MATD01 Fields and Groups Assignment 9 Solutions

1. (i) \Rightarrow (ii): Let $\alpha_1, \ldots, \alpha_n$ be a basis of K over F. Then $K = F(\alpha_1, \ldots, \alpha_n)$. For each i, let f_i be the minimal polynomial of α_i over F. Then the f_i split over K (why?), and K is a splitting field of $\prod_{i=1}^n f_i$ over F (why?).

(ii) \Rightarrow (i): Suppose *K* is a splitting field of $g \in F[x]$ over *F*. Let $f \in F[x]$ be an irreducible polynomial with a root $\alpha \in K$. We will show that *f* splits over *K*. Let *L* be a splitting field of *f* over *K*. Then *L* is a splitting field of *fg* over *F* (why?). Now let β be an arbitrary root of *f* in *L*. We will be done if we show that β is in *K*. Consider the tower of fields $F \subset K \subset L$. Since *K* is the splitting field of some polynomial over *F*, any element of Gal(L/F) maps *K* onto *K*. Since *L* is a splitting field over *F* and *f* is irreducible over *F*, the action of Gal(L/F) on the set of roots of *f* in *L* is transitive; thus there is an element $\sigma \in Gal(L/F)$ such that $\sigma(\alpha) = \beta$. Since $\sigma(K) \subset K$ and $\alpha \in K$, we have $\beta = \sigma(\alpha) \in K$.

- **2.** Suppose $\alpha \in K$ is fixed by every element of Gal(K/F). Let f be the minimal polynomial of α over F. We need to show that f has degree 1. By Problem **1.**, f splits over K. Since K/F is separable, f has no repeated roots. Suppose f has degree > 1. Then f has another root $\beta \neq \alpha$ in K. Since K is a splitting field over F and f is irreducible over F, there is an element $\sigma \in Gal(K/F)$ which sends α to β . This contradicts the assumption that α is fixed by every element of Gal(K/F). Remark: A normal separable extension is called a Galois extension.
- **3.** Note that $K = \mathbb{Q}(\alpha, i)$. Every element of $Gal(K/\mathbb{Q})$ sends α to one of the four roots of $x^4 2$ (= the minimal polynomial of α over \mathbb{Q}), and i to one of $\pm i$ (= roots of $x^2 + 1$, the minimal polynomial of i over \mathbb{Q}). Thus we have a function

$$Gal(K/\mathbb{Q}) \longrightarrow \{\alpha, i\alpha, -\alpha, -i\alpha\} \times \{i, -i\} \ \sigma \mapsto (\sigma(\alpha), \sigma(i)),$$

which is injective since every element of $Gal(K/\mathbb{Q})$ is determined by its action on α and i (as $K = \mathbb{Q}(\alpha, i)$). Since $|Gal(K/\mathbb{Q})| = [K : \mathbb{Q}] = 8$ (you can see $[K : \mathbb{Q}] = 8$ easily by earlier techniques, first adjoining a real root of $x^4 - 2$ to \mathbb{Q}), the function Eq. (1) is in fact a bijection. As a subgroup of the symmetric group on $\{\alpha, i\alpha, -\alpha, -i\alpha\}$, thus $Gal(K/\mathbb{Q})$ consists of the following elements:

- Id (fixing both α and *i*)

- $(\alpha i \alpha i)$ (this is the element that fixes α and sends $i \mapsto -i$),
- $(\alpha \ \alpha i \ -\alpha \ -\alpha i)$ (this is the element that sends $\alpha \mapsto \alpha i$ and fixes *i*),
- $(\alpha \ \alpha i)(-\alpha \ -\alpha i)$ (this is the element that sends $\alpha \mapsto \alpha i$ and $i \mapsto -i$)
- $(\alpha \alpha)(\alpha i \alpha i)$ (sending $\alpha \mapsto -\alpha$ and fixing i)
- $(\alpha \alpha)$ (sending $\alpha \mapsto -\alpha$ and $i \mapsto -i$)
- $(\alpha \alpha i \alpha \alpha i)$ (sending $\alpha \mapsto -\alpha i$ and fixing *i*)
- $(\alpha \alpha i)(-\alpha \ \alpha i)$ (sending $\alpha \mapsto -\alpha i$ and $i \mapsto -i$).

