
MAT301 Groups and Symmetry

Assignment 1 Solutions

Note on grading: Questions 1, 3, 4 and 5 were graded. The assignment was graded out of
25. The numbers in [ ] indicate how many marks each (part of a) question was worth.

1. [10, each part 2] Determine if each of the following is a group.

(a) Z under ? defined by x ? y = x+ y+ xy
(b) Q − {−1} under ? defined by x ? y = x + y + xy (First make sure that ? is a binary

operation on Q− {−1}.)
(c) the set R>0 of positive real numbers under ? defined by x ? y = xy2 (So for instance,

2 ? 3 = 18.)
(d) the set of all invertible 2× 2matrices with entries in R under matrix multiplication
(e) the set of all invertible 2× 2matrices with entries in Z under matrix multiplication

Solution:
(a) A straightforward computation shows that 0 satisfies the defining property of the iden-

tity element. We claim that −1 does not have an inverse. Indeed,

−1 ? x = −1+ x− x = −1,

so that −1 ? x 6= 0 for any x ∈ Z. Thus Z is not a group under ?.

(b) First we check that ? is a binary operation on Q− {−1} (the analogous statement for (a)
is trivial and that is why we did not mention it). We need to check that if x, y 6= −1,
then xy+ x+ y 6= −1. This follows from that

xy+ x+ y+ 1 = (x+ 1)(y+ 1),

so that if the left hand side is zero, x or y has to be −1.
It is easy to see that the operation is indeed associative and that 0 is the identity

(we leave the details to the reader). Let x ∈ Q − {−1}. Set y = 1
x+1

− 1 (note that the
denominator is not zero as x 6= −1). Then y is a rational number, and moreover y 6= −1,
as 1

x+1
6= 0. Now one checks by a direct computation that x ? y = 0 (the operation is

clearly commutative so y ? x = 0 as well). Thus Q− {−1} is a group under ?.

(c) The operation is not associative (hence we don’t have a group): 1 ? (2 ? 2) = 1 ? 8 = 64
but (1 ? 2) ? 2 = 4 ? 2 = 16.

(d) This is a group (which we will denote by GL2(R)). The product of two invertible ma-
trices is invertible (as if A and B are invertible, det(A) and det(B) are nonzero, hence
det(AB) = det(A)det(B) is nonzero). It follows that matrix multiplication indeed gives
a binary operation on the the set of all invertible 2 × 2 matrices with entries in R (that
the product of two matrices with real entries has real entries is clear from the definition
of matrix multiplication). We know from previous courses that matrix multiplication
is associative. The 2× 2 identity matrix I satisfies the defining property of the identity
element. The inverse of an element A ∈ GL2(R) is simply the inverse matrix A−1.
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(e) Let us refer to the set given in the question by S. The identity matrix I is the identity

element. The element A =

(
1 0
0 2

)
is in S, but there is no element B in S such that

AB = I. Indeed, the only 2 × 2 real matrix with this property is B =

(
1 0
0 1/2

)
, which

does not belong to S. Thus S is not a group under matrix multiplication.

2. Suppose (G, ?) is a group. Let g, h, h ′ ∈ G.

(a) Show that if h ? g = h ′ ? g, then h = h ′. (In other words, “right cancellation” holds in
a group. One can similarly show that “left cancellation” holds in a group as well, i.e.
g ? h = g ? h ′ implies h = h ′.)

(b) Suppose g ? h = h ′ ? g. Does it follow that h = h ′? Suggestion: Look for a counter-
example in D3 (the group of symmetries of an equilateral triangle, which you studied
in your tutorial activity).

(c) Now suppose moreover that (G, ?) is abelian. Does g ? h = h ′ ? g imply h = h ′?

Solution:
(a) Let hg = h ′g (dropping the symbol ? to simplify the notation). Multiply by g−1 on

the right we get (hg)g−1 = (h ′g)g−1, which in view of associativity gives h(gg−1) =
h ′(gg−1). By the definition of g−1, denoting the identity element by e, the latter equation
can be rewritten as he = h ′e, which in turn, by the definition of the identity element,
implies h = h ′.

REMARK. For the remaining questions we will be less explicit in our use of the
axiom of associativity.

