
MATD01 Fields and Groups
Assignment 8

Solutions

1. (a) Since f has coefficients in F , we have σ̂∗(f) = σ∗(f) (where σ̂∗ is the map
F (α)[x]→ K ′[x] induced by σ̂ : F (α)→ K ′). Thus

σ∗(f)(σ̂(α)) = σ̂∗(f)(σ̂(α)) = σ̂(f(α)) = σ̂(0) = 0.

(Make sure you are okay with the second equality.)
(b) Let us first prove existence. Since f is irreducible, it generates the kernel of

the evaluation map

φ1 : F [x] −→ F (α) g 7→ g(α).

In view of the first isomorphism theorem, φ1 induces an isomorphism

φ1 : F [x]/(f) −→ Im(φ1) = F (α) g + (f) 7→ g(α).

Now consider the evaluation map

φ2 : F
′[x] −→ K ′ g 7→ g(α′).

Since σ∗(f) ∈ ker(φ2), the map φ2 induces a homomorphism

φ2 : F
′[x]/(σ∗(f)) −→ K ′ g + (σ∗(f)) 7→ g(α′)

(see Assignment 3, Question 4). Next, let ψ be the composition

F [x]
σ∗
−→ F ′[x]

quotient−→ F ′[x]/(σ∗(f)).

The kernel of ψ contains f and hence the ideal (f), so that ψ induces a map

ψ : F [x]/(f) −→ F ′[x]/(σ∗(f)) g + (f) 7→ ψ(g) = σ∗(g) + (σ∗(f)).

Let σ̂ be the composition

F (α)
φ1

−1

−→ F [x]/(f)
ψ−→ F ′[x]/(σ∗(f))

φ2−→ K ′.

The given any
∑
i

ciα
i ∈ F (α) with the ci in F , setting g(x) =

∑
i

cix
i ∈ F [x],

we have

σ̂(
∑
i

ciα
i) = φ2 ◦ ψ ◦ φ1

−1
(g(α)) = φ2 ◦ ψ(g + (f)) = φ2(σ

∗(g) + (σ∗(f))) = σ∗(g)(α′) =
∑
i

σ(ci)α
′i.

In particular, σ̂(α) = α′ and σ̂(c) = σ(c) for any c ∈ F . (Note: Irreducibility
of f is important because we need φ1 above to be an isomorphism, since we
used its inverse in the construction.)
The uniqueness is easier: every element of F (α) can be expressed as a linear
combination

∑
i

ciα
i with the ci in F , and if σ̂ : F (α)→ K ′ is any extension of

σ, we have

σ̂(
∑
i

ciα
i) =

∑
i

σ̂(ci)σ̂(α)
i =

∑
i

σ(ci)σ̂(α)
i,

so that σ̂ is determined by σ̂(α).
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(c) True (see the solution to (b))
(d) True. By parts (a) and (b), there is a bijection

{σ̂ ∈ Hom(F (α), K ′) : σ̂ = σ on F} −→ {α′ ∈ K ′ : σ∗(f)(α′) = 0}

given by
σ̂ 7→ σ̂(α).

(e) The minimal polynomial of 6
√
2 over Q is f(x) = x6 − 2 (irreducible by Eisen-

stein criterion). The polynomial f has 6 roots in C, namely the numbers 6
√
2ζj

(0 ≤ j ≤ 5) where ζ = e2πi/6. Let ι : Q → C be the inclusion map. By the
solution to (d) we have a bijection

Hom(Q(
6
√
2),C) = {φ ∈ Hom(Q(

6
√
2),C) : φ = ι on Q} −→ { 6

√
2ζj : 0 ≤ j ≤ 5}

given by φ 7→ φ( 6
√
2). Let φj : Q( 6

√
2) → C be the map that sends 6

√
2 to 6
√
2ζj .

Then φj is given by

5∑
r=0

cr
6
√
2
r
7→

5∑
r=0

cr(
6
√
2ζj)

r (cr ∈ Q).

(The numbers 6
√
2
r

(0 ≤ r ≤ 5) form a basis of Q( 6
√
2) over Q.) Out of these

maps only φ1 (which is the inclusion map) maps Q( 6
√
2) onto itself. (The im-

age of the rest is not contained in R.)
(f) The minimal polynomial of ζ over Q is of degree ϕ(n), and its roots are the

numbers ζj with 0 ≤ j < n and gcd(j, n) = 1. We have

Hom(Q(ζ),C) = {φj : 0 ≤ j < n, gcd(j, n) = 1},

where φj is the unique map that sends ζ to ζj , and is given by the formula∑
r

crζ
r 7→

∑
r

crζ
jr (cr ∈ Q).

