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MATDO1 Fields and Groups
Assignment 9

Solutions

(i) = (ii): Let ay, ..., a,, be a basis of K over F. Then K = F(ay,...,«,). For each
i, let f; be the minimal polynomial of a; over F. Then the f; split over K (why?),

and K is a splitting field of H fi over F' (why?).

(ii) = (i): Suppose K is a sphttmg field of g € F[x] over F. Let f € F|x] be an
irreducible polynomial with a root a € K. We will show that f splits over K. Let
L be a splitting field of f over K. Then L is a splitting field of fg over F' (why?).
Now let 8 be an arbitrary root of f in L. We will be done if we show that 3 is
in K. Consider the tower of fields /' C K C L. Since K is the splitting field of
some polynomial over F', any element of Gal(L/F) maps K onto K. Since L is a
splitting field over F' and f is irreducible over F), the action of Gal(L/F) on the
set of roots of f in L is transitive; thus there is an element o € Gal(L/F’) such that
o(a) = B.Since 0(K) C K and o € K, wehave f =o(a) € K.

Suppose o € K is fixed by every element of Gal(K/F). Let f be the minimal

polynomial of a over . We need to show that f has degree 1. By Problem 1. ,

[ splits over K. Since K/F is separable, f has no repeated roots. Suppose f has

degree > 1. Then f has another root 8 # o in K. Since K is a splitting field over

F and f is irreducible over F', there is an element o € Gal(K/F) which sends « to

B. This contradicts the assumption that « is fixed by every element of Gal(K/F).
Remark: A normal separable extension is called a Galois extension.

Note that K = Q(«,i). Every element of Gal(K/Q) sends « to one of the four
roots of z* — 2 (= the minimal polynomial of « over Q), and 7 to one of +i (= roots
of 22 + 1, the minimal polynomial of 7 over Q). Thus we have a function

Gal(K/Q) — {a, ia, —a, —ia} x {i,—i} o (o(a),o(i)),

which is injective since every element of Gal(K/Q) is determined by its action
on o and ¢ (as K = Q(a,1)). Since |Gal(K/Q)| = [K : Q] = 8 (you can see
[K : Q] = 8 easily by earlier techniques, first adjoining a real root of 2* — 2 to Q),
the function Eq. (1) is in fact a bijection. As a subgroup of the symmetric group
on {a, i, —a, —ia}, thus Gal(K/Q) consists of the following elements:

- Id (fixing both a and 7)

- (i — «i) (this is the element that fixes o and sends i — —1),
ai —a — ai) (this is the element that sends o — «i and fixes i),
ai)(—a — «i) (this is the element that sends « — «i and i — —i)

Q

Q

- (@ —a)(ai —ai) (sending o — —a and fixing )
— «) (sending o — —avand ¢ — —1i)
- (o —ai —a ad) (sending o — —ai and fixing 7)

1
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a —ai)(—a o) (sending o — —ai and ¢ — —i).
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(a) Note that K = Q(«, (). Every element of Gal(K/Q) sends « to one of a(’
(0 < i < 6) (why?), and ¢ to one of ¢’ (1 < i < 6) (why?). Thus we have a function

Gal(K/Q) — {a¢": 0<i <6} x {¢":1<i<6} o (o(a),0(C)),

which is injective since every element of Gal(K/Q) is determined by its action on
a and ¢ (why?). We leave it to the reader to check that [K : Q] = 42 (see Problem 2
of Assignment 7). Thus |Gal(K/Q)| = 42 (why?). It follows that the function Eq.
(2) is in fact a bijection. The element of Gal(K/Q) which sends a — a( and fixes
C is easily seen to be §, and the element which fixes « and sends ¢ — (? is easily
seen to be 7. Thus (4, 7) C Gal(K/Q). To show that (0, 7) = Gal(K/Q), first note
that (Z/7Z)* = (3) (verify this). Now given 0 <i < 6and 1 < j <6, let r be such
that 3" = j (mod 7); then one easily checks that 67" maps « — o’ and ¢ — (7.
(Does this show that every element of Gal(K/Q) is generated by § and 77?)