4. (a) Note that $K = \mathbb{Q}(\alpha, \zeta)$. Every element of $Gal(K/\mathbb{Q})$ sends α to one of $\alpha\zeta^i$ $(0 \le i \le 6)$ (why?), and ζ to one of ζ^i $(1 \le i \le 6)$ (why?). Thus we have a function

(2)
$$Gal(K/\mathbb{Q}) \longrightarrow \{\alpha\zeta^i : 0 \le i \le 6\} \times \{\zeta^i : 1 \le i \le 6\} \qquad \sigma \mapsto (\sigma(\alpha), \sigma(\zeta))$$

which is injective since every element of $Gal(K/\mathbb{Q})$ is determined by its action on α and ζ (why?). We leave it to the reader to check that $[K : \mathbb{Q}] = 42$ (see Problem 2 of Assignment 7). Thus $|Gal(K/\mathbb{Q})| = 42$ (why?). It follows that the function Eq. (2) is in fact a bijection. The element of $Gal(K/\mathbb{Q})$ which sends $\alpha \mapsto \alpha \zeta$ and fixes ζ is easily seen to be δ , and the element which fixes α and sends $\zeta \mapsto \zeta^3$ is easily seen to be τ . Thus $\langle \delta, \tau \rangle \subset Gal(K/\mathbb{Q})$. To show that $\langle \delta, \tau \rangle = Gal(K/\mathbb{Q})$, first note that $(\mathbb{Z}/7\mathbb{Z})^{\times} = \langle 3 \rangle$ (verify this). Now given $0 \le i \le 6$ and $1 \le j \le 6$, let r be such that $3^r \equiv j \pmod{7}$; then one easily checks that $\delta^i \tau^r \max \alpha \mapsto \alpha \zeta^i$ and $\zeta \mapsto \zeta^j$. (Does this show that every element of $Gal(K/\mathbb{Q})$ is generated by δ and τ ?)

We now show that $Gal(K/\mathbb{Q}(\zeta)) = \langle \delta \rangle$. Indeed, $Gal(K/\mathbb{Q}(\zeta))$ is the subgroup of $Gal(K/\mathbb{Q})$ which fixes $Q(\zeta)$, or equivalently fixes ζ . Thus $\delta \in Gal(K/\mathbb{Q}(\zeta))$, so that $\langle \delta \rangle \subset Gal(K/\mathbb{Q}(\zeta))$. Now note that both $\langle \delta \rangle$ and $Gal(K/\mathbb{Q}(\zeta))$ have 7 elements. (Why is $|Gal(K/\mathbb{Q}(\zeta))| = 7$?)

(b) We have $\delta \tau(\alpha) = \alpha \zeta$ and $\tau \delta(\alpha) = \alpha \zeta^3$. Thus $\delta \tau \neq \tau \delta$ and $Gal(K/\mathbb{Q})$ is not abelian. Hence *K* is not contained in any cyclotomic extension of \mathbb{Q} . (If *L* is a cyclotomic extension of \mathbb{Q} , then $Gal(L/\mathbb{Q})$ is abelian. If further we have $\mathbb{Q} \subset K \subset L$, then (since both *K* and *L* are normal extension of \mathbb{Q}) we have a natural surjection $Gal(L/\mathbb{Q}) \longrightarrow Gal(K/\mathbb{Q})$, and hence $Gal(K/\mathbb{Q})$ would also be abelian.)

5. (a) We may assume that $K \subset \mathbb{C}$. We have a diagram of fields

where the numbers written next to the extensions are their degrees (justify them). We leave it to the reader to argue that

$$20 = lcm(10, 4) \mid [K : \mathbb{Q}] \le 40,$$

so that $[K : \mathbb{Q}]$ is either 20 or 40. The goal is to show that $[K : \mathbb{Q}] = 40$. We will prove that

(3)
$$\sqrt{5} \in \mathbb{Q}(\zeta)$$

Before we prove this, let us see how it will help us to show that $[K : \mathbb{Q}] = 40$. Suppose $[K : \mathbb{Q}] = 20$. Then $[K : \mathbb{Q}(\zeta)] = 5$. Let *h* be the minimal polynomial of α over $\mathbb{Q}(\zeta)$. Then *h* is monic of degree 5 and it divides

$$f(x) = \prod_{i=0}^{9} (x - \alpha \zeta^i).$$

It follows that *h* is the product of 5 of the factors $x - \alpha \zeta^i$. Considering the constant term of *h*, we see that $\alpha^5 \in \mathbb{Q}(\zeta)$ (as the constant term of *h* is α^5 times a power of ζ), so that $\sqrt{2} \in \mathbb{Q}(\zeta)$. Combining with (3), we get $\mathbb{Q}(\sqrt{2}, \sqrt{5}) \subset \mathbb{Q}(\zeta)$. We leave it to the reader to show that there are no rational numbers *a*, *b* such that $a + b\sqrt{2} = \sqrt{5}$ (square both sides and use linear independence of 1 and $\sqrt{2}$ over \mathbb{Q}). This implies $\sqrt{5} \notin \mathbb{Q}(\sqrt{2})$ (why?), so that

$$[\mathbb{Q}(\sqrt{2},\sqrt{5}):\mathbb{Q}] = [\mathbb{Q}(\sqrt{2},\sqrt{5}):\mathbb{Q}(\sqrt{2})] \cdot [\mathbb{Q}(\sqrt{2}):\mathbb{Q}] \stackrel{why?}{=} 2 \cdot 2 = 4.$$

