
MAT301 Groups and Symmetry

Assignment 2 Solutions

Note on grading: Questions 1(a,c,d,e), 2, 3 and 4 were graded. In Question 3(b) only the
centres of GL2(R) and Sn were considered for grading. The assignment was graded out of 38.
The numbers in [ ] indicate how many marks each (part of a) question was worth.

1. [12] In each part, a group G and a subset S ⊂ G are given. Determine if S is a subgroup of G.

(a) [3]G = Dn (the group of symmetries of a regular n-gon), S = the set of all the rotational
symmetries in Dn.

(b) G = GLn(R), S ⊂ GLn(R) the subset consisting of all the invertible diagonal matrices.
(c) [3]G = SL2(Z) (the group of 2×2matrices of determinant 1 which have integer entries),

S the subset consisting of the matrices of the form
(
1 n
0 1

)
, where n ∈ Z.

(d) [3] Fix an integer n. Let G be any abelian group with identity denoted by e, and S =
{g ∈ G : gn = e}.

(e) [3] G any abelian group, S the set of all elements of finite order.
(f) G = C× (nonzero complex numbers under multiplication), S the unit circle in C (so
S = {z ∈ C : |z| = 1}, where |z| means the norm of the complex number z).

Solution: The given subsets are all subgroups (of the corresponding groups). We check this for
each part below.

(a) The identity transformation is a rotation, the composition of two rotations is a rotation
(by the sum of the angles and the two rotations), and the inverse of a rotation is also a rotation
(inverse of rotation by θ is rotation by −θ). So S is a subgroup of Dn.

(b) The identity matrix is diagonal, hence in S. We have(
a1 0
0 a2

)(
b1 0
0 b2

)
=

(
a1b1 0
0 a2b2

)
,

hence S is closed under matrix multiplication (which is the operation in GL2(R)). Also,(
a1 0
0 a2

)−1

=

( 1
a1

0

0 1
a2

)
(where a1 and a2 are nonzero), so that S is closed under taking inverses.

(c) The identity matrix certainly belongs to S. The following two calculations show that S
is closed under the operation and taking inverses:(

1 n
0 1

)(
1 m
0 1

)
=

(
1 n+m
0 1

)
and (

1 n
0 1

)−1

=

(
1 −n
0 1

)
.
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(d) We have en = e, so that e ∈ S. Let g, h ∈ S. Then gn = hn = e. Since the group G is
abelian, (gh)n = gnhn = ee = e. Thus gh ∈ S and S is closed under the operation. We have
(g−1)n = (gn)−1 = e−1 = e, so that g−1 ∈ S and S is closed under taking inverses.

(e) The identity element e has finite order. Let g and h be two elements of finite order in G.
Then there exist positive integers n,m such that gn = hm = e. Then, sinceG is abelian, we have

(gh)nm = gnmgnm = (gn)m(hm)n = e,

so that gh has finite order. Also, (g−1)n = (gn)−1 = e so that g−1 also has finite order.

(f) The identity element of C× is 1. We have |1| = 1 (where here as well as everywhere for
this part | | means absolute value of a complex number), so 1 ∈ S. That S is closed under the
operation (= multiplication) and taking inverses follow from the following formulas:

|zz ′| = |z| · |z ′|
and

|z−1| =
1

|z|

(where in the latter z 6= 0).

2. [7] (a) [4] Give an example of a group G and elements g, h ∈ G such that |g| and |h| are finite,
but |gh| is infinite. (Hint: Consider the group of symmetries of a circle.)

(b) [3] Give an example of a group G in which the subset S = {g ∈ G : g2 = e} is not a
subgroup.

Solution: (a) Let G be the set of all the symmetries of a circle, which forms a group under
composition of functions. Note that G consists of reflections over lines passing through the
centre of the circle O, and rotations around O. The reflections all have order 2. We claim that
rotation by θ has finite order if and only if θ/π is a rational number. Indeed, let ρθ denote the
rotation by θ. If ρθ has finite order, there is a positive integer n such that ρnθ = (ρθ) = e, so that
nθ = 2πk for some integer k. Then θ/π = 2k/n ∈ Q. Conversely, if θ/π = a/b with a and b
integer with b > 0, then ρ2bθ = ρ2aπ = e and ρθ has finite order. This completes the proof of our
claim.

