MATD01 Fields and Groups

Assignment 9

Solutions

1. (i) \Rightarrow (ii): Let $\alpha_{1}, \ldots, \alpha_{n}$ be a basis of K over F. Then $K=F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. For each i, let f_{i} be the minimal polynomial of α_{i} over F. Then the f_{i} split over K (why?), and K is a splitting field of $\prod_{i=1}^{n} f_{i}$ over F (why?).
(ii) \Rightarrow (i): Suppose K is a splitting field of $g \in F[x]$ over F. Let $f \in F[x]$ be an irreducible polynomial with a root $\alpha \in K$. We will show that f splits over K. Let L be a splitting field of f over K. Then L is a splitting field of $f g$ over F (why?). Now let β be an arbitrary root of f in L. We will be done if we show that β is in K. Consider the tower of fields $F \subset K \subset L$. Since K is the splitting field of some polynomial over F, any element of $\operatorname{Gal}(L / F)$ maps K onto K. Since L is a splitting field over F and f is irreducible over F, the action of $\operatorname{Gal}(L / F)$ on the set of roots of f in L is transitive; thus there is an element $\sigma \in \operatorname{Gal}(L / F)$ such that $\sigma(\alpha)=\beta$. Since $\sigma(K) \subset K$ and $\alpha \in K$, we have $\beta=\sigma(\alpha) \in K$.
2. Suppose $\alpha \in K$ is fixed by every element of $\operatorname{Gal}(K / F)$. Let f be the minimal polynomial of α over F. We need to show that f has degree 1. By Problem 1., f splits over K. Since K / F is separable, f has no repeated roots. Suppose f has degree >1. Then f has another root $\beta \neq \alpha$ in K. Since K is a splitting field over F and f is irreducible over F, there is an element $\sigma \in \operatorname{Gal}(K / F)$ which sends α to β. This contradicts the assumption that α is fixed by every element of $\operatorname{Gal}(K / F)$.

Remark: A normal separable extension is called a Galois extension.
3. Note that $K=\mathbb{Q}(\alpha, i)$. Every element of $\operatorname{Gal}(K / \mathbb{Q})$ sends α to one of the four roots of $x^{4}-2(=$ the minimal polynomial of α over $\mathbb{Q})$, and i to one of $\pm i$ (= roots of $x^{2}+1$, the minimal polynomial of i over $\left.\mathbb{Q}\right)$. Thus we have a function

$$
\begin{equation*}
\operatorname{Gal}(K / \mathbb{Q}) \longrightarrow\{\alpha, i \alpha,-\alpha,-i \alpha\} \times\{i,-i\} \quad \sigma \mapsto(\sigma(\alpha), \sigma(i)), \tag{1}
\end{equation*}
$$

which is injective since every element of $\operatorname{Gal}(K / \mathbb{Q})$ is determined by its action on α and i (as $K=\mathbb{Q}(\alpha, i)$). Since $|G a l(K / \mathbb{Q})|=[K: \mathbb{Q}]=8$ (you can see $[K: \mathbb{Q}]=8$ easily by earlier techniques, first adjoining a real root of $x^{4}-2$ to $\left.\mathbb{Q}\right)$, the function Eq. (1) is in fact a bijection. As a subgroup of the symmetric group on $\{\alpha, i \alpha,-\alpha,-i \alpha\}$, thus $\operatorname{Gal}(K / \mathbb{Q})$ consists of the following elements:

- Id (fixing both α and i)
- $(\alpha i-\alpha i)$ (this is the element that fixes α and sends $i \mapsto-i)$,
- ($\alpha \alpha i-\alpha-\alpha i$) (this is the element that sends $\alpha \mapsto \alpha i$ and fixes i),
- $\left(\begin{array}{ll}\alpha & \alpha i\end{array}\right)(-\alpha-\alpha i)$ (this is the element that sends $\alpha \mapsto \alpha i$ and $\left.i \mapsto-i\right)$
- $(\alpha-\alpha)(\alpha i-\alpha i)$ (sending $\alpha \mapsto-\alpha$ and fixing i)
- $(\alpha-\alpha)$ (sending $\alpha \mapsto-\alpha$ and $i \mapsto-i$)
- $(\alpha-\alpha i-\alpha \alpha i)$ (sending $\alpha \mapsto-\alpha i$ and fixing $i)$