Combining with $\mathbb{Q}(\sqrt{2},\sqrt{5}) \subset \mathbb{Q}(\zeta)$ and $[\mathbb{Q}(\zeta) : \mathbb{Q}] = 4$ we get $\mathbb{Q}(\sqrt{2},\sqrt{5}) = \mathbb{Q}(\zeta)$, which is absurd since $\mathbb{Q}(\sqrt{2},\sqrt{5}) \subset \mathbb{R}$ and $\mathbb{Q}(\zeta) \not \subset \mathbb{R}$.

Now we turn our attention to the task of proving (3). Let $\lambda = \zeta + 1/\zeta = \zeta + \overline{\zeta}$ (bar standing for complex conjugation). Let us find the minimal polynomial g of λ over \mathbb{Q} . Since $\mathbb{Q}(\zeta)$ is a splitting field over \mathbb{Q} , (i) the polynomial g splits over $\mathbb{Q}(\zeta)$ (Problem 1) and (ii) the Galois group $Gal(\mathbb{Q}(\zeta)/\mathbb{Q})$ acts transitively on the set of roots of g (the numbering of these two statements is for future referencing in the argument). Recall that we have an isomorphism

$$Gal(\mathbb{Q}(\zeta)/\mathbb{Q}) \longrightarrow (\mathbb{Z}/10\mathbb{Z})^{\times}$$

given by $\sigma \mapsto i$, where $\sigma(\zeta) = \zeta^i$ (Theorem 69 and its proof together with $|Gal(\mathbb{Q}(\zeta)/\mathbb{Q})| = [\mathbb{Q}(\zeta) : \mathbb{Q}] = \varphi(10)$, see Problem 2 of Assignment 6). The group $(\mathbb{Z}/10\mathbb{Z})^{\times}$ is cyclic generated by 3, so that $Gal(\mathbb{Q}(\zeta)/\mathbb{Q})$ is cyclic and generated by the element τ satisfying $\tau(\zeta) = \zeta^3$. The Galois conjugates of λ over $\mathbb{Q}(\zeta)$ are

$$Id(\lambda) = \lambda = \tau^2(\lambda), \ \ \tau(\lambda) = \zeta^3 + 1/\zeta^3 = \tau^3(\lambda).$$

Thus

$$g(x) = (x - \lambda)(x - (\zeta^3 + 1/\zeta^3)) = x^2 - (\zeta + \zeta^3 + \zeta^7 + \zeta^9)x + (\zeta^2 + \zeta^4 + \zeta^6 + \zeta^8).$$

(Here we used the earlier statements (i) and (ii) together with the fact that in characteristic zero irreducible polynomials do not have repeated roots.) Note that

$$a := \zeta + \zeta^3 + \zeta^7 + \zeta^9$$

and

$$b := \zeta^2 + \zeta^4 + \zeta^6 + \zeta^8$$

are respectively the sum of primitive 10th and 5th roots of unity. The 5th and 10th cyclotomic polynomials are

$$\phi_5(x) = x^4 + x^3 + x^2 + x + 1$$

and

$$\phi_{10}(x) = x^4 - x^3 + x^2 - x + 1.$$

It follows that a = 1 and b = -1 (note that if $x^n + a_{n-1}x^{n-1} + \cdots = \prod_{i=1}^n (x - \beta_i)$ then $a_{n-1} = -\sum_{i=1}^n \beta_i$). Thus

$$g(x) = x^2 - x - 1,$$

so that

$$\lambda = (1 \pm \sqrt{5})/2.$$

Thus $\sqrt{5} \in \mathbb{Q}(\lambda) \subset \mathbb{Q}(\zeta)$, as claimed.

REMARK. That deg(g) = 2 is easily seen without using Galois theory. Indeed, $\zeta \lambda = \zeta^2 + 1$ so that ζ is a root of $x^2 - \lambda x + 1$. This implies that $[\mathbb{Q}(\zeta) : \mathbb{Q}(\lambda)] \leq 2$. Since $\zeta \notin \mathbb{R}$ and $\lambda \in \mathbb{R}$ (as λ is fixed by complex conjugation), it follows that $[\mathbb{Q}(\zeta) : \mathbb{Q}(\lambda)] = 2$. Combining with $[\mathbb{Q}(\zeta) : \mathbb{Q}] = 4$ by the degree formula we get $[\mathbb{Q}(\lambda) : \mathbb{Q}] = 2$. (The same argument show that for n > 2, if ζ_n is a primitive *n*-th root of unity and $\lambda_n = \zeta^n + 1/\zeta^n$, then $[\mathbb{Q}(\lambda_n) : \mathbb{Q}] = \frac{1}{2}[\mathbb{Q}(\zeta_n) : \mathbb{Q}] = \varphi(n)/2$.)