For any φ : Q(ζ)→ C, we have Im(φ) ⊂ Q(ζ). Since φ is an injective Q-linear
map, by rank-nullity dimQ(Im(φ)) = dimQ Q(ζ). It follows that Im(φ) = Q(ζ).
Thus every homomorphism Q(ζ)→ C gives an automorphism Q(ζ).

2. (a) We may think ofGal(L/Q) as a subgroup of the symmetric group on the set of
roots of f in L. Since f is of degree 3 and has no rational roots, it is irreducible.
Being irreducible over a field of characteristic zero, f is separable and has 3
(= deg(f)) distinct roots in L. Thus Gal(L/Q) is isomorphic to a subgroup
of S3. To show Gal(L/Q) ' S3 it is enough to show that |Gal(L/Q)| = 6,
or equivalently (since L is a splitting field of a separable polynomial), that
[L : Q] = 6. Note that since Gal(L/Q) is isomorphic to a subgroup of S3, we
have [L : Q]

∣∣ 6.
Assume L ⊂ C. Let α be the real root of f (so the other two roots are αω and
αω2, where ω = e2πi/3). Since f is irreducible, [Q(α) : Q] = 3. By the degree
formula,

[L : Q] = [L : Q(α)] · [Q(α) : Q] = 3[L : Q(α)].
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Combining with [L : Q]
∣∣ 6, we see that [L : Q] is 3 or 6, corresponding to

whether [L : Q(α)] is 1 or 2, respectively. Since L 6= Q(α) (as L 6⊂ R), we have
[L : Q(α)] > 1. Thus [L : Q] = 6.

(b) From the above, [L : Q(α)] = 2. Since L = Q(α, ω), it follows that 1, ω form a
basis of L over Q(α). On the other hand, since [Q(α) : Q] = 3, the elements
1, α, α2 form a basis of Q(α) over Q. The desired conclusion is now immediate
from the proof of the degree formula.

(c) We need to express the image of each element of B under σ in terms of the
basis B. We have

σ(ω) = σ(α−1αω) = σ(α)−1σ(αω) = (αω)−1α = ω−1 = −1− ω,
σ(α2) = σ(α)2 = α2ω2 = −α2 − α2ω,

and
σ(α2ω) = σ(α)σ(αω) = α2ω.

Ordering the elements of B as

B = {1, ω, α, αω, α2, α2ω},
the matrix of σ is 

1 −1 0 0 0 0
0 −1 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 −1 0
0 0 0 0 −1 1

 .

3. (a) One sees easily using Exercise 63 of Rotman that f has no rational roots. Since
deg(f) = 3, it follows that f is irreducible over Q. Since the derivative f ′(x) =
3x2+1 is positive for all real x, the polynomial f is increasing on R and hence
has exactly one real root (the degree is 3 so we know there is at least one real
root). The same argument as in Part (a) of the previous question shows that
[L : Q] = 6 and Gal(L/Q) ' S3.
As for whether there is an isomorphism L→ L which acts on the set of roots
of f as the permutation (αβ), the answer is yes since Gal(L/Q) is the full
symmetric group on the set of roots of f .

(b) α is real while β and γ are not. Let σ ∈ Gal(L/Q) be complex conjugation.
Then σ fixes any element λ if and only if λ is real. Thus σ fixes α, and it does
no fix β and γ. It follows that σ = (β γ).

4. (a) One uses Exercise 63 to see that f has no rational roots and hence is irreducible
over Q. Note that f(−2) < 0, f(0) > 0, f(1) < 0, and f(2) > 0, so that by the
intermediate value theorem f has 3 real roots (and these are all the roots of f in
C). So the argument we gave in the previous two problems does not settle the
question of whether [L : Q] is 3 or 6. (Recall that [L : Q] = 3 is equivalent to
Gal(L : Q) ' A3, as the only subgroup of order 3 in S3 is A3.)

We recall a result from the lectures (stated without proof). Let char(F ) 6= 2, 3 .
Suppose f(x) = x3 + qx + r ∈ F [x] is irreducible over F , and that L is a splitting
field of f over F . Let R = r2 + 4q3/27. Then [L : F ] = 3 if and only if −3R is a
square in F .
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For the polynomial f ∈ Q[x] given in this part, −3R = 9 is a square in Q, so
[L : Q] = 3 and hence Gal(L/Q) ' A3. The transposition (α β) does not belong to
Gal(L/Q).