(b) No. Let G be any nonabelian group (e.g. D3 or GL2(R)). Let g, h ∈ G be two ele-
ments that do not commute. Set h ′ = ghg−1. Then h ′g = ghg−1g = gh but h 6= h ′: if
h = ghg−1 then multiplying by g on the right we get hg = gh, which is not true by our
choice of g, h.

(c) Yes, because then gh = hg, so that the given equation can be rewritten as hg = h ′g and
we are in the situation of (a).

3. [5] Let G = {e, g} be a group with two elements, with e the identity. Find the Cayley table of
G (and provide full justification for your answer).

Solution: By the definition of identity, we have ee = e, eg = g and ge = g. It remains to
find g2 (i.e. gg). We claim that g2 6= g. Indeed, if g2 = g, then multiplying by g−1 (or writing
the equation as say gg = ge and using left cancellation) we get g = e, which is absurd. Thus
g2 = e. The Cayley table is shown below.

e g
e e g
g g e

4. [5] (a) [4] Let G be a group. Let g be an element of G. Define a function φg : G → G by
φg(h) = gh (i.e φg sends every h ∈ G to gh). Show that φg is a bijection.
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(b) [1] True or false: If G is a group, then every element of G appears in every row of the
Cayley table of G exactly once.

Solution: (a) We give two solutions.

First solution: First let’s check that φg is injective. Suppose φg(h) = φg(h ′) for some h, h ′ ∈
G. This means gh = gh ′, and multiplying by g−1 on the left (or rather by left cancellation) we
see h = h ′. This proves injectivity. Let’s turn our attention to surjectivity. Given any h ∈ G, we
have

φg(g
−1h) = gg−1h = eh = h,

so that h is in the image of φg. This proves surjectivity.

Second solution: To show that φg is a bijection it is enough to show that it has an inverse
function. The functionφg−1 : G→ G (sending h 7→ g−1h) is easily seen to be the inverse function
to φg. Indeed, for any h ∈ G,

φg−1 ◦ φg(h) = g−1gh = h

and
φg ◦ φg−1(h) = gg−1h = h.

Thus both φg−1 ◦ φg and φg ◦ φg−1 are identity maps on G (hence φg and φg−1 are inverse func-
tions of one another).

(b) True. This is just a restatement of the result of part (a).

5. [5] Let G be a finite group. Denote the identity of G by e. Show that for every element g ∈ G,
there is a positive integer n such that gn = e. (In other words, show that every element of a
finite group has finite order.)

Solution: Let |G| = N. Given g ∈ G, consider the elements

g, g2, . . . , gN, gN+1

of G. Since G hasN elements, two of these must be equal, i.e. there exist 1 ≤ i < j ≤ N+ 1 such
that gi = gj. But gj = gigj−i, so that we get

gi = gigj−i.

Multiplying both sides by the inverse of gi on the left we get gj−i = e. Thus g has finite order
(note that j − i is not zero). In fact, |g| ≤ j − i, which combining with j − i ≤ N gives |g| ≤ N.
Thus we have actually proved the order of every element of G is ≤ the order of G.

6. Let G be a group with identity element denoted by e. Suppose G has the following property:
for every g ∈ G, we have g2 = e. Show that G is abelian. (Suggestion: Let g, h ∈ G. Start with
(gh)(gh) = e. Now multiply both sides by h on the right. Be sure to carefully justify all steps
of your calculation using group axioms.)

Solution: Let g, h ∈ G. We have
(gh)(gh) = e.

Multiplying by h on the right, we get

(1) ((gh)(gh))h = eh.
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By the defining property of ewe have eh = h. On the other hand, we have

((gh)(gh))h
associativity

= (gh)((gh)h)
associativity

= (gh)(g(hh))
(∗)
= (gh)(ge)

(∗∗)
= (gh)g,

where in (∗) (resp. (∗∗)) we used the hypothesis (resp. definition of the identity element). Thus
(1) tells us (gh)g = h. Now multiplying by g on the right, in view of g2 = e, we get gh = hg
(we leave the detailed and step by step derivation of this using the axioms to the reader). We
have shown that every two elements of G commute. Thus G is abelian.


