
MATD01 Fields and Groups
Assignment 9

Solutions

1. (i)⇒ (ii): Let α1, . . . , αn be a basis of K over F . Then K = F (α1, . . . , αn). For each
i, let fi be the minimal polynomial of αi over F . Then the fi split over K (why?),

and K is a splitting field of
n∏
i=1

fi over F (why?).

(ii)⇒ (i): Suppose K is a splitting field of g ∈ F [x] over F . Let f ∈ F [x] be an
irreducible polynomial with a root α ∈ K. We will show that f splits over K. Let
L be a splitting field of f over K. Then L is a splitting field of fg over F (why?).
Now let β be an arbitrary root of f in L. We will be done if we show that β is
in K. Consider the tower of fields F ⊂ K ⊂ L. Since K is the splitting field of
some polynomial over F , any element of Gal(L/F ) maps K onto K. Since L is a
splitting field over F and f is irreducible over F , the action of Gal(L/F ) on the
set of roots of f in L is transitive; thus there is an element σ ∈ Gal(L/F ) such that
σ(α) = β. Since σ(K) ⊂ K and α ∈ K, we have β = σ(α) ∈ K.

2. Suppose α ∈ K is fixed by every element of Gal(K/F ). Let f be the minimal
polynomial of α over F . We need to show that f has degree 1. By Problem 1. ,
f splits over K. Since K/F is separable, f has no repeated roots. Suppose f has
degree > 1. Then f has another root β 6= α in K. Since K is a splitting field over
F and f is irreducible over F , there is an element σ ∈ Gal(K/F ) which sends α to
β. This contradicts the assumption that α is fixed by every element of Gal(K/F ).

Remark: A normal separable extension is called a Galois extension.

3. Note that K = Q(α, i). Every element of Gal(K/Q) sends α to one of the four
roots of x4 − 2 (= the minimal polynomial of α over Q), and i to one of ±i (= roots
of x2 + 1, the minimal polynomial of i over Q). Thus we have a function

(1) Gal(K/Q) −→ {α, iα, −α, −iα} × {i,−i} σ 7→ (σ(α), σ(i)),

which is injective since every element of Gal(K/Q) is determined by its action
on α and i (as K = Q(α, i)). Since |Gal(K/Q)| = [K : Q] = 8 (you can see
[K : Q] = 8 easily by earlier techniques, first adjoining a real root of x4 − 2 to Q),
the function Eq. (1) is in fact a bijection. As a subgroup of the symmetric group
on {α, iα, −α, −iα}, thus Gal(K/Q) consists of the following elements:

- Id (fixing both α and i)
- (αi − αi) (this is the element that fixes α and sends i 7→ −i),
- (α αi − α − αi) (this is the element that sends α 7→ αi and fixes i),
- (α αi)(−α − αi) (this is the element that sends α 7→ αi and i 7→ −i)
- (α − α)(αi − αi) (sending α 7→ −α and fixing i)
- (α − α) (sending α 7→ −α and i 7→ −i)
- (α − αi − α αi) (sending α 7→ −αi and fixing i)
- (α − αi)(−α αi) (sending α 7→ −αi and i 7→ −i).
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4. (a) Note that K = Q(α, ζ). Every element of Gal(K/Q) sends α to one of αζ i
(0 ≤ i ≤ 6) (why?), and ζ to one of ζ i (1 ≤ i ≤ 6) (why?). Thus we have a function

(2) Gal(K/Q) −→ {αζ i : 0 ≤ i ≤ 6} × {ζ i : 1 ≤ i ≤ 6} σ 7→ (σ(α), σ(ζ)),

which is injective since every element of Gal(K/Q) is determined by its action on
α and ζ (why?). We leave it to the reader to check that [K : Q] = 42 (see Problem 2
of Assignment 7). Thus |Gal(K/Q)| = 42 (why?). It follows that the function Eq.
(2) is in fact a bijection. The element of Gal(K/Q) which sends α 7→ αζ and fixes
ζ is easily seen to be δ, and the element which fixes α and sends ζ 7→ ζ3 is easily
seen to be τ . Thus 〈δ, τ〉 ⊂ Gal(K/Q). To show that 〈δ, τ〉 = Gal(K/Q), first note
that (Z/7Z)× = 〈3〉 (verify this). Now given 0 ≤ i ≤ 6 and 1 ≤ j ≤ 6, let r be such
that 3r ≡ j (mod 7); then one easily checks that δiτ r maps α 7→ αζ i and ζ 7→ ζj .
(Does this show that every element of Gal(K/Q) is generated by δ and τ?)

