Note: Unless otherwise indicated, all claims have to be justified. Final answers without or with wrong justification will not be given any credit.

1. [4 points] (a) [1 point] Give an example of an integral domain which is not a field. No explanation is necessary.
(b) [3 points] Show that a finite integral domain is a field.

Solution: (a) \mathbb{Z}
(b) Let R be a finite integral domain. Let $a \in R-\{0\}$. Since R is finite, there are positive integers m and n, say $m<n$, such that $a^{m}=a^{n}$. Since R is a domain and $a \neq 0$, we have $a^{m} \neq 0$. Combining with $a^{m} \cdot 1=a^{m} \cdot a^{n-m}$ and the fact that R is a domain, we get $a^{n-m}=1$. Thus a is a unit.
2. [5 points] Let $\phi: R \rightarrow S$ be a ring homomorphism. Let I be an ideal of S.
(a) [3 points] Show that $\phi^{-1}(I)$ is an ideal of R. You may take it for granted that $\phi^{-1}(I)$ is a subgroup of R under addition.
(b) [2 points] Suppose I is a prime ideal. Show that $\phi^{-1}(I)$ is also prime.

Solution: (a) Let $a \in \phi^{-1}(I)$ and $r \in R$. We need to check that $a r \in \phi^{-1}(I)$, or equivalently, that $\phi(r a) \in I$. We have $\phi(r a)=\phi(r) \phi(a)$. Since $\phi(a) \in I$ and I is an ideal, it follows that $\phi(r a) \in I$.
(b) Let $a b \in \phi^{-1}(I)$. We shall show that a or b is in $\phi^{-1}(I)$. Indeed, $a b \in \phi^{-1}(I)$ tells us that $\phi(a b) \in I$. Combining with $\phi(a b)=\phi(a) \phi(b)$ and the fact that I is a prime ideal, we get that $\phi(a)$ or $\phi(b)$ are in I. Thus a or b is in $\phi^{-1}(I)$, as desired.
3. [5 points] (a) [3 points] Let R be a PID. Suppose $r \in R$ is an irreducible element. Show that the ideal (r) is maximal.
(b) [2 points] Give an example that shows that the ideal generated by an irreducible element need not be maximal in an arbitrary integral domain.

Solution: (a) Suppose J is an ideal of R with $(r) \subset J$. Since R is a PID, $J=(a)$ for some $a \in R$. Now $(r) \subset(a)$ implies that $r=a b$ for some $b \in R$. Since r is irreducible, a or b is a unit. In the former case, $J=(a)=R$. In the latter case, $J=(a)=(r)$.
(b) The element x of the ring $\mathbb{Z}[x]$ is irreducible, but the ideal generated by x is not maximal (as $(x) \subsetneq(x, 2) \subsetneq \mathbb{Z}[x]$, or alternatively $\mathbb{Z}[x] /(x) \simeq \mathbb{Z}$ is not a field).
4. [5 points] Let $f(x)=x^{3}+x^{2}-1 \in \mathbb{F}_{3}[x]$. Let $K=\mathbb{F}_{3}[x] /(f(x))$.
(a) [2 points] Show that K is a field.
(b) [2 points] How many elements does K have?
(c) [1 points] Show that the equation $X^{3}+X^{2}-1=0$ has a solution in K.

Solution: (a) It is enough to show that $f(x)$ is irreducible in $\mathbb{F}_{3}[x]$ (as the ideal generated by an irreducible element in a PID is maximal, and the quotient by a maximal ideal is a field). Since $f(x)$ has degree 3 , it suffices to check that $f(x)$ does not have any roots in \mathbb{F}_{3}. We have $f(0)=-1, f(1)=1$ and $f(-1)=-1$ so indeed f has no roots in \mathbb{F}_{3}.
(b) Since $f(x)$ has degree 3, the dimension of K as a vector space over \mathbb{F}_{3} is 3 . (Indeed, $\left.\underline{\{1, \bar{x}}, \bar{x}^{2}\right\}$ is a basis of K over \mathbb{F}_{3}, where here as well as below for any $g(x) \in \mathbb{F}_{3}[x]$ we denote by $\overline{g(x)}$ the image of $g(x)$ under the quotient map $\left.\mathbb{F}_{3}[x] \rightarrow K\right)$. Thus $|K|=\left|\mathbb{F}_{3}\right|^{3}=27$.
(c) $X=\bar{x}$ is a solution:

$$
\bar{x}^{3}+\bar{x}^{2}-1=\overline{f(x)}=0 .
$$

5. [6 points] Determine if the following polynomials are irreducible in the given polynomial rings.
(a) $[2$ points $] x^{6}+18 x-12$ in $\mathbb{Q}[x]$
(b) [2 points] $x^{14}+x^{13}+x^{12}+\cdots+x^{2}+x+1=\frac{x^{15}-1}{x-1}$ in $\mathbb{Q}[x]$
(c) $[2$ points $] x^{p^{2}}+a x^{p}+b$ in $\mathbb{F}_{p}[x]$, where $a, b \in \mathbb{F}_{p}$.

