MATDO1 Fields and Groups
Assignment 8

Solutions

1. (a) Since f has coefficients in F', we have ¢*(f) = o*(f) (where ¢* is the map
F(a)[z] = K'[z] induced by ¢ : F(or) — K’). Thus

a*(f)(o(a)) = 6"(f)(0(a)) = 6(f(a)) = 5(0) = 0.
(Make sure you are okay with the second equality.)

(b) Let us first prove existence. Since f is irreducible, it generates the kernel of
the evaluation map

¢ Flz] — F(a) g g(a).
In view of the first isomorphism theorem, ¢, induces an isomorphism
o2 Flz]/(f) — Im(é1) = F(a) g+ (f)—gla).
Now consider the evaluation map
¢z F'z] — K g g(d).

Since o*(f) € ker(¢,), the map ¢, induces a homomorphism

¢z F'lal/(0"(f)) — K’ 9+ (0" (f) = g(a)
(see Assignment 3, Question 4). Next, let 1) be the composition

).

f), so that ¢ induces a map

Fla] = F'la] 55" F'la)/ (0" (f
The kernel of ¢ contains f and hence the ideal

L Fla]/(f) — Flal/(0"(f)) g+ ()= ¥lg) =0a"(g) + (o°(f)).

Let & be the composition

<

F() % Fla) () 5 Flal /(o (1)) 25 K
The given any > c;a’ € F(a) with the ¢; in F) setting g(z) = > iz’ € Flz],

we have

G(Xcial) = 320001 (9(a) = @20 V(g + (f)) = Ba(0"(9) + (0°(f)) = 0™ (9)(0') = L or(ci)a”.
In particular, 6(a) = o’ and 6(c) = o(c) for any ¢ € F. (Note: Irreducibility
of f is important because we need ¢, above to be an isomorphism, since we
used its inverse in the construction.)
The uniqueness is easier: every element of F'(«) can be expressed as a linear
combination Y ¢;a’ with the ¢; in F, and if 6 : F(a) — K’ is any extension of

)

o, we have
60> aa')=> 6(c)o() =) ol(c)o(a),
so that ¢ is determined by & («).
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(c) True (see the solution to (b))
(d) True. By parts (a) and (b), there is a bijection

{6 € Hom(F(a),K'): 6 =con F} — {a' € K':0*(f)(a) =0}

given by
o o).
(e) The minimal polynomial of v/2 over Qis f(z) = 2% — 2 (irreducible by Eisen-
stein criterion). The polynomial f has 6 roots in C, namely the numbers /200

(0 < j < 5) where ¢ = ¢*/%. Let+ : Q — C be the inclusion map. By the
solution to (d) we have a bijection

Hom(Q(V2),C) = {¢ € Hom(Q(v/2),C) : ¢ =1onQ} — {V2¢7 : 0 < j <5}

given by ¢ — gzb({j/i) Let ¢; : @(\6/5) — C be the map that sends /2 to V2(7.
Then ¢; is given by

5 5

ZCT\G/iT — Zcr(%Cj)T (¢, € Q).

r=0 r=0
(The numbers 2 (0 < r < 5) form a basis of @(\6/5) over Q.) Out of these
maps only ¢; (which is the inclusion map) maps Q(v/2) onto itself. (The im-
age of the rest is not contained in R.)

(f) The minimal polynomial of ¢ over Q is of degree ¢(n), and its roots are the
numbers ¢/ with 0 < j < n and ged(j,n) = 1. We have

Hom(Q(¢),C) ={¢; : 0 <j <n, ged(j,n) =1},

where ¢; is the unique map that sends ( to ¢/, and is given by the formula

Yo=Y el (e eq).

T

For any ¢ : Q(¢) — C, we have Im(¢) C Q((). Since ¢ is an injective Q-linear
map, by rank-nullity dimg(/m(¢)) = dimg Q((). It follows that Im(¢) = Q().
Thus every homomorphism Q(¢) — C gives an automorphism Q(().