(b) This time R = −229/27 and −3R is not a square in Q (as 229 is not a square
in Q), so that [L : Q] = 6 and Gal(L/Q) ' S3.

5. (a) That L = Q(
√
2,
√
3) is clear. We have

[L : Q] = [L : Q(
√
2)] · [Q(

√
2) : Q]

why?
= 2[L : Q(

√
2)]

why?
≤ 4.

Let α =
√
2 +
√
3. Then α2 = 5 + 2

√
6. Squaring both sides of α2 − 5 = 2

√
6

we see that α is a root of g(x) = x4− 10x2+1. The polynomial g is irreducible
over Q, by Exercise 67 of Rotman. Thus [Q(α) : Q] = 4. Combining with
Q(α) ⊂ L (why does this hold?) and [L : Q] ≤ 4 it follows that L = Q(α).

(b) Gal(L/Q) is a subgroup of of order 4 (why) of the symmetric group on the set
{
√
2,−
√
2,
√
3,−
√
3} of roots of f . Every element of Gal(L/Q) must permute

{
√
2,−
√
2} (why?), and similarly must permute {

√
3,−
√
3}. It follows that

Gal(L/Q) ⊂ {Id, (
√
2 −

√
2), (
√
3 −

√
3), (
√
2 −

√
2)(
√
3 −

√
3)}.

Combining with |Gal(L/Q)| = 4 we see that the inclusion above must actu-
ally be equality.

(c) Gal(L/Q(
√
6)) is the subgroup of Gal(L/Q) consisting of the elements that

fix Q(
√
6). An element of Gal(L/Q) fixes Q(

√
6) if and only if it fixes

√
6. The

elements of Gal(L/Q) that fix
√
6 are Id and (

√
2,−
√
2)(
√
3,−
√
3).

(d) The images of α =
√
2 +
√
3 under the action of Gal(L/Q) are α (= Id applied

to α), −
√
2 +
√
3 (= (

√
2,−
√
2) applied to α),

√
2 −
√
3 (= (

√
3,−
√
3) applied

to α), and −
√
2 −
√
3 (= (

√
2,−
√
2)(
√
3,−
√
3) applied to α). The numbers

±
√
2±
√
3 are indeed the four roots of g(x) = x4 − 10x2 + 1.

Remark: What is happening in this question is not an accident: if L is a split-
ting field (of some polynomial) over F , and g ∈ F [x] is an irreducible poly-
nomial with one root in L, then g splits over L and moreover the action of
Gal(L/F ) on the set of roots of g in L is transitive. (The second assertion is
proved in 6(i) below, and is used to prove the first assertion (see Assignment
10, Question 1).)

6. (i) Suppose E is a splitting field of some polynomial in F [x], say g, over F . Let
f ∈ F [x] be an irreducible polynomial. We shall show that the action of Gal(E/F )
on the set of roots of f in E is transitive. Indeed, let α, β ∈ E be roots of f . Since f
is irreducible over F , by Lemma 50 of Rotman (or Problem 1 of this assignment),
there is an isomorphism σ : F (α) −→ F (β) which fixes F and sends α to β (in
the notation of Lemma 50, σ is Îd where Id : F −→ F is the identity map). Note
that E is a splitting field of g over F (α) and F (β), and σ∗(g) = g because g ∈ F [x]
and σ fixes F . By Theorem 51, the isomorphism σ : F (α) −→ F (β) extends to an
isomorphism σ̂ : E −→ E. Then σ̂ ∈ Gal(E/F ) and σ̂(α) = β.

Remark: In this argument we did not assume that E was a splitting field of f .
(ii) Suppose E is again a splitting field of some polynomial over F . Let f ∈

F [x] be a polynomial which splits over E and such that the action of Gal(E/F )
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on the set of roots of f in E is transitive. We shall show that if f has no repeated
roots, then f is irreducible over F .

Indeed, suppose f is not irreducible. Then f = gh for some g, h ∈ F [x] with
both g and h of positive degree. Since f splits over E, so do g and h. Let α be a
root of g and β a root of h. By transitivity of the action of Gal(E/F ) on the set of
roots of f , there is σ ∈ Gal(E/F ) such that σ(α) = β. But σ(α) is also a root of g,
as α is a root of g ∈ F [x] and σ fixes F . It follows that β is a root of both of g and
h, and hence is a repeated root of f .