Solution: (a) Irreducible by Eisenstein criterion for prime 3.
(b) Not irreducible. Let $f(x)=x^{14}+x^{13}+x^{12}+\cdots+x^{2}+x+1$. Let ω be a primitive 3 rd root of unity. Then ω is a root of $x^{15}-1$. Since $x^{15}-1=(x-1) f(x)$ and $\omega \neq 1$, we have $f(\omega)=0$. Combining with $f(x) \in \mathbb{Q}[x]$ it follows that the minimal polynomial of ω over \mathbb{Q}, i.e. $x^{2}+x+1$ divides $f(x)$. (Similarly, working with a primitive 5 th root of unity we get that $x^{4}+x^{3}+x^{2}+x+1$ also divides $f(x)$.)
(c) Not irreducible. Since $\mathbb{F}_{p}[x]$ is a ring of characteristic p (which is a prime number), we have

$$
\left(x^{p}+a x+b\right)^{p}=x^{p^{2}}+a^{p} x^{p}+b^{p}=x^{p^{2}}+a x^{p}+b,
$$

where the last equality is because $a^{p}=a$ for any $a \in \mathbb{F}_{p}$.
6. [6 points] Let $K \subset \mathbb{C}$ be the splitting field of $x^{16}-1$ over \mathbb{Q}. Let $\zeta=e^{2 \pi i / 16}$.
(a) $[2$ points $]$ Show that $K=\mathbb{Q}(\zeta)$.
(b) [3 points] Find the minimal polynomial of ζ over \mathbb{Q}.
(c) [1 point] Give a basis for K as a vector space over \mathbb{Q}. No explanation is necessary.

Solution: (a) We have

$$
x^{16}-1=\prod_{j=1}^{16}\left(x-\zeta^{j}\right)
$$

Thus $x^{16}-1$ splits over $\mathbb{Q}(\zeta)$. It follows that $K \subset \mathbb{Q}(\zeta)$. On the other hand, since ζ is a root of $x^{16}-1$, we have $\zeta \in K$. Thus $\mathbb{Q}(\zeta) \subset K$.
(b) ζ is a root of the polynomial $x^{16}-1=\left(x^{8}-1\right)\left(x^{8}+1\right)$. Since $\zeta^{8} \neq 1$, it follows that ζ must be a root of $x^{8}+1$. We show that $x^{8}+1$ is irreducible over \mathbb{Q}; it will then follow that $x^{8}+1$ is the minimal polynomial of ζ over \mathbb{Q}.

To show irreducibility of $f(x)=x^{8}+1$, it is enough to show that $f(x+1)=(x+1)^{8}+1$ is irreducible. The latter polynomial is irreducible by Eisenstein criterion for prime 2. Indeed, its leading coefficient is 1 and the constant term is 2 . Denoting the quotient map $\mathbb{Z} \rightarrow \mathbb{F}_{2}$ by π and the induced map $\mathbb{Z}[x] \rightarrow \mathbb{F}_{2}[x]$ by π^{*}, we have

$$
\pi^{*}\left((x+1)^{8}+1\right) \stackrel{(\dagger)}{=}(x+1)^{8}+1 \stackrel{(\ddagger)}{=}(x+1+1)^{8}=x^{8} .
$$

(Here the second $(x+1)^{8}+1$ is an element of $\mathbb{F}_{2}[x]$ and (\dagger) is by the fact that π^{*} is a ring map. Equality (\ddagger) is because 8 is a power of the characteristic of $\mathbb{F}_{2}[x]$ (which is a prime number).) Thus all the coefficients of $(x+1)^{8}+1$ are even except the leading coefficient.
(c) Since the minimal polynomial of ζ over \mathbb{Q} has degree 8 , the set $\left\{1, \zeta, \zeta^{2}, \ldots, \zeta^{7}\right\}$ is a basis of $\mathbb{Q}(\zeta)(=K)$ over \mathbb{Q}.
7. [4 points] Let F be a field of characteristic zero. Let $f(x) \in F[x]$ be an irreducible polynomial. Show that $f(x)$ has no repeated roots in any extension of F.