2. (a) Wemay think of Gal(L/Q) as a subgroup of the symmetric group on the set of
roots of fin L. Since f is of degree 3 and has no rational roots, it is irreducible.
Being irreducible over a field of characteristic zero, f is separable and has 3
(= deg(f)) distinct roots in L. Thus Gal(L/Q) is isomorphic to a subgroup
of S3. To show Gal(L/Q) ~ Ss it is enough to show that |Gal(L/Q)| = 6,
or equivalently (since L is a splitting field of a separable polynomial), that
[L : Q] = 6. Note that since Gal(L/Q) is isomorphic to a subgroup of S3, we
have [L : Q] | 6.

Assume L C C. Let a be the real root of f (so the other two roots are aw and
aw?, where w = ¢?™/3). Since f is irreducible, [Q(a) : Q] = 3. By the degree
formula,

[L:Q] =[L:Q(a)]- [Q) : Q = 3[L: Q(a)].



4.
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Combining with [L : Q] | 6, we see that [L : Q] is 3 or 6, corresponding to
whether [L : Q(«)] is 1 or 2, respectively. Since L # Q(«) (as L ¢ R), we have
[L:Q(«)] > 1. Thus [L : Q] = 6.

(b) From the above, [L : Q(a)] = 2. Since L = Q(«,w), it follows that 1, w form a
basis of L over Q(a). On the other hand, since [Q(«) : Q] = 3, the elements
1, a, o? form a basis of Q(«) over Q. The desired conclusion is now immediate
from the proof of the degree formula.

(c) We need to express the image of each element of B under ¢ in terms of the
basis B. We have

1

ow) =o(ataw) = o(a) o(aw) = (aw) Ta=w™ !t = -1 —w,
o(a?) = o(a)® = ’w® = —a* — d’w,

and
o(d*w) = o(a)o(aw) = a’w.

Ordering the elements of B as

B={l,w, a, aw, o?, o*w},
the matrix of o is
1 =100 0 O
0 -1 00 0 O
0O 0 01 0 O
0O 0 10 0 O
0O 0 00 —-10
0O 0 00 -1 1

(@) One sees easily using Exercise 63 of Rotman that f has no rational roots. Since
deg(f) = 3, it follows that f is irreducible over Q. Since the derivative f'(z) =
32?41 is positive for all real z, the polynomial f is increasing on R and hence
has exactly one real root (the degree is 3 so we know there is at least one real
root). The same argument as in Part (a) of the previous question shows that
[L:Q] =6and Gal(L/Q) ~ S;.

As for whether there is an isomorphism L — L which acts on the set of roots
of f as the permutation (a /), the answer is yes since Gal(L/Q) is the full
symmetric group on the set of roots of f.

(b) « is real while 3 and v are not. Let 0 € Gal(L/Q) be complex conjugation.
Then o fixes any element ) if and only if ) is real. Thus o fixes «, and it does
no fix 5 and ~. It follows that o = (5 7).

(a) One uses Exercise 63 to see that f has no rational roots and hence is irreducible
over Q. Note that f(—2) < 0, f(0) > 0, f(1) < 0, and f(2) > 0, so that by the
intermediate value theorem f has 3 real roots (and these are all the roots of f in
C). So the argument we gave in the previous two problems does not settle the
question of whether [L : Q] is 3 or 6. (Recall that [L : Q] = 3 is equivalent to
Gal(L : Q) ~ A;, as the only subgroup of order 3 in S; is Aj.)

We recall a result from the lectures (stated without proof). Let char(F') # 2, 3.
Suppose f(z) = 2* + qz + r € F[z] is irreducible over F, and that L is a splitting
field of f over F. Let R = r* + 4¢®/27. Then [L : F] = 3 if and only if —3R is a
square in F'.



5.

6.

For the polynomial f € Q[z] given in this part, —3R = 9 is a square in Q, so
[L : Q] = 3 and hence Gal(L/Q) ~ As. The transposition (a /3) does not belong to
Gal(L/Q).

