
Note: Unless otherwise indicated, all claims have to be justified. Final answers without or with
wrong justification will not be given any credit.

1. [4 points] (a) [1 point] Give an example of an integral domain which is not a field. No explana-
tion is necessary.

(b) [3 points] Show that a finite integral domain is a field.

Solution: (a) Z

(b) Let R be a finite integral domain. Let a ∈ R − {0}. Since R is finite, there are positive
integersm and n, saym < n, such that am = an. SinceR is a domain and a 6= 0, we have am 6= 0.
Combining with am · 1 = am · an−m and the fact that R is a domain, we get an−m = 1. Thus a is
a unit.
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2. [5 points] Let φ : R→ S be a ring homomorphism. Let I be an ideal of S.

(a) [3 points] Show that φ−1(I) is an ideal of R. You may take it for granted that φ−1(I) is a
subgroup of R under addition.

(b) [2 points] Suppose I is a prime ideal. Show that φ−1(I) is also prime.

Solution: (a) Let a ∈ φ−1(I) and r ∈ R. We need to check that ar ∈ φ−1(I), or equivalently,
that φ(ra) ∈ I . We have φ(ra) = φ(r)φ(a). Since φ(a) ∈ I and I is an ideal, it follows that
φ(ra) ∈ I .

(b) Let ab ∈ φ−1(I). We shall show that a or b is in φ−1(I). Indeed, ab ∈ φ−1(I) tells us that
φ(ab) ∈ I . Combining with φ(ab) = φ(a)φ(b) and the fact that I is a prime ideal, we get that φ(a)
or φ(b) are in I . Thus a or b is in φ−1(I), as desired.



3. [5 points] (a) [3 points] Let R be a PID. Suppose r ∈ R is an irreducible element. Show that the
ideal (r) is maximal.

(b) [2 points] Give an example that shows that the ideal generated by an irreducible element
need not be maximal in an arbitrary integral domain.

Solution: (a) Suppose J is an ideal of R with (r) ⊂ J . Since R is a PID, J = (a) for some
a ∈ R. Now (r) ⊂ (a) implies that r = ab for some b ∈ R. Since r is irreducible, a or b is a unit.
In the former case, J = (a) = R. In the latter case, J = (a) = (r).

(b) The element x of the ring Z[x] is irreducible, but the ideal generated by x is not maximal
(as (x) ( (x, 2) ( Z[x], or alternatively Z[x]/(x) ' Z is not a field).



4. [5 points] Let f(x) = x3 + x2 − 1 ∈ F3[x]. Let K = F3[x]/(f(x)).

(a) [2 points] Show that K is a field.

(b) [2 points] How many elements does K have?

(c) [1 points] Show that the equation X3 +X2 − 1 = 0 has a solution in K.

Solution: (a) It is enough to show that f(x) is irreducible in F3[x] (as the ideal generated
by an irreducible element in a PID is maximal, and the quotient by a maximal ideal is a field).
Since f(x) has degree 3, it suffices to check that f(x) does not have any roots in F3. We have
f(0) = −1, f(1) = 1 and f(−1) = −1 so indeed f has no roots in F3.

(b) Since f(x) has degree 3, the dimension of K as a vector space over F3 is 3. (Indeed,
{1, x, x2} is a basis of K over F3, where here as well as below for any g(x) ∈ F3[x] we denote by
g(x) the image of g(x) under the quotient map F3[x]→ K). Thus |K| = |F3|3 = 27.

(c) X = x is a solution:
x3 + x2 − 1 = f(x) = 0.



5. [6 points] Determine if the following polynomials are irreducible in the given polynomial rings.

(a) [2 points] x6 + 18x− 12 in Q[x]

(b) [2 points] x14 + x13 + x12 + · · ·+ x2 + x+ 1 = x15−1
x−1 in Q[x]

(c) [2 points] xp
2
+ axp + b in Fp[x], where a, b ∈ Fp.

Solution: (a) Irreducible by Eisenstein criterion for prime 3.

(b) Not irreducible. Let f(x) = x14+x13+x12+ · · ·+x2+x+1. Let ω be a primitive 3rd root
of unity. Then ω is a root of x15 − 1. Since x15 − 1 = (x − 1)f(x) and ω 6= 1, we have f(ω) = 0.
Combining with f(x) ∈ Q[x] it follows that the minimal polynomial of ω over Q, i.e. x2 + x+ 1
divides f(x). (Similarly, working with a primitive 5th root of unity we get that x4+x3+x2+x+1
also divides f(x).)

(c) Not irreducible. Since Fp[x] is a ring of characteristic p (which is a prime number), we
have

(xp + ax+ b)p = xp
2
+ apxp + bp = xp

2
+ axp + b,

where the last equality is because ap = a for any a ∈ Fp.



6. [6 points] Let K ⊂ C be the splitting field of x16 − 1 over Q. Let ζ = e2πi/16.

(a) [2 points] Show that K = Q(ζ).

(b) [3 points] Find the minimal polynomial of ζ over Q.

(c) [1 point] Give a basis for K as a vector space over Q. No explanation is necessary.

Solution: (a) We have

x16 − 1 =
16∏
j=1

(x− ζj).

Thus x16 − 1 splits over Q(ζ). It follows that K ⊂ Q(ζ). On the other hand, since ζ is a root of
x16 − 1, we have ζ ∈ K. Thus Q(ζ) ⊂ K.

