}(f)=\sigma^{*}(f)$ (where $\hat{\sigma}^{*}$ is the map $F(\alpha)[x] \rightarrow K^{\prime}[x]$ induced by $\left.\hat{\sigma}: F(\alpha) \rightarrow K^{\prime}\right)$. Thus

$$
\sigma^{*}(f)(\hat{\sigma}(\alpha))=\hat{\sigma}^{*}(f)(\hat{\sigma}(\alpha))=\hat{\sigma}(f(\alpha))=\hat{\sigma}(0)=0
$$

(Make sure you are okay with the second equality.)
(b) Let us first prove existence. Since f is irreducible, it generates the kernel of the evaluation map

$$
\phi_{1}: F[x] \longrightarrow F(\alpha) \quad g \mapsto g(\alpha) .
$$

In view of the first isomorphism theorem, ϕ_{1} induces an isomorphism

$$
\overline{\phi_{1}}: F[x] /(f) \longrightarrow \operatorname{Im}\left(\phi_{1}\right)=F(\alpha) \quad g+(f) \mapsto g(\alpha) .
$$

Now consider the evaluation map

$$
\phi_{2}: F^{\prime}[x] \longrightarrow K^{\prime} \quad g \mapsto g\left(\alpha^{\prime}\right)
$$

Since $\sigma^{*}(f) \in \operatorname{ker}\left(\phi_{2}\right)$, the map ϕ_{2} induces a homomorphism

$$
\overline{\phi_{2}}: F^{\prime}[x] /\left(\sigma^{*}(f)\right) \longrightarrow K^{\prime} \quad g+\left(\sigma^{*}(f)\right) \mapsto g\left(\alpha^{\prime}\right)
$$

(see Assignment 3, Question 4). Next, let ψ be the composition

$$
F[x] \xrightarrow{\sigma^{*}} F^{\prime}[x] \xrightarrow{\text { quotient }} F^{\prime}[x] /\left(\sigma^{*}(f)\right) .
$$

The kernel of ψ contains f and hence the ideal (f), so that ψ induces a map

$$
\bar{\psi}: F[x] /(f) \longrightarrow F^{\prime}[x] /\left(\sigma^{*}(f)\right) \quad g+(f) \mapsto \psi(g)=\sigma^{*}(g)+\left(\sigma^{*}(f)\right) .
$$

Let $\hat{\sigma}$ be the composition

$$
F(\alpha) \xrightarrow{{\overline{\phi_{1}}}^{-1}} F[x] /(f) \xrightarrow{\bar{\psi}} F^{\prime}[x] /\left(\sigma^{*}(f)\right) \xrightarrow{\overline{\phi_{2}}} K^{\prime} .
$$

The given any $\sum_{i} c_{i} \alpha^{i} \in F(\alpha)$ with the c_{i} in F, setting $g(x)=\sum_{i} c_{i} x^{i} \in F[x]$, we have
$\hat{\sigma}\left(\sum_{i} c_{i} \alpha^{i}\right)=\overline{\phi_{2}} \circ \bar{\psi} \circ{\overline{\phi_{1}}}^{-1}(g(\alpha))=\overline{\phi_{2}} \circ \bar{\psi}(g+(f))=\overline{\phi_{2}}\left(\sigma^{*}(g)+\left(\sigma^{*}(f)\right)\right)=\sigma^{*}(g)\left(\alpha^{\prime}\right)=\sum_{i} \sigma\left(c_{i}\right) \alpha^{\prime i}$.
In particular, $\hat{\sigma}(\alpha)=\alpha^{\prime}$ and $\hat{\sigma}(c)=\sigma(c)$ for any $c \in F$. (Note: Irreducibility of f is important because we need $\overline{\phi_{1}}$ above to be an isomorphism, since we used its inverse in the construction.)
The uniqueness is easier: every element of $F(\alpha)$ can be expressed as a linear combination $\sum_{i} c_{i} \alpha^{i}$ with the c_{i} in F, and if $\hat{\sigma}: F(\alpha) \rightarrow K^{\prime}$ is any extension of σ, we have