(b) This time R = —229/27 and —3R is not a square in Q (as 229 is not a square
in Q), so that [L : Q] = 6 and Gal(L/Q) ~ S;.

(a) That L = Q(v/2,/3) is clear. We have

7 why?
L:Q=[L:QV2) QD) Q" 2L QWD) < 4
Let o = v/2 + /3. Then o? = 5 + 21/6. Squaring both sides of o> — 5 = 21/6
we see that « is a root of g(z) = z* — 1022 + 1. The polynomial g is irreducible
over Q, by Exercise 67 of Rotman. Thus [Q(«) : Q] = 4. Combining with
Q(«) C L (why does this hold?) and [L : Q] < 4 it follows that L = Q(«).
(b) Gal(L/Q) is a subgroup of of order 4 (why) of the symmetric group on the set
{\/5, —v/2,/3, —\/5} of roots of f. Every element of Gal(L/Q) must permute
{\/_ ) } (why?), and similarly must permute {\/5, —\/5} It follows that

Gal(L/Q) C {Id, (V2 —V2), (V3 —V3), V2 —V2)(V3 —V3)}

Combining with |Gal(L/Q)| = 4 we see that the inclusion above must actu-
ally be equality.

(c) Gal(L/Q(V/6)) is the subgroup of Gal(L/Q) consisting of the elements that
fix Q(v/6). An element of Gal(L/Q) fixes Q(+/6) if and only if it fixes v/6. The
elements of Gal(L/Q) that fix V6 are Id and (\/5, —\/5)(\/_, —\/5)

(d) The images of a = /2 + v/3 under the action of Gal(L/Q) are o (= Id applied
to a), —v2 + V3 (= (V2. —v2) applied to a), V2 — 3 (= (v3,—v3) applied
to a), and —v2 — V3 (= (\/_, —\/5)(\/3, —\/§) applied to ). The numbers
+1/2 4+ /3 are indeed the four roots of g(z) = 2* — 1022 + 1.

Remark: What is happening in this question is not an accident: if L is a split-
ting field (of some polynomial) over F, and g € F|z] is an irreducible poly-
nomial with one root in L, then ¢ splits over L and moreover the action of
Gal(L/F) on the set of roots of ¢ in L is transitive. (The second assertion is

proved in 6(i) below, and is used to prove the first assertion (see Assignment
10, Question 1).)

(i) Suppose E is a splitting field of some polynomial in F[z], say g, over F. Let
f € Flz] be an irreducible polynomial. We shall show that the action of Gal(E/F)
on the set of roots of f in E is transitive. Indeed, let o, 5 € E be roots of f. Since f
is irreducible over F, by Lemma 50 of Rotman (or Problem 1 of this assignment),
there is an isomorphism o : F(a) — F(/) which fixes F' and sends « to § (in
the notation of Lemma 50, ¢ is Id where Id : F — F is the identity map). Note
that £ is a splitting field of g over F(«) and F(/3), and 0*(g) = g because g € F[z]
and o fixes F. By Theorem 51, the isomorphism o : F'(a) — F() extends to an
isomorphism ¢ : £ — E. Then ¢ € Gal(E/F) and ¢(«) = f5.

Remark: In this argument we did not assume that £ was a splitting field of f.

(ii) Suppose E is again a splitting field of some polynomial over F. Let f €
F|z] be a polynomial which splits over £ and such that the action of Gal(E/F)
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on the set of roots of f in E is transitive. We shall show that if f has no repeated
roots, then f is irreducible over F.

Indeed, suppose f is not irreducible. Then f = gh for some g,h € F[z] with
both g and h of positive degree. Since f splits over E, so do g and h. Let a be a
root of g and /3 a root of h. By transitivity of the action of Gal(E/F') on the set of
roots of f, there is 0 € Gal(F/F) such that o(«) = 5. But o(«) is also a root of g,
as a is a root of g € F[z] and o fixes F. It follows that 3 is a root of both of g and
h, and hence is a repeated root of f.