4. (a) Note that $K=\mathbb{Q}(\alpha, \zeta)$. Every element of $G a l(K / \mathbb{Q})$ sends α to one of $\alpha \zeta^{i}$ $(0 \leq i \leq 6)$ (why?), and ζ to one of $\zeta^{i}(1 \leq i \leq 6)$ (why?). Thus we have a function

$$
\begin{equation*}
\operatorname{Gal}(K / \mathbb{Q}) \longrightarrow\left\{\alpha \zeta^{i}: 0 \leq i \leq 6\right\} \times\left\{\zeta^{i}: 1 \leq i \leq 6\right\} \quad \sigma \mapsto(\sigma(\alpha), \sigma(\zeta)), \tag{2}
\end{equation*}
$$

which is injective since every element of $\operatorname{Gal}(K / \mathbb{Q})$ is determined by its action on α and ζ (why?). We leave it to the reader to check that $[K: \mathbb{Q}]=42$ (see Problem 2 of Assignment 7). Thus $|\operatorname{Gal}(K / \mathbb{Q})|=42$ (why?). It follows that the function Eq. (2) is in fact a bijection. The element of $\operatorname{Gal}(K / \mathbb{Q})$ which sends $\alpha \mapsto \alpha \zeta$ and fixes ζ is easily seen to be δ, and the element which fixes α and sends $\zeta \mapsto \zeta^{3}$ is easily seen to be τ. Thus $\langle\delta, \tau\rangle \subset \operatorname{Gal}(K / \mathbb{Q})$. To show that $\langle\delta, \tau\rangle=\operatorname{Gal}(K / \mathbb{Q})$, first note that $(\mathbb{Z} / 7 \mathbb{Z})^{\times}=\langle 3\rangle$ (verify this). Now given $0 \leq i \leq 6$ and $1 \leq j \leq 6$, let r be such that $3^{r} \equiv j(\bmod 7)$; then one easily checks that $\delta^{i} \tau^{r} \operatorname{maps} \alpha \mapsto \alpha \zeta^{i}$ and $\zeta \mapsto \zeta^{j}$. (Does this show that every element of $\operatorname{Gal}(K / \mathbb{Q})$ is generated by δ and τ ?)

We now show that $\operatorname{Gal}(K / \mathbb{Q}(\zeta))=\langle\delta\rangle$. Indeed, $\operatorname{Gal}(K / \mathbb{Q}(\zeta))$ is the subgroup of $\operatorname{Gal}(K / \mathbb{Q})$ which fixes $Q(\zeta)$, or equivalently fixes ζ. Thus $\delta \in \operatorname{Gal}(K / \mathbb{Q}(\zeta))$, so that $\langle\delta\rangle \subset \operatorname{Gal}(K / \mathbb{Q}(\zeta))$. Now note that both $\langle\delta\rangle$ and $\operatorname{Gal}(K / \mathbb{Q}(\zeta))$ have 7 elements. (Why is $|\operatorname{Gal}(K / \mathbb{Q}(\zeta))|=7$?)
(b) We have $\delta \tau(\alpha)=\alpha \zeta$ and $\tau \delta(\alpha)=\alpha \zeta^{3}$. Thus $\delta \tau \neq \tau \delta$ and $\operatorname{Gal}(K / \mathbb{Q})$ is not abelian. Hence K is not contained in any cyclotomic extension of \mathbb{Q}. (If L is a cyclotomic extension of \mathbb{Q}, then $\operatorname{Gal}(L / \mathbb{Q})$ is abelian. If further we have $\mathbb{Q} \subset$ $K \subset L$, then (since both K and L are normal extension of \mathbb{Q}) we have a natural surjection $\operatorname{Gal}(L / \mathbb{Q}) \longrightarrow \operatorname{Gal}(K / \mathbb{Q})$, and hence $\operatorname{Gal}(K / \mathbb{Q})$ would also be abelian.)
5. (a) We may assume that $K \subset \mathbb{C}$. We have a diagram of fields