We now show that Gal(K/Q(¢)) = (4). Indeed, Gal(K/Q(()) is the subgroup
of Gal(K/Q) which fixes Q(¢), or equivalently fixes (. Thus § € Gal(K/Q(()),
so that (0) C Gal(K/Q(¢)). Now note that both (¢) and Gal(K/Q(¢)) have 7
elements. (Why is |Gal(K/Q(())| = 7?)

(b) We have 67(a) = a¢ and 76(a) = a¢®. Thus i1 # 76 and Gal(K/Q) is
not abelian. Hence K is not contained in any cyclotomic extension of Q. (If L is
a cyclotomic extension of Q, then Gal(L/Q) is abelian. If further we have Q C
K C L, then (since both K and L are normal extension of () we have a natural
surjection Gal(L/Q) — Gal(K/Q), and hence Gal(K/Q) would also be abelian.)

(a) We may assume that K C C. We have a diagram of fields

/\
N

where the numbers written next to the extensions are their degrees (justify them).
We leave it to the reader to argue that

20 = lem(10,4) | [K : Q] < 40,

so that [K : Q] is either 20 or 40. The goal is to show that [K : Q] = 40.
We will prove that

V5 € Q(¢).

Before we prove this, let us see how it will help us to show that [K : Q] = 40.
Suppose [K : Q] = 20. Then [K : Q(¢)] = 5. Let h be the minimal polynomial of «



over Q(¢). Then h is monic of degree 5 and it divides

9

f@) =] = ad).

1=0

It follows that h is the product of 5 of the factors z — a¢’. Considering the constant
term of h, we see that o® € Q(¢) (as the constant term of /1 is o° times a power of ¢),

so that v/2 € Q(¢). Combining with (3), we get Q(v/2,v/5) C Q(¢). We leave it to
the reader to show that there are no rational numbers a, b such that a + bv/2 = v/5
(square both sides and use linear independence of 1 and v/2 over Q). This implies

V5 ¢ Q(v/2) (why?), so that
[Q(V2,V5): Q] = [Q(v2,v5) : Q(vV2)] - [Q(v2) : Q] "2 2 - 2 = 4.

Combining with Q(v/2,v/5) € Q(¢) and [Q(¢) : Q] = 4 we get Q(v/2,v5) = Q(¢),
which is absurd since Q(v/2,v/5) C Rand Q(¢) ¢ R.

Now we turn our attention to the task of proving (3). Let A = ¢ + 1/¢ = ¢ +(
(bar standing for complex conjugation). Let us find the minimal polynomial g of A
over Q. Since Q(¢) is a splitting field over Q, (i) the polynomial g splits over Q(¢)
(Problem 1) and (ii) the Galois group Gal(Q(¢)/Q) acts transitively on the set of
roots of g (the numbering of these two statements is for future referencing in the
argument). Recall that we have an isomorphism

Gal(Q(¢)/Q) — (Z/10Z)*

givenby o — i, where o(¢) = (' (Theorem 69 and its proof together with |Gal(Q(¢)/Q)| =
[Q(¢) : Q] = ¢(10), see Problem 2 of Assignment 6). The group (Z/10Z)* is cyclic
generated by 3, so that Gal(Q(()/Q) is cyclic and generated by the element 7 sat-
isfying 7(¢) = ¢*. The Galois conjugates of A over Q(() are

1A\ = A =72(\), 7(\) = 3+ 1/¢3 = BN,
Thus
g@) = =Nz —(C+1/P) =2 =+ + T+ M+ (C+ ¢+ + ).

