MATD01 Fields and Groups

Assignment 4

Hint for Problem 7

Hint for Parts (b) and (c): You can solve the problem directly if you want, that is by multiplying $(a+b \sqrt{-D})(c+d \sqrt{-D})$ and seeing when it can become 1 for Part (c) and 2 for Part (d) (with $D=5$ for the latter). However, below is a neat way of doing it.

Define the norm function $N: \mathbb{Z}[\sqrt{-\mathrm{D}}] \rightarrow \mathbb{Z}$ by

$$
N(a+b \sqrt{-D})=(a+b \sqrt{-D})(a-b \sqrt{-D})=a^{2}+D b^{2}
$$

A straightforward calculation shows that the norm is multiplicative, i.e. $N(\alpha \beta)=N(\alpha) N(\beta)$ for any $\alpha, \beta \in \mathbb{Z}[\sqrt{-D}]$. Now to find the units of $\mathbb{Z}[\sqrt{-D}]$, suppose $u u^{\prime}=1$. Then $N(u) N\left(u^{\prime}\right)=N(1)=1$, so that $N(u)=N\left(u^{\prime}\right)= \pm 1$. Now you can easily see which elements of $\mathbb{Z}[\sqrt{-D}]$ have norm ± 1. (Remark: In what we said so far the fact that D is positive only matters in the last step, which is finding elements of norm ± 1. The situation for $\mathrm{D}<0$ is very different there. Read about Pell's equation if you are interested.)

For (d), follow the same idea: if 2 factors in $\mathbb{Z}[\sqrt{-5}]$ as $2=\alpha \beta$, then apply the norm function to get $N(\alpha) N(\beta)=4$. Now it should be easy to argue that α or β has to ± 1. (Note that if $b \neq 0$, then $N(a+b \sqrt{-5})=a^{2}+5 b^{2} \geq 5$.)

The final remark in the question which asserts that 3 and $1 \pm \sqrt{-5}$ are also irreducible in $\mathbb{Z}[\sqrt{-5}]$ can similarly be verified.