where the numbers written next to the extensions are their degrees (justify them). We leave it to the reader to argue that

$$
20=\operatorname{lcm}(10,4) \mid[K: \mathbb{Q}] \leq 40
$$

so that $[K: \mathbb{Q}]$ is either 20 or 40 . The goal is to show that $[K: \mathbb{Q}]=40$.
We will prove that

$$
\begin{equation*}
\sqrt{5} \in \mathbb{Q}(\zeta) \tag{3}
\end{equation*}
$$

Before we prove this, let us see how it will help us to show that $[K: \mathbb{Q}]=40$. Suppose $[K: \mathbb{Q}]=20$. Then $[K: \mathbb{Q}(\zeta)]=5$. Let h be the minimal polynomial of α
over $\mathbb{Q}(\zeta)$. Then h is monic of degree 5 and it divides

$$
f(x)=\prod_{i=0}^{9}\left(x-\alpha \zeta^{i}\right)
$$

It follows that h is the product of 5 of the factors $x-\alpha \zeta^{i}$. Considering the constant term of h, we see that $\alpha^{5} \in \mathbb{Q}(\zeta)$ (as the constant term of h is α^{5} times a power of ζ), so that $\sqrt{2} \in \mathbb{Q}(\zeta)$. Combining with (3), we get $\mathbb{Q}(\sqrt{2}, \sqrt{5}) \subset \mathbb{Q}(\zeta)$. We leave it to the reader to show that there are no rational numbers a, b such that $a+b \sqrt{2}=\sqrt{5}$ (square both sides and use linear independence of 1 and $\sqrt{2}$ over \mathbb{Q}). This implies $\sqrt{5} \notin \mathbb{Q}(\sqrt{2})$ (why?), so that

$$
[\mathbb{Q}(\sqrt{2}, \sqrt{5}): \mathbb{Q}]=[\mathbb{Q}(\sqrt{2}, \sqrt{5}): \mathbb{Q}(\sqrt{2})] \cdot[\mathbb{Q}(\sqrt{2}): \mathbb{Q}] \stackrel{\text { why? }}{=} 2 \cdot 2=4 .
$$

Combining with $\mathbb{Q}(\sqrt{2}, \sqrt{5}) \subset \mathbb{Q}(\zeta)$ and $[\mathbb{Q}(\zeta): \mathbb{Q}]=4$ we get $\mathbb{Q}(\sqrt{2}, \sqrt{5})=\mathbb{Q}(\zeta)$, which is absurd since $\mathbb{Q}(\sqrt{2}, \sqrt{5}) \subset \mathbb{R}$ and $\mathbb{Q}(\zeta) \not \subset \mathbb{R}$.

Now we turn our attention to the task of proving (3). Let $\lambda=\zeta+1 / \zeta=\zeta+\bar{\zeta}$ (bar standing for complex conjugation). Let us find the minimal polynomial g of λ over \mathbb{Q}. Since $\mathbb{Q}(\zeta)$ is a splitting field over \mathbb{Q}, (i) the polynomial g splits over $\mathbb{Q}(\zeta)$ (Problem 1) and (ii) the Galois group $\operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q})$ acts transitively on the set of roots of g (the numbering of these two statements is for future referencing in the argument). Recall that we have an isomorphism

$$
\operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q}) \longrightarrow(\mathbb{Z} / 10 \mathbb{Z})^{\times}
$$

given by $\sigma \mapsto i$, where $\sigma(\zeta)=\zeta^{i}$ (Theorem 69 and its proof together with $|G a l(\mathbb{Q}(\zeta) / \mathbb{Q})|=$ $[\mathbb{Q}(\zeta): \mathbb{Q}]=\varphi(10)$, see Problem 2 of Assignment 6$)$. The group $(\mathbb{Z} / 10 \mathbb{Z})^{\times}$is cyclic generated by 3, so that $\operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q})$ is cyclic and generated by the element τ satisfying $\tau(\zeta)=\zeta^{3}$. The Galois conjugates of λ over $\mathbb{Q}(\zeta)$ are

$$
\operatorname{Id}(\lambda)=\lambda=\tau^{2}(\lambda), \quad \tau(\lambda)=\zeta^{3}+1 / \zeta^{3}=\tau^{3}(\lambda)
$$