$$
\hat{\sigma}\left(\sum_{i} c_{i} \alpha^{i}\right)=\sum_{i} \hat{\sigma}\left(c_{i}\right) \hat{\sigma}(\alpha)^{i}=\sum_{i} \sigma\left(c_{i}\right) \hat{\sigma}(\alpha)^{i},
$$

so that $\hat{\sigma}$ is determined by $\hat{\sigma}(\alpha)$.
(c) True (see the solution to (b))
(d) True. By parts (a) and (b), there is a bijection
$\left\{\hat{\sigma} \in \operatorname{Hom}\left(F(\alpha), K^{\prime}\right): \hat{\sigma}=\sigma\right.$ on $\left.F\right\} \longrightarrow\left\{\alpha^{\prime} \in K^{\prime}: \sigma^{*}(f)\left(\alpha^{\prime}\right)=0\right\}$
given by

$$
\hat{\sigma} \mapsto \hat{\sigma}(\alpha) .
$$

(e) The minimal polynomial of $\sqrt[6]{2}$ over \mathbb{Q} is $f(x)=x^{6}-2$ (irreducible by Eisenstein criterion). The polynomial f has 6 roots in \mathbb{C}, namely the numbers $\sqrt[6]{2} \zeta^{j}$ $(0 \leq j \leq 5)$ where $\zeta=e^{2 \pi i / 6}$. Let $\iota: \mathbb{Q} \rightarrow \mathbb{C}$ be the inclusion map. By the solution to (d) we have a bijection
$\operatorname{Hom}(\mathbb{Q}(\sqrt[6]{2}), \mathbb{C})=\{\phi \in \operatorname{Hom}(\mathbb{Q}(\sqrt[6]{2}), \mathbb{C}): \phi=\iota$ on $\mathbb{Q}\} \longrightarrow\left\{\sqrt[6]{2} \zeta^{j}: 0 \leq j \leq 5\right\}$
given by $\phi \mapsto \phi(\sqrt[6]{2})$. Let $\phi_{j}: \mathbb{Q}(\sqrt[6]{2}) \rightarrow \mathbb{C}$ be the map that sends $\sqrt[6]{2}$ to $\sqrt[6]{2} \zeta^{j}$. Then ϕ_{j} is given by

$$
\sum_{r=0}^{5} c_{r} \sqrt[6]{2}^{r} \mapsto \sum_{r=0}^{5} c_{r}\left(\sqrt[6]{2} \zeta_{j}\right)^{r} \quad\left(c_{r} \in \mathbb{Q}\right)
$$

(The numbers $\sqrt[6]{2}^{r}(0 \leq r \leq 5)$ form a basis of $\mathbb{Q}(\sqrt[6]{2})$ over \mathbb{Q}.) Out of these maps only ϕ_{1} (which is the inclusion map) maps $\mathbb{Q}(\sqrt[6]{2})$ onto itself. (The image of the rest is not contained in \mathbb{R}.)
(f) The minimal polynomial of ζ over \mathbb{Q} is of degree $\varphi(n)$, and its roots are the numbers ζ^{j} with $0 \leq j<n$ and $\operatorname{gcd}(j, n)=1$. We have

$$
\operatorname{Hom}(\mathbb{Q}(\zeta), \mathbb{C})=\left\{\phi_{j}: 0 \leq j<n, \operatorname{gcd}(j, n)=1\right\}
$$

where ϕ_{j} is the unique map that sends ζ to ζ^{j}, and is given by the formula

$$
\sum_{r} c_{r} \zeta^{r} \mapsto \sum_{r} c_{r} \zeta^{j r} \quad\left(c_{r} \in \mathbb{Q}\right)
$$