(b) Now that we know $|Gal(K/\mathbb{Q})| = 40$, a very similar argument to the one for Part (a) of the previous problem shows that $Gal(K/\mathbb{Q})$ is generated by the two elements

$$\delta = (\alpha \ \alpha \zeta \ \alpha \zeta^2 \ \cdots \ \alpha \zeta^9)$$

(which sends $\alpha \mapsto \alpha \zeta$ and fixes ζ) and

$$\tau = (\alpha \zeta \ \alpha \zeta^3 \ \alpha \zeta^9 \ \alpha \zeta^7) (\alpha \zeta^2 \ \alpha \zeta^6 \ \alpha \zeta^8 \ \alpha \zeta^4)$$

(which fixed α and sends $\zeta \mapsto \zeta^3$). We leave the details to the reader. Things to keep in mind as you give the argument: (i) The conjugates of ζ over \mathbb{Q} (i.e. the roots of the minimal polynomial of ζ over \mathbb{Q}) are the primitive 10th roots of unity, i.e. the elements ζ^j with $1 \leq j \leq 9$ and gcd(j, 10) = 1 (Assignment 6, Problem 2). (ii) $(\mathbb{Z}/10\mathbb{Z})^{\times}$ is cyclic and generated by 3.

6. Let *K* be the splitting field of $(x^p-2)(x^q-3)$ over \mathbb{Q} in \mathbb{C} . Then $K = \mathbb{Q}(\sqrt[p]{2}, \zeta_p, \sqrt[q]{3}, \zeta_q) = \mathbb{Q}(\sqrt[p]{2}, \sqrt[q]{3}, \zeta_{pq})$ (note that $\mathbb{Q}(\zeta_{pq}) = \mathbb{Q}(\zeta_p, \zeta_q)$ since $\zeta_{pq}^p = \zeta_q$ and $\zeta_p\zeta_q$ is a primitive pq-th root of unity as gcd(p+q, pq) = 1 thanks to p and q being distinct primes).

Let us calculate $[K : \mathbb{Q}]$ first. We have a diagram of fields

(justify the degrees). Looking at the left diamond, since p and $\varphi(pq) = (p-1)(q-1)$ are relatively prime, we have $[\mathbb{Q}(\sqrt[p]{2}, \zeta_{pq}) : \mathbb{Q}(\zeta_{pq})] = p$ (why?). Similarly, considering the right diamond, since q and (p-1)(q-1) are relatively prime, we get $[\mathbb{Q}(\sqrt[q]{3}, \zeta_{pq}) : \mathbb{Q}(\zeta_{pq})] = q$. Now considering the top diamond (in view of gcd(p,q) = 1) we get $[K : \mathbb{Q}(\sqrt[q]{3}, \zeta_{pq})] = p$. It follows that $[K : \mathbb{Q}] = pq(p-1)(q-1)$ (why?).

For any $\alpha \in K$, let f_{α} be the minimal polynomial of α over \mathbb{Q} . Denote the set of roots of f_{α} in K by $C(\alpha)$; since K is a splitting field over \mathbb{Q} , this is the same as the set $\{\sigma(\alpha) : \sigma \in Gal(K/\mathbb{Q})\}$, and we have

$$f_{\alpha}(x) = \prod_{\beta \in C(\alpha)} (x - \beta)$$

(because f_{α} splits over *K* by Problem 1 and we are in characteristic zero so irreducible polynomials are separable).

There is an injection

$$Gal(K/\mathbb{Q}) \longrightarrow C(\sqrt[p]{2}) \times C(\sqrt[q]{3}) \times C(\zeta_{pq}) \qquad \sigma \mapsto (\sigma(\sqrt[p]{2}), \, \sigma(\sqrt[q]{3}), \, \sigma(\zeta_{pq}))$$

(why is this injective?). Both domain and codomain of this map have pq(p-1)(q-1) elements (why?), so that this map is actually a bijection. On recalling that $C(\sqrt[p]{2}) = \{\sqrt[p]{2}\zeta_p^r : 0 \le r < p\}$ and $C(\sqrt[q]{3}) = \{\sqrt[q]{3}\zeta_q^r : 0 \le r < q\}$, it follows that

$$C(\sqrt[q]{2} + \sqrt[q]{3}) = \{\sqrt[q]{2}\zeta_p^r + \sqrt[q]{3}\zeta_q^s : 0 \le r < p, 0 \le s < q\}.$$

This gives the desired conclusion.