Thus

$$
g(x)=(x-\lambda)\left(x-\left(\zeta^{3}+1 / \zeta^{3}\right)\right)=x^{2}-\left(\zeta+\zeta^{3}+\zeta^{7}+\zeta^{9}\right) x+\left(\zeta^{2}+\zeta^{4}+\zeta^{6}+\zeta^{8}\right)
$$

(Here we used the earlier statements (i) and (ii) together with the fact that in characteristic zero irreducible polynomials do not have repeated roots.) Note that

$$
a:=\zeta+\zeta^{3}+\zeta^{7}+\zeta^{9}
$$

and

$$
b:=\zeta^{2}+\zeta^{4}+\zeta^{6}+\zeta^{8}
$$

are respectively the sum of primitive 10th and 5th roots of unity. The 5th and 10th cyclotomic polynomials are

$$
\phi_{5}(x)=x^{4}+x^{3}+x^{2}+x+1
$$

and

$$
\phi_{10}(x)=x^{4}-x^{3}+x^{2}-x+1 .
$$

It follows that $a=1$ and $b=-1$ (note that if $x^{n}+a_{n-1} x^{n-1}+\cdots=\prod_{i=1}^{n}\left(x-\beta_{i}\right)$ then $\left.a_{n-1}=-\sum_{i=1}^{n} \beta_{i}\right)$. Thus

$$
g(x)=x^{2}-x-1
$$

so that

$$
\lambda=(1 \pm \sqrt{5}) / 2
$$

Thus $\sqrt{5} \in \mathbb{Q}(\lambda) \subset \mathbb{Q}(\zeta)$, as claimed.

Remark. That $\operatorname{deg}(g)=2$ is easily seen without using Galois theory. Indeed, $\zeta \lambda=\zeta^{2}+1$ so that ζ is a root of $x^{2}-\lambda x+1$. This implies that $[\mathbb{Q}(\zeta): \mathbb{Q}(\lambda)] \leq 2$. Since $\zeta \notin \mathbb{R}$ and $\lambda \in \mathbb{R}$ (as λ is fixed by complex conjugation), it follows that $[\mathbb{Q}(\zeta): \mathbb{Q}(\lambda)]=2$. Combining with $[\mathbb{Q}(\zeta): \mathbb{Q}]=4$ by the degree formula we get $[\mathbb{Q}(\lambda): \mathbb{Q}]=2$. (The same argument show that for $n>2$, if ζ_{n} is a primitive n-th root of unity and $\lambda_{n}=\zeta^{n}+1 / \zeta^{n}$, then $\left[\mathbb{Q}\left(\lambda_{n}\right): \mathbb{Q}\right]=\frac{1}{2}\left[\mathbb{Q}\left(\zeta_{n}\right): \mathbb{Q}\right]=\varphi(n) / 2$.)
(b) Now that we know $|\operatorname{Gal}(K / \mathbb{Q})|=40$, a very similar argument to the one for Part (a) of the previous problem shows that $G a l(K / \mathbb{Q})$ is generated by the two elements

$$
\delta=\left(\begin{array}{llll}
\alpha & \alpha \zeta & \alpha \zeta^{2} & \cdots
\end{array} \alpha \zeta^{9}\right)
$$

(which sends $\alpha \mapsto \alpha \zeta$ and fixes ζ) and

$$
\tau=\left(\alpha \zeta \alpha \zeta^{3} \alpha \zeta^{9} \alpha \zeta^{7}\right)\left(\alpha \zeta^{2} \alpha \zeta^{6} \alpha \zeta^{8} \alpha \zeta^{4}\right)
$$