We now show that Gal(K/Q(ζ)) = 〈δ〉. Indeed, Gal(K/Q(ζ)) is the subgroup
of Gal(K/Q) which fixes Q(ζ), or equivalently fixes ζ . Thus δ ∈ Gal(K/Q(ζ)),
so that 〈δ〉 ⊂ Gal(K/Q(ζ)). Now note that both 〈δ〉 and Gal(K/Q(ζ)) have 7
elements. (Why is |Gal(K/Q(ζ))| = 7?)

(b) We have δτ(α) = αζ and τδ(α) = αζ3. Thus δτ 6= τδ and Gal(K/Q) is
not abelian. Hence K is not contained in any cyclotomic extension of Q. (If L is
a cyclotomic extension of Q, then Gal(L/Q) is abelian. If further we have Q ⊂
K ⊂ L, then (since both K and L are normal extension of Q) we have a natural
surjection Gal(L/Q) −→ Gal(K/Q), and hence Gal(K/Q) would also be abelian.)

5. (a) We may assume that K ⊂ C. We have a diagram of fields

Q

Q(α) Q(ζ)

Q(α, ζ) = K

10 ϕ(10) = 4

where the numbers written next to the extensions are their degrees (justify them).
We leave it to the reader to argue that

20 = lcm(10, 4)
∣∣ [K : Q] ≤ 40,

so that [K : Q] is either 20 or 40. The goal is to show that [K : Q] = 40.
We will prove that

(3)
√
5 ∈ Q(ζ).

Before we prove this, let us see how it will help us to show that [K : Q] = 40.
Suppose [K : Q] = 20. Then [K : Q(ζ)] = 5. Let h be the minimal polynomial of α
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over Q(ζ). Then h is monic of degree 5 and it divides

f(x) =
9∏
i=0

(x− αζ i).

It follows that h is the product of 5 of the factors x−αζ i. Considering the constant
term of h, we see that α5 ∈ Q(ζ) (as the constant term of h is α5 times a power of ζ),
so that

√
2 ∈ Q(ζ). Combining with (3), we get Q(

√
2,
√
5) ⊂ Q(ζ). We leave it to

the reader to show that there are no rational numbers a, b such that a+ b
√
2 =
√
5

(square both sides and use linear independence of 1 and
√
2 over Q). This implies√

5 /∈ Q(
√
2) (why?), so that

[Q(
√
2,
√
5) : Q] = [Q(

√
2,
√
5) : Q(

√
2)] · [Q(

√
2) : Q]

why?
= 2 · 2 = 4.

Combining with Q(
√
2,
√
5) ⊂ Q(ζ) and [Q(ζ) : Q] = 4 we get Q(

√
2,
√
5) = Q(ζ),

which is absurd since Q(
√
2,
√
5) ⊂ R and Q(ζ) 6⊂ R.

Now we turn our attention to the task of proving (3). Let λ = ζ + 1/ζ = ζ + ζ
(bar standing for complex conjugation). Let us find the minimal polynomial g of λ
over Q. Since Q(ζ) is a splitting field over Q, (i) the polynomial g splits over Q(ζ)
(Problem 1) and (ii) the Galois group Gal(Q(ζ)/Q) acts transitively on the set of
roots of g (the numbering of these two statements is for future referencing in the
argument). Recall that we have an isomorphism

Gal(Q(ζ)/Q) −→ (Z/10Z)×

given by σ 7→ i, where σ(ζ) = ζ i (Theorem 69 and its proof together with |Gal(Q(ζ)/Q)| =
[Q(ζ) : Q] = ϕ(10), see Problem 2 of Assignment 6). The group (Z/10Z)× is cyclic
generated by 3, so that Gal(Q(ζ)/Q) is cyclic and generated by the element τ sat-
isfying τ(ζ) = ζ3. The Galois conjugates of λ over Q(ζ) are

Id(λ) = λ = τ 2(λ), τ(λ) = ζ3 + 1/ζ3 = τ 3(λ).

Thus

g(x) = (x− λ)(x− (ζ3 + 1/ζ3)) = x2 − (ζ + ζ3 + ζ7 + ζ9)x+ (ζ2 + ζ4 + ζ6 + ζ8).