(b) ζ is a root of the polynomial x16 − 1 = (x8 − 1)(x8 + 1). Since ζ8 6= 1, it follows that ζ
must be a root of x8+1. We show that x8+1 is irreducible over Q; it will then follow that x8+1
is the minimal polynomial of ζ over Q.

To show irreducibility of f(x) = x8 + 1, it is enough to show that f(x+ 1) = (x+ 1)8 + 1 is
irreducible. The latter polynomial is irreducible by Eisenstein criterion for prime 2. Indeed, its
leading coefficient is 1 and the constant term is 2. Denoting the quotient map Z → F2 by π and
the induced map Z[x]→ F2[x] by π∗, we have

π∗((x+ 1)8 + 1)
(†)
= (x+ 1)8 + 1

(‡)
= (x+ 1 + 1)8 = x8.

(Here the second (x + 1)8 + 1 is an element of F2[x] and (†) is by the fact that π∗ is a ring map.
Equality (‡) is because 8 is a power of the characteristic of F2[x] (which is a prime number).)
Thus all the coefficients of (x+ 1)8 + 1 are even except the leading coefficient.

(c) Since the minimal polynomial of ζ over Q has degree 8, the set {1, ζ, ζ2, ..., ζ7} is a basis
of Q(ζ) ( = K) over Q.



7. [4 points] Let F be a field of characteristic zero. Let f(x) ∈ F [x] be an irreducible polynomial.
Show that f(x) has no repeated roots in any extension of F .

Solution: Suppose f(x) has a repeated root α in some extension K/F . Then f ′(α) = 0. Com-
bining the facts that (i) f(x) is irreducible in F [x], (ii) f(α) = 0, and (iii) f ′(x) ∈ F [x] and (iv)
f ′(α) = 0 it follows that f(x)

∣∣ f ′(x). (Indeed, the first two imply that f(x) generates the kernel
of evα : F [x]→ K, and the last two say that f ′(x) ∈ ker(evα)). Since f(x) is a polynomial of pos-
itive degree, we have deg(f ′(x)) < deg(f(x)). Putting deg(f ′(x)) < deg(f(x)) and f(x)

∣∣ f ′(x)
together it follows that f ′(x) = 0. But this is absurd since F has characteristic zero and hence
the derivative of f(x) is a nonzero polynomial.

(Common misconception: To say f(x) ∈ F [x] has a repeated root α in some extension K/F
means that f(x) = (x − α)2g(x) for some g(x) in K[x]. Note that g(x) need not be in F [x]. In
fact, looking at the coefficient of the second highest power of x you can see that g(x) will not be
in F [x] if α is not in F and char(F ) 6= 2.)



8. [Bonus, 4 points] Let p be a prime number and n,m positive integers. Let K be a field with pn

elements. Show that K has a subfield with pm elements if and only if m
∣∣ n.

Solution: ⇒ : Suppose K has a subfield F with pm elements. Then K is a vector space over
F . Since K is a finite set, dimF (K) (= the dimension of K as a vector space over F ) is finite: just
start with all of K as a spanning set and then cut it down to a linearly independent spanning
set β. If dimF (K) = d, then |K| = |F |d (as every element of K can be uniquely expressed as an
F -linear combination of the elements of β). This implies that n = md.

⇐ : Let m be a divisor of n. Identify the prime field of K with Fp. Consider the polynomial

f(x) = xp
m − x ∈ Fp[x].

Let
L = {α ∈ K : f(α) = 0}.

We claim that L is a field with pm elements. Indeed, it is clear that L contains 1 and is closed
under multiplication and taking additive inverses. That L is closed under addition follows
easily from the fact that

(α+ β)p = αp + βp

(and hence by iteration, (α+β)p
m
= αp

m
+βp

m
)) for any α, β ∈ K. This shows that L is a subring

of K. But then being a finite integral domain, L is a field.
It remains to show that L has pm elements. That is, we want to show that the number of

distinct roots of f(x) in K is equal to deg(f(x)). This follows from the following two facts: (i)
f(x) splits over K, and (ii) f(x) has no repeated roots. To see (ii), note that f ′(x) = −1 (and
hence f ′(x) has no roots). To see (i), first note that since m

∣∣ n, we have pm − 1
∣∣ pn − 1 (if

n = md, then substitute X = pm in Xd − 1 = (X − 1)(1 +X + · · ·+Xd−1)). It then follows that

xp
m−1 − 1

∣∣ xpn−1 − 1

(by the same token: if pn−1 = (pm−1)d, substituteX = xp
m−1 in the same formula). Multiplying

by x, we get
xp

m − x
∣∣ xpn − x.

This holds in Z[x], and hence also in Fp[x]. Since xp
n − x ∈ Fp[x] splits over K, it follows that so

does xp
m − x.



Extra space for rough work or to continue your solution to a question. What you write here will
not be graded unless you write “Continued on page 10” in the original question space.



Extra space for rough work or to continue your solution to a question. What you write here will
not be graded unless you write “Continued on page 11” in the original question space.



Extra space for rough work or to continue your solution to a question. What you write here will
not be graded unless you write “Continued on page 12” in the original question space.

The end.
Total points excluding the bonus question = 35.