Let r and r ′ be two reflections whose axes form an angle τwith each other (where the angle
is measured say from the axis of r to that of r ′). Being the composition of two reflections, the
element r ◦ r ′ ∈ G is a rotation. Considering points on the axes we can see that r ′ ◦ r is in fact
rotation by 2τ. If we take our lines such that τ =

√
2π (or any other angle such that τ/π and

hence 2τ/π is irrational), then r ◦ r ′ has infinite order.

(b) Take G = D3. Then the given subset consists of the identity element and the three re-
flections. This subset is not closed under the operation (why?) and hence is not a subgroup.

3. [12] For any group G, the centre of G (usually denoted by Z(G)) is defined as

Z(G) := {g ∈ G : gh = hg for every h ∈ G}
(i.e. the set of those g ∈ Gwhich commute with every element of G).

(a) [1] True or false: A group G is abelian if and only if Z(G) = G.
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(b) [2] Show that in general, Z(G) is a subgroup of G.
(c) [9] Find the centre of each of the groups Dn, Sn, and GL2(R). (For Dn and Sn assume

n ≥ 3.)

Suggestion: For Dn, it might be useful to think about the following question first:
Let r be a reflection and ρ a rotation, with the centre of the rotation on the line of reflec-
tion. When is r ◦ ρ = ρ ◦ r? Think about the image of a point on the line of reflection
under the two compositions. For GL2(R), it is easy to see that any matrix of the form(
a 0
0 a

)
commutes with every 2 × 2 matrix, so that there centre of GL2(R) certainly

contains all such matrices (with a 6= 0, of course). Does the centre of GL2(R) contain
any element besides these?)

Solution: (a) true (why?)

(b) The identity element e commutes with every element of the group (as eh = he = h for
every h ∈ G), so e ∈ Z(G). Let g ∈ Z(G). Given any h ∈ G, we have gh−1 = h−1g. Taking
inverses we get hg−1 = g−1h. Thus g−1 ∈ Z(G). Now let g ′ also be in Z(G). Given h ∈ G, since
g ∈ Z(G), we have g(g ′h) = (g ′h)g. Using associativity and the fact that g and g ′ commute
with every element of the group (in particular with each other), we can rewrite this equality as
(gg ′)h = h(gg ′). Thus gg ′ ∈ Z(G).

(c) We claim that the centre of Sn is trivial for n ≥ 3 (is the trivial subgroup {e}). Let f ∈ Sn
and f 6= e (where e is the identity element of the group, i.e. the identity function on {1, . . . , n}).
Then there is a ∈ {1, . . . , n} such that f(a) 6= a. Let b = f(a). Since n ≥ 3, there is c ∈ {1, . . . , n}
such that c 6= a, b. (So the three numbers a, b, c are distinct.) Let g ∈ Sn be such that g(a) = a
and g(b) = c. Note that such g certainly exists, as for example we can take g to be the function
that sends b 7→ c, c 7→ b, and sends every other element of {1, . . . , n} to itself. Then we have
g ◦ f(a) = g(b) = c, whereas f ◦ g(a) = f(a) = b 6= c. Thus g ◦ f 6= f ◦ g, so that f /∈ Z(Sn). It
follows that Z(Sn) = {e} (why?).

Now we calculate the centre of GL2(R). LetH be the set consisting of all the matrices of the

form
(
a 0
0 a

)
= aI, where a ∈ R − {0} and I is the identity matrix. (Matrices of the form aI are

called scalar matrices.) Note that H ⊂ GL2(R). We claim that H is the centre of GL2(R). Indeed,
a straightforward calculation shows that for any 2× 2matrix B, we have (aI)B = B(aI), so that
H ⊂ Z(GL2(R)). It remains to show that Z(GL2(R)) ⊂ H. Let A ∈ Z(GL2(R)). Write

A =

(
a b
c d

)
.

Then A commutes with every element of GL2(R). In patricular, it commutes with the matrices

B =

(
1 0
0 −1

)
and C =

(
1 1
0 1

)
.

Considering AB = BA we get b = c = 0 (write the computation and see). Then considering

AC = CA (keeping in mind that we now know A =

(
a 0
0 d

)
) we get a = d, so that A ∈ H.
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Finally, we find the centre of Dn for n ≥ 3. We claim that

Z(Dn) =

{
{e} if n is odd
{e, ρπ} if n is even.