For any $\phi: \mathbb{Q}(\zeta) \rightarrow \mathbb{C}$, we have $\operatorname{Im}(\phi) \subset \mathbb{Q}(\zeta)$. Since ϕ is an injective \mathbb{Q}-linear map, by rank-nullity $\operatorname{dim}_{\mathbb{Q}}(\operatorname{Im}(\phi))=\operatorname{dim}_{\mathbb{Q}} \mathbb{Q}(\zeta)$. It follows that $\operatorname{Im}(\phi)=\mathbb{Q}(\zeta)$. Thus every homomorphism $\mathbb{Q}(\zeta) \rightarrow \mathbb{C}$ gives an automorphism $\mathbb{Q}(\zeta)$.
2. (a) We may think of $\operatorname{Gal}(L / \mathbb{Q})$ as a subgroup of the symmetric group on the set of roots of f in L. Since f is of degree 3 and has no rational roots, it is irreducible. Being irreducible over a field of characteristic zero, f is separable and has 3 $(=\operatorname{deg}(f))$ distinct roots in L. Thus $\operatorname{Gal}(L / \mathbb{Q})$ is isomorphic to a subgroup of S_{3}. To show $\operatorname{Gal}(L / \mathbb{Q}) \simeq S_{3}$ it is enough to show that $|\operatorname{Gal}(L / \mathbb{Q})|=6$, or equivalently (since L is a splitting field of a separable polynomial), that $[L: \mathbb{Q}]=6$. Note that since $\operatorname{Gal}(L / \mathbb{Q})$ is isomorphic to a subgroup of S_{3}, we have $[L: \mathbb{Q}] \mid 6$.
Assume $L \subset \mathbb{C}$. Let α be the real root of f (so the other two roots are $\alpha \omega$ and $\alpha \omega^{2}$, where $\omega=e^{2 \pi i / 3}$. Since f is irreducible, $[\mathbb{Q}(\alpha): \mathbb{Q}]=3$. By the degree formula,

$$
[L: \mathbb{Q}]=[L: \mathbb{Q}(\alpha)] \cdot[\mathbb{Q}(\alpha): \mathbb{Q}]=3[L: \mathbb{Q}(\alpha)] .
$$

Combining with $[L: \mathbb{Q}] \mid 6$, we see that $[L: \mathbb{Q}]$ is 3 or 6 , corresponding to whether $[L: \mathbb{Q}(\alpha)]$ is 1 or 2 , respectively. Since $L \neq \mathbb{Q}(\alpha)$ (as $L \not \subset \mathbb{R}$), we have $[L: \mathbb{Q}(\alpha)]>1$. Thus $[L: \mathbb{Q}]=6$.
(b) From the above, $[L: \mathbb{Q}(\alpha)]=2$. Since $L=\mathbb{Q}(\alpha, \omega)$, it follows that $1, \omega$ form a basis of L over $\mathbb{Q}(\alpha)$. On the other hand, since $[\mathbb{Q}(\alpha): \mathbb{Q}]=3$, the elements $1, \alpha, \alpha^{2}$ form a basis of $\mathbb{Q}(\alpha)$ over \mathbb{Q}. The desired conclusion is now immediate from the proof of the degree formula.
(c) We need to express the image of each element of \mathcal{B} under σ in terms of the basis \mathcal{B}. We have

$$
\begin{gathered}
\sigma(\omega)=\sigma\left(\alpha^{-1} \alpha \omega\right)=\sigma(\alpha)^{-1} \sigma(\alpha \omega)=(\alpha \omega)^{-1} \alpha=\omega^{-1}=-1-\omega, \\
\sigma\left(\alpha^{2}\right)=\sigma(\alpha)^{2}=\alpha^{2} \omega^{2}=-\alpha^{2}-\alpha^{2} \omega,
\end{gathered}
$$

and

$$
\sigma\left(\alpha^{2} \omega\right)=\sigma(\alpha) \sigma(\alpha \omega)=\alpha^{2} \omega
$$

Ordering the elements of \mathcal{B} as

$$
\mathcal{B}=\left\{1, \omega, \alpha, \alpha \omega, \alpha^{2}, \alpha^{2} \omega\right\}
$$

the matrix of σ is

$$
\left(\begin{array}{cccccc}
1 & -1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & -1 & 1
\end{array}\right) .
$$