(Here we used the earlier statements (i) and (ii) together with the fact that in char-
acteristic zero irreducible polynomials do not have repeated roots.) Note that

a=C+++
and

b= (24 (g O 48
are respectively the sum of primitive 10th and 5th roots of unity. The 5th and 10th
cyclotomic polynomials are

¢s5(x) =2 + 2 + 2t + o+ 1

and
pro(z) = 2t — 2 +2* —x + 1.
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It follows that @ = 1 and b = —1 (note that if 2" + a,, ;2" ! +--- = [[(x — 3;) then
=1

Ap—1 = — zn: ﬁz) Thus

=1

g(l’)ZQIZQ—iL’—l’

so that
A= (1£5)/2

Thus v/5 € Q(\) C Q(C), as claimed.

REMARK. That deg(g) = 2 is easily seen without using Galois theory. Indeed,
(A = ¢* + 1 so that ( is a root of z2 — Az + 1. This implies that [Q(¢) : Q(\)] < 2.
Since ( ¢ Rand A € R (as A is fixed by complex conjugation), it follows that
[Q(¢) : Q(N\)] = 2. Combining with [Q(¢) : Q] = 4 by the degree formula we get
[Q(A) : Q] = 2. (The same argument show that for n > 2, if (, is a primitive n-th

root of unity and A, = (" + 1/¢", then [Q(\,,) : Q] = 1[Q(&) : Q] = ¢(n)/2.)

(b) Now that we know |Gal(K/Q)| = 40, a very similar argument to the one
for Part (a) of the previous problem shows that Gal(K/Q) is generated by the two
elements

5=(a al a¢® --- a(’)

(which sends a — «a( and fixes {) and
r=(a¢ a¢® a¢® al’) (a¢® a¢® a¢® ac?)

(which fixed « and sends ¢ — ¢?). We leave the details to the reader. Things to
keep in mind as you give the argument: (i) The conjugates of ¢ over Q (i.e. the
roots of the minimal polynomial of ¢ over Q) are the primitive 10th roots of unity,
i.e. the elements ¢ with 1 < j < 9 and gcd(j, 10) = 1 (Assignment 6, Problem 2).
(ii) (Z/10Z)* is cyclic and generated by 3.

. Let K be the splitting field of (v?—2)(2?—3) over Qin C. Then K = Q(¥/2, ¢, ¥/3,(,) =

Q(V/2,V/3,(pg) (note that Q((yy) = Q(¢p, ¢,) since (7, = ¢, and (,(, is a primitive
pg-th root of unity as ged(p + ¢,pg) = 1 thanks to p and ¢ being distinct primes).



Let us calculate [K : Q] first. We have a diagram of fields

K =Q(V/2,¥/3, )
\/_Cpq \/—Cpq

N g/

(justify the degrees). Looking at the left diamond, since p and ¢(pq) = (p—1)(¢—1)
are relatively prime, we have [Q(V/2, Gog) © Q(Gg)] = p (why?). Similarly, con-
sidering the right diamond, since ¢ and (p — 1)(¢ — 1) are relatively prime, we
get [Q(V¥/3,¢4) : Q((y)] = ¢ Now considering the top diamond (in view of
ged(p, q) = 1) we get [K : Q(v/3, ()] = p- It follows that [K : Q] = pg(p — 1)(g — 1)
(why?).

For any a € K, let f, be the minimal polynomial of a over Q. Denote the set
of roots of f, in K by C(«); since K is a splitting field over Q, this is the same as
the set {o(«) : 0 € Gal(K/Q)}, and we have

falz) = H (z —5)
BeC(a)

(because f, splits over K by Problem 1 and we are in characteristic zero so irre-
ducible polynomials are separable).
There is an injection

Gal(K/Q) — C(V2) x C(V3) x C(Gy) o = (0(V2), 0(V3), 0(G))

(why is this injective?). Both domain and codomain of this map have pq(p —
1)(q¢ — 1) elements (why?), so that this map is actually a bijection. On recalling

that C(v/2) = {¥2¢7 : 0 <r < p} and C(¥/3) = {V/3( : 0 < r < ¢}, it follows that
C(V2+V3)={V20 + V3 : 0<r<p 0<s<q}

This gives the desired conclusion.