(As before, we denote rotation by θ by ρθ. Note that ρπ is in Dn if and only if n is even.) First
note that no reflection will be in the centre: given any reflection r ∈ Dn, let r ′ ∈ Dn be a
reflection whose axis forms an angle of π/n with the axis of r (in other words, the axis of r ′ is
“next to” the axis of r). Then one easily sees that the two rotations r ◦ r ′ and r ′ ◦ r are not equal
(one is rotation by 2π/n and the other by −2π/n, and those two are not the same when n > 2).

We now turn our attention to the rotations in Dn. Let ρ = ρθ ∈ Dn be any rotation such
that ρ 6= e, ρπ. We claim that ρ is not in the centre of Dn. Let r ∈ Dn be any reflection. Then
r ◦ ρ 6= ρ ◦ r. (Indeed, let P be one of the two points on the intersection of our polygon and the
axis of r. Then r ◦ ρ(P) and ρ ◦ r(P) are on opposite sides on the axis of r.)

All that remains to show is that if rotation by π is in Dn, then it commutes with every ele-
ment of Dn (hence is in the centre). Since the rotations all commute with one another, we only
need to check that ρπ ◦ r = r ◦ ρπ, where r ∈ Dn is a reflection. This can easily be checked using
plane geometry methods (both compositions are equal to the reflection over the line perpen-
dicular to the axis of r, passing through the centre of the shape). Alternatively, we can choose
coordinates for the plane so that the centre of the polygon is the origin, and the axis of r is the
x-axis. Then (writing elements of R2 as column vectors) r and ρπ are given by

r

(
x
y

)
=

(
x
−y

)
=

(
1 0
0 −1

)(
x
y

)
and

ρπ

(
x
y

)
=

(
−x
−y

)
=

(
−1 0
0 −1

)(
x
y

)
,

and the two matrices
(
1 0
0 −1

)
and

(
−1 0
0 −1

)
commute.

4. [7] Let G be a subgroup of Sn. Note that, in particular, each element of G is a bijection
{1, . . . , n} → {1, . . . , n}. Define a relation ∼ on the set {1, . . . , n} as follows: for any integers
1 ≤ a, b ≤ n, set a ∼ b if and only if there exists g ∈ G such that g(a) = b.

(a) [4] Show that ∼ is an equivalence relation.
(b) [3] Let n = 5 and f ∈ S5 be the function that sends 1 7→ 2, 2 7→ 4, 3 7→ 5, 4 7→ 1, 5 7→ 3.

Let G = 〈f〉 (the subgroup of S5 generated by f). Calculate the equivalence classes of
the relation ∼ defined as above.

Solution: (a) Since G is a subgroup of Sn, it contains the identity function e (which is the
identity of the group Sn). Given any a ∈ {1, . . . , n}, e(a) = a, so that a ∼ a. We now check
that the relation is symmetric. Suppose a ∼ b. Then there is f ∈ G such that f(a) = b, so that
a = f−1(b). Since G ≤ Sn is a subgroup, f−1 ∈ G. Thus b ∼ a as desired. Finally, let us check
transitivity. Suppose a ∼ b and b ∼ c. Then there are f, g ∈ G such that f(a) = b and g(b) = c.
It follows that g ◦ f(a) = c. Since G is a subgroup of Sn, it is closed under composition, so that
g ◦ f ∈ G. Thus we get a ∼ c.

(b) We calculate the subgroup G = 〈f〉 first. Let us find powers (i.e. self compositions) of f:

f : 1 7→ 2, 2 7→ 4, 3 7→ 5, 4 7→ 1, 5 7→ 3
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f2 : 1 7→ 4, 2 7→ 1, 3 7→ 3, 4 7→ 2, 5 7→ 5

f3 : 1 7→ 1, 2 7→ 2, 3 7→ 5, 4 7→ 4, 5 7→ 3

f4 : 1 7→ 2, 2 7→ 4, 3 7→ 3, 4 7→ 1, 5 7→ 5

f5 : 1 7→ 4, 2 7→ 1, 3 7→ 5, 4 7→ 2, 5 7→ 3

f6 : 1 7→ 1, 2 7→ 2, 3 7→ 3, 4 7→ 4, 5 7→ 5.

We see that f6 = e (and fi 6= e for 1 ≤ i < 6). Thus |f| = 6 and G = {e, f, f2, f3, f4, f5}. By
definition of our relation and in view of our calculations above, we have

[1] = {g(1) : g ∈ G} = {1, 2, 4}.