3. (a) One sees easily using Exercise 63 of Rotman that f has no rational roots. Since $\operatorname{deg}(f)=3$, it follows that f is irreducible over \mathbb{Q}. Since the derivative $f^{\prime}(x)=$ $3 x^{2}+1$ is positive for all real x, the polynomial f is increasing on \mathbb{R} and hence has exactly one real root (the degree is 3 so we know there is at least one real root). The same argument as in Part (a) of the previous question shows that $[L: \mathbb{Q}]=6$ and $\operatorname{Gal}(L / \mathbb{Q}) \simeq S_{3}$.
As for whether there is an isomorphism $L \rightarrow L$ which acts on the set of roots of f as the permutation $(\alpha \beta)$, the answer is yes since $\operatorname{Gal}(L / \mathbb{Q})$ is the full symmetric group on the set of roots of f.
(b) α is real while β and γ are not. Let $\sigma \in G a l(L / \mathbb{Q})$ be complex conjugation. Then σ fixes any element λ if and only if λ is real. Thus σ fixes α, and it does no fix β and γ. It follows that $\sigma=(\beta \gamma)$.
4. (a) One uses Exercise 63 to see that f has no rational roots and hence is irreducible over \mathbb{Q}. Note that $f(-2)<0, f(0)>0, f(1)<0$, and $f(2)>0$, so that by the intermediate value theorem f has 3 real roots (and these are all the roots of f in \mathbb{C}). So the argument we gave in the previous two problems does not settle the question of whether $[L: \mathbb{Q}]$ is 3 or 6 . (Recall that $[L: \mathbb{Q}]=3$ is equivalent to $\operatorname{Gal}(L: \mathbb{Q}) \simeq A_{3}$, as the only subgroup of order 3 in S_{3} is A_{3}.)

We recall a result from the lectures (stated without proof). Let $\operatorname{char}(F) \neq 2,3$. Suppose $f(x)=x^{3}+q x+r \in F[x]$ is irreducible over F, and that L is a splitting field of f over F. Let $R=r^{2}+4 q^{3} / 27$. Then $[L: F]=3$ if and only if $-3 R$ is a square in F.

For the polynomial $f \in \mathbb{Q}[x]$ given in this part, $-3 R=9$ is a square in \mathbb{Q}, so $[L: \mathbb{Q}]=3$ and hence $\operatorname{Gal}(L / \mathbb{Q}) \simeq A_{3}$. The transposition $(\alpha \beta)$ does not belong to $\operatorname{Gal}(L / \mathbb{Q})$.
(b) This time $R=-229 / 27$ and $-3 R$ is not a square in \mathbb{Q} (as 229 is not a square in $\mathbb{Q})$, so that $[L: \mathbb{Q}]=6$ and $\operatorname{Gal}(L / \mathbb{Q}) \simeq S_{3}$.
5. (a) That $L=\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is clear. We have

$$
[L: \mathbb{Q}]=[L: \mathbb{Q}(\sqrt{2})] \cdot[\mathbb{Q}(\sqrt{2}): \mathbb{Q}] \stackrel{\text { why? }}{=} 2[L: \mathbb{Q}(\sqrt{2})] \stackrel{\text { why? }}{\leq} 4 .
$$