(Here we used the earlier statements (i) and (ii) together with the fact that in char-
acteristic zero irreducible polynomials do not have repeated roots.) Note that

a := ζ + ζ3 + ζ7 + ζ9

and
b := ζ2 + ζ4 + ζ6 + ζ8

are respectively the sum of primitive 10th and 5th roots of unity. The 5th and 10th
cyclotomic polynomials are

φ5(x) = x4 + x3 + x2 + x+ 1

and
φ10(x) = x4 − x3 + x2 − x+ 1.
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It follows that a = 1 and b = −1 (note that if xn + an−1x
n−1 + · · · =

n∏
i=1

(x− βi) then

an−1 = −
n∑
i=1

βi). Thus

g(x) = x2 − x− 1,

so that

λ = (1±
√
5)/2.

Thus
√
5 ∈ Q(λ) ⊂ Q(ζ), as claimed.

REMARK. That deg(g) = 2 is easily seen without using Galois theory. Indeed,
ζλ = ζ2 + 1 so that ζ is a root of x2 − λx + 1. This implies that [Q(ζ) : Q(λ)] ≤ 2.
Since ζ /∈ R and λ ∈ R (as λ is fixed by complex conjugation), it follows that
[Q(ζ) : Q(λ)] = 2. Combining with [Q(ζ) : Q] = 4 by the degree formula we get
[Q(λ) : Q] = 2. (The same argument show that for n > 2, if ζn is a primitive n-th
root of unity and λn = ζn + 1/ζn, then [Q(λn) : Q] = 1

2
[Q(ζn) : Q] = ϕ(n)/2.)

(b) Now that we know |Gal(K/Q)| = 40, a very similar argument to the one
for Part (a) of the previous problem shows that Gal(K/Q) is generated by the two
elements

δ = (α αζ αζ2 · · · αζ9)

(which sends α 7→ αζ and fixes ζ) and

τ = (αζ αζ3 αζ9 αζ7) (αζ2 αζ6 αζ8 αζ4)

(which fixed α and sends ζ 7→ ζ3). We leave the details to the reader. Things to
keep in mind as you give the argument: (i) The conjugates of ζ over Q (i.e. the
roots of the minimal polynomial of ζ over Q) are the primitive 10th roots of unity,
i.e. the elements ζj with 1 ≤ j ≤ 9 and gcd(j, 10) = 1 (Assignment 6, Problem 2).
(ii) (Z/10Z)× is cyclic and generated by 3.

6. LetK be the splitting field of (xp−2)(xq−3) over Q in C. ThenK = Q( p
√
2, ζp,

q
√
3, ζq) =

Q( p
√
2, q
√
3, ζpq) (note that Q(ζpq) = Q(ζp, ζq) since ζppq = ζq and ζpζq is a primitive

pq-th root of unity as gcd(p + q, pq) = 1 thanks to p and q being distinct primes).
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Let us calculate [K : Q] first. We have a diagram of fields

Q

Q( p
√
2) Q( q

√
3)

Q(ζpq)

Q( p
√
2, ζpq) Q( q

√
3, ζpq)

K = Q( p
√
2, q
√
3, ζpq)

p q

ϕ(pq)

(justify the degrees). Looking at the left diamond, since p and ϕ(pq) = (p−1)(q−1)
are relatively prime, we have [Q( p

√
2, ζpq) : Q(ζpq)] = p (why?). Similarly, con-

sidering the right diamond, since q and (p − 1)(q − 1) are relatively prime, we
get [Q( q

√
3, ζpq) : Q(ζpq)] = q. Now considering the top diamond (in view of

gcd(p, q) = 1) we get [K : Q( q
√
3, ζpq)] = p. It follows that [K : Q] = pq(p− 1)(q− 1)

(why?).
For any α ∈ K, let fα be the minimal polynomial of α over Q. Denote the set

of roots of fα in K by C(α); since K is a splitting field over Q, this is the same as
the set {σ(α) : σ ∈ Gal(K/Q)}, and we have

fα(x) =
∏

β∈C(α)

(x− β)

(because fα splits over K by Problem 1 and we are in characteristic zero so irre-
ducible polynomials are separable).

There is an injection

Gal(K/Q) −→ C(
p
√
2)× C( q

√
3)× C(ζpq) σ 7→ (σ(

p
√
2), σ(

q
√
3), σ(ζpq))

(why is this injective?). Both domain and codomain of this map have pq(p −
1)(q − 1) elements (why?), so that this map is actually a bijection. On recalling
that C( p

√
2) = { p

√
2ζrp : 0 ≤ r < p} and C( q

√
3) = { q

√
3ζrq : 0 ≤ r < q}, it follows that

C(
p
√
2 +

q
√
3) = { p

√
2ζrp +

q
√
3ζsq : 0 ≤ r < p, 0 ≤ s < q}.

This gives the desired conclusion.