(Note that without looking at the calculations we should know that [2] and [4] must also be
{1, 2, 4}. Indeed, by the general properties of equivalence relations 1 ∼ 2 tells us [1] = [2]. Say it
differently, [2] contains 2, hence intersects [1], hence has to be equal to it, as equivalence classes
are either equal or disjoint.) Similarly,

[3] = {3, 5} = [5].

The (distinct) equivalence classes are {1, 2, 4} and {3, 5}.

5. (a) Let G be a group. Let H be a subgroup of G. Define a relation ∼ on G as follows: for
any g, g ′ ∈ G, set g ∼ g ′ if and only if there exists h ∈ H such that g ′ = gh. Show that ∼ is an
equivalence relation.

(b) Take G = D6 and H = 〈ρ2π/3〉, where ρθ denotes counter-clockwise rotation by θ. Calcu-
late the equivalence classes of the relation ∼ defined as above.

Solution: (a) For any g ∈ Gwe have g = ge. Since e ∈ H (why?) this tells us g ∼ g.
Let g ∼ g ′. Then g ′ = gh for some h ∈ H. Then h−1 ∈ H as well, and we have g = g ′h−1.

Thus g ′ ∼ g and the relation is symmetric.
Suppose g ∼ g ′ and g ′ ∼ g ′′. Then there are h, h ′ ∈ H such that g ′ = gh and g ′′ = g ′h ′,

so that g ′′ = g(hh ′). Since H is a subgroup, hh ′ ∈ H. It follows that g ∼ g ′′ and our relation is
transitive.

(b) By the defintion of ∼, for any g ∈ Gwe have

[g] = {g ′ ∈ G : g ∼ g ′} = {gh : h ∈ H}.
We use the following notation for the elements of D6: rotation by 2π/6 is denoted by ρ (so that
all the rotations in Dn are ρ, ρ2, . . . , ρ6 = e}). Denote one of the reflections, say one that passes
through a vertex, by r1. Label the other reflections r2, . . . , r6 in that order, as we move counter-
clockwise from the axis of r1. Thus the axes of r1, r3, r5 pass through the vertices and the axes of
r2, r4, r6 pass through the midpoints of the edges.

Then straightforward calculations using the above formula for [g] give us

[e] = H = {e, ρ2, ρ4}

[ρ] = {ρ, ρ3, ρ5},

[r1] = {r1, r3, r5}

and
[r2] = {r2, r4, r6}.
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6. Calculate the order of every element of each of the following groups: (a) Z/8 ( = residue
classes mod 8 under addition) (b) µ8 ( = the subgroup of C× consisting of the 8th roots of unity)
(c) U(16) (Suggestion: Keep the formula |gk| = |g|

gcd(|g|,k)
in mind.)

Solution: (a) We have |[1]| = 8.The group Z/8 is generated by [1], so we can use the formula
given in the suggestion to find the order of every other element. (Note that the operation is Z/8
is addition.) We have [2] = 2[1] (where 2[1] means [1]+[1]). Thus |[2]| = |[1]|

gcd(2,|[1]|
= 4. Similarly, we

can calculate the order of every other element of Z/n and see that |[3]| = |[5]| = |[7]| = 8,|[4]| = 2,
|[6]| = 4, and of course |[0]| = 1.

(b) Let α = e2πi/8. Then µ8 = {1, α, α2, . . . , α7}. We have |α| = 8 (where | | means the order,
not absolute value of the complex number α). Using the formula given in the suggestion we
get the order of every element: |1| = 1, |α2| = |α6| = 4, |α4| = 2, |α3| = |α5| = |α7| = |α| = 8.

(c) Note that
U(16) = {[1], [3], [5], [7], [9], [11], [13], [15]}.

We have |[1]| = 1. Let us calculate |[5]|. Since U(16) has 8 elements, by Lagrange’s theorem (or
more specefically, by Corollary 2 of the notes) the order of every element ofU(16) divides 8. We
have

[5]2 = [25] = [9]

and
[5]4 = ([5]2)2 = [9]2 = [81] = [1].

Thus |[5]| = 4. (We did not have to check [5]3 because we knew 3 cannot be the order.)

Now the formula given in the suggestion tells us [9] = [5]2 has order 2, and [13] = [5]3 has
order 4. Similarly we easily see |[3]| = 4, so that [3]3 = [11] also has order 4 (why?). It remains to
find the orders of [7] and [−1] = [15]. We have [7]2 = [−1]2 = [1], so |[7]| = |[−1]| = 2.