(which fixed α and sends $\zeta \mapsto \zeta^{3}$). We leave the details to the reader. Things to keep in mind as you give the argument: (i) The conjugates of ζ over \mathbb{Q} (i.e. the roots of the minimal polynomial of ζ over \mathbb{Q}) are the primitive 10th roots of unity, i.e. the elements ζ^{j} with $1 \leq j \leq 9$ and $\operatorname{gcd}(j, 10)=1$ (Assignment 6, Problem 2). (ii) $(\mathbb{Z} / 10 \mathbb{Z})^{\times}$is cyclic and generated by 3 .
6. Let K be the splitting field of $\left(x^{p}-2\right)\left(x^{q}-3\right)$ over \mathbb{Q} in \mathbb{C}. Then $K=\mathbb{Q}\left(\sqrt[p]{2}, \zeta_{p}, \sqrt[q]{3}, \zeta_{q}\right)=$ $\mathbb{Q}\left(\sqrt[p]{2}, \sqrt[q]{3}, \zeta_{p q}\right)$ (note that $\mathbb{Q}\left(\zeta_{p q}\right)=\mathbb{Q}\left(\zeta_{p}, \zeta_{q}\right)$ since $\zeta_{p q}^{p}=\zeta_{q}$ and $\zeta_{p} \zeta_{q}$ is a primitive $p q$-th root of unity as $\operatorname{gcd}(p+q, p q)=1$ thanks to p and q being distinct primes).

Let us calculate $[K: \mathbb{Q}]$ first. We have a diagram of fields

(justify the degrees). Looking at the left diamond, since p and $\varphi(p q)=(p-1)(q-1)$ are relatively prime, we have $\left[\mathbb{Q}\left(\sqrt[p]{2}, \zeta_{p q}\right): \mathbb{Q}\left(\zeta_{p q}\right)\right]=p$ (why?). Similarly, considering the right diamond, since q and $(p-1)(q-1)$ are relatively prime, we get $\left[\mathbb{Q}\left(\sqrt[q]{3}, \zeta_{p q}\right): \mathbb{Q}\left(\zeta_{p q}\right)\right]=q$. Now considering the top diamond (in view of $\operatorname{gcd}(p, q)=1)$ we get $\left[K: \mathbb{Q}\left(\sqrt[q]{3}, \zeta_{p q}\right)\right]=p$. It follows that $[K: \mathbb{Q}]=p q(p-1)(q-1)$ (why?).

For any $\alpha \in K$, let f_{α} be the minimal polynomial of α over \mathbb{Q}. Denote the set of roots of f_{α} in K by $C(\alpha)$; since K is a splitting field over \mathbb{Q}, this is the same as the set $\{\sigma(\alpha): \sigma \in \operatorname{Gal}(K / \mathbb{Q})\}$, and we have

$$
f_{\alpha}(x)=\prod_{\beta \in C(\alpha)}(x-\beta)
$$

(because f_{α} splits over K by Problem 1 and we are in characteristic zero so irreducible polynomials are separable).

There is an injection

$$
\operatorname{Gal}(K / \mathbb{Q}) \longrightarrow C(\sqrt[p]{2}) \times C(\sqrt[q]{3}) \times C\left(\zeta_{p q}\right) \quad \sigma \mapsto\left(\sigma(\sqrt[p]{2}), \sigma(\sqrt[q]{3}), \sigma\left(\zeta_{p q}\right)\right)
$$

(why is this injective?). Both domain and codomain of this map have $p q(p-$ 1) $(q-1)$ elements (why?), so that this map is actually a bijection. On recalling that $C(\sqrt[p]{2})=\left\{\sqrt[p]{2} \zeta_{p}^{r}: 0 \leq r<p\right\}$ and $C(\sqrt[q]{3})=\left\{\sqrt[q]{3} \zeta_{q}^{r}: 0 \leq r<q\right\}$, it follows that

$$
C(\sqrt[p]{2}+\sqrt[q]{3})=\left\{\sqrt[p]{2} \zeta_{p}^{r}+\sqrt[q]{3} \zeta_{q}^{s}: 0 \leq r<p, 0 \leq s<q\right\} .
$$

This gives the desired conclusion.