Let $\alpha=\sqrt{2}+\sqrt{3}$. Then $\alpha^{2}=5+2 \sqrt{6}$. Squaring both sides of $\alpha^{2}-5=2 \sqrt{6}$ we see that α is a root of $g(x)=x^{4}-10 x^{2}+1$. The polynomial g is irreducible over \mathbb{Q}, by Exercise 67 of Rotman. Thus $[\mathbb{Q}(\alpha): \mathbb{Q}]=4$. Combining with $\mathbb{Q}(\alpha) \subset L$ (why does this hold?) and $[L: \mathbb{Q}] \leq 4$ it follows that $L=\mathbb{Q}(\alpha)$.
(b) $G a l(L / \mathbb{Q})$ is a subgroup of of order 4 (why) of the symmetric group on the set $\{\sqrt{2},-\sqrt{2}, \sqrt{3},-\sqrt{3}\}$ of roots of f. Every element of $G a l(L / \mathbb{Q})$ must permute $\{\sqrt{2},-\sqrt{2}\}$ (why?), and similarly must permute $\{\sqrt{3},-\sqrt{3}\}$. It follows that
$\operatorname{Gal}(L / \mathbb{Q}) \subset\{I d,(\sqrt{2}-\sqrt{2}),(\sqrt{3}-\sqrt{3}),(\sqrt{2}-\sqrt{2})(\sqrt{3}-\sqrt{3})\}$.
Combining with $|\operatorname{Gal}(L / \mathbb{Q})|=4$ we see that the inclusion above must actually be equality.
(c) $\operatorname{Gal}(L / \mathbb{Q}(\sqrt{6}))$ is the subgroup of $\operatorname{Gal}(L / \mathbb{Q})$ consisting of the elements that fix $\mathbb{Q}(\sqrt{6})$. An element of $\operatorname{Gal}(L / \mathbb{Q})$ fixes $\mathbb{Q}(\sqrt{6})$ if and only if it fixes $\sqrt{6}$. The elements of $G a l(L / \mathbb{Q})$ that fix $\sqrt{6}$ are $I d$ and $(\sqrt{2},-\sqrt{2})(\sqrt{3},-\sqrt{3})$.
(d) The images of $\alpha=\sqrt{2}+\sqrt{3}$ under the action of $\operatorname{Gal}(L / \mathbb{Q})$ are α (= Id applied to $\alpha),-\sqrt{2}+\sqrt{3}(=(\sqrt{2},-\sqrt{2})$ applied to $\alpha), \sqrt{2}-\sqrt{3}(=(\sqrt{3},-\sqrt{3})$ applied to α), and $-\sqrt{2}-\sqrt{3}(=(\sqrt{2},-\sqrt{2})(\sqrt{3},-\sqrt{3})$ applied to $\alpha)$. The numbers $\pm \sqrt{2} \pm \sqrt{3}$ are indeed the four roots of $g(x)=x^{4}-10 x^{2}+1$.
Remark: What is happening in this question is not an accident: if L is a splitting field (of some polynomial) over F, and $g \in F[x]$ is an irreducible polynomial with one root in L, then g splits over L and moreover the action of $\operatorname{Gal}(L / F)$ on the set of roots of g in L is transitive. (The second assertion is proved in 6(i) below, and is used to prove the first assertion (see Assignment 10, Question 1).)
6. (i) Suppose E is a splitting field of some polynomial in $F[x]$, say g, over F. Let $f \in F[x]$ be an irreducible polynomial. We shall show that the action of $G a l(E / F)$ on the set of roots of f in E is transitive. Indeed, let $\alpha, \beta \in E$ be roots of f. Since f is irreducible over F, by Lemma 50 of Rotman (or Problem 1 of this assignment), there is an isomorphism $\sigma: F(\alpha) \longrightarrow F(\beta)$ which fixes F and sends α to β (in the notation of Lemma $50, \sigma$ is $\hat{I d}$ where $I d: F \longrightarrow F$ is the identity map). Note that E is a splitting field of g over $F(\alpha)$ and $F(\beta)$, and $\sigma^{*}(g)=g$ because $g \in F[x]$ and σ fixes F. By Theorem 51, the isomorphism $\sigma: F(\alpha) \longrightarrow F(\beta)$ extends to an isomorphism $\hat{\sigma}: E \longrightarrow E$. Then $\hat{\sigma} \in \operatorname{Gal}(E / F)$ and $\hat{\sigma}(\alpha)=\beta$.

Remark: In this argument we did not assume that E was a splitting field of f.
(ii) Suppose E is again a splitting field of some polynomial over F. Let $f \in$ $F[x]$ be a polynomial which splits over E and such that the action of $\operatorname{Gal}(E / F)$
on the set of roots of f in E is transitive. We shall show that if f has no repeated roots, then f is irreducible over F.

Indeed, suppose f is not irreducible. Then $f=g h$ for some $g, h \in F[x]$ with both g and h of positive degree. Since f splits over E, so do g and h. Let α be a root of g and β a root of h. By transitivity of the action of $G a l(E / F)$ on the set of roots of f, there is $\sigma \in \operatorname{Gal}(E / F)$ such that $\sigma(\alpha)=\beta$. But $\sigma(\alpha)$ is also a root of g, as α is a root of $g \in F[x]$ and σ fixes F. It follows that β is a root of both of g and h, and hence is a repeated root of f.