Solution: Suppose $f(x)$ has a repeated root α in some extension K / F. Then $f^{\prime}(\alpha)=0$. Combining the facts that (i) $f(x)$ is irreducible in $F[x]$, (ii) $f(\alpha)=0$, and (iii) $f^{\prime}(x) \in F[x]$ and (iv) $f^{\prime}(\alpha)=0$ it follows that $f(x) \mid f^{\prime}(x)$. (Indeed, the first two imply that $f(x)$ generates the kernel of $e v_{\alpha}: F[x] \rightarrow K$, and the last two say that $f^{\prime}(x) \in \operatorname{ker}\left(e v_{\alpha}\right)$). Since $f(x)$ is a polynomial of positive degree, we have $\operatorname{deg}\left(f^{\prime}(x)\right)<\operatorname{deg}(f(x))$. Putting $\operatorname{deg}\left(f^{\prime}(x)\right)<\operatorname{deg}(f(x))$ and $f(x) \mid f^{\prime}(x)$ together it follows that $f^{\prime}(x)=0$. But this is absurd since F has characteristic zero and hence the derivative of $f(x)$ is a nonzero polynomial.
(Common misconception: To say $f(x) \in F[x]$ has a repeated root α in some extension K / F means that $f(x)=(x-\alpha)^{2} g(x)$ for some $g(x)$ in $K[x]$. Note that $g(x)$ need not be in $F[x]$. In fact, looking at the coefficient of the second highest power of x you can see that $g(x)$ will not be in $F[x]$ if α is not in F and $\operatorname{char}(F) \neq 2$.)
8. [Bonus, 4 points] Let p be a prime number and n, m positive integers. Let K be a field with p^{n} elements. Show that K has a subfield with p^{m} elements if and only if $m \mid n$.

Solution: \Rightarrow : Suppose K has a subfield F with p^{m} elements. Then K is a vector space over F. Since K is a finite set, $\operatorname{dim}_{F}(K)$ (= the dimension of K as a vector space over F) is finite: just start with all of K as a spanning set and then cut it down to a linearly independent spanning set β. If $\operatorname{dim}_{F}(K)=d$, then $|K|=|F|^{d}$ (as every element of K can be uniquely expressed as an F-linear combination of the elements of β). This implies that $n=m d$.
$\Leftarrow:$ Let m be a divisor of n. Identify the prime field of K with \mathbb{F}_{p}. Consider the polynomial

$$
f(x)=x^{p^{m}}-x \in \mathbb{F}_{p}[x] .
$$

Let

$$
L=\{\alpha \in K: f(\alpha)=0\} .
$$

We claim that L is a field with p^{m} elements. Indeed, it is clear that L contains 1 and is closed under multiplication and taking additive inverses. That L is closed under addition follows easily from the fact that

$$
(\alpha+\beta)^{p}=\alpha^{p}+\beta^{p}
$$

(and hence by iteration, $\left.(\alpha+\beta)^{p^{m}}=\alpha^{p^{m}}+\beta^{p^{m}}\right)$) for any $\alpha, \beta \in K$. This shows that L is a subring of K. But then being a finite integral domain, L is a field.

It remains to show that L has p^{m} elements. That is, we want to show that the number of distinct roots of $f(x)$ in K is equal to $\operatorname{deg}(f(x))$. This follows from the following two facts: (i) $f(x)$ splits over K, and (ii) $f(x)$ has no repeated roots. To see (ii), note that $f^{\prime}(x)=-1$ (and hence $f^{\prime}(x)$ has no roots). To see (i), first note that since $m \mid n$, we have $p^{m}-1 \mid p^{n}-1$ (if $n=m d$, then substitute $X=p^{m}$ in $X^{d}-1=(X-1)\left(1+X+\cdots+X^{d-1}\right)$). It then follows that

$$
x^{p^{m}-1}-1 \mid x^{p^{n}-1}-1
$$

(by the same token: if $p^{n}-1=\left(p^{m}-1\right) d$, substitute $X=x^{p^{m}-1}$ in the same formula). Multiplying by x, we get

$$
x^{p^{m}}-x \mid x^{p^{n}}-x .
$$

This holds in $\mathbb{Z}[x]$, and hence also in $\mathbb{F}_{p}[x]$. Since $x^{p^{n}}-x \in \mathbb{F}_{p}[x]$ splits over K, it follows that so does $x^{p^{m}}-x$.

Extra space for rough work or to continue your solution to a question. What you write here will not be graded unless you write "Continued on page 10 " in the original question space.

Extra space for rough work or to continue your solution to a question. What you write here will not be graded unless you write "Continued on page 11 " in the original question space.

Extra space for rough work or to continue your solution to a question. What you write here will not be graded unless you write "Continued on page 12 " in the original question space.

