
MAT301 Groups and Symmetry
Assignment 2

Due Friday Oct 5 at 11:59 pm
(to be submitted on Crowdmark)

Please write your solutions neatly and clearly. Note that we may decide to grade only some
of the questions (due to time limitations).

1. In each part, a group G and a subset S ⊂ G are given. Determine if S is a subgroup of G.

(a) G = Dn (the group of symmetries of a regular n-gon), S = the set of all the rotational
symmetries in Dn.

(b) G = GLn(R), S ⊂ GLn(R) the subset consisting of all the invertible diagonal matrices.
(c) G = SL2(Z) (the group of 2× 2matrices of determinant 1 which have integer entries), S

the subset consisting of the matrices of the form
(
1 n
0 1

)
, where n ∈ Z.

(d) Fix an integer n. Let G be any abelian group with identity denoted by e, and S = {g ∈
G : gn = e}.

(e) G any abelian group, S the set of all elements of finite order.
(f) G = C× (nonzero complex numbers under multiplication), S the unit circle in C (so
S = {z ∈ C : |z| = 1}, where |z| means the norm of the complex number z).

2. (a) Give an example of a group G and elements g, h ∈ G such that |g| and |h| are finite, but
|gh| is infinite. (Hint: Consider the group of symmetries of a circle.)

(b) Give an example of a groupG in which the subset S = {g ∈ G : g2 = e} is not a subgroup.

3. For any group G, the centre of G (usually denoted by Z(G)) is defined as

Z(G) := {g ∈ G : gh = hg for every h ∈ G}

(i.e. the set of those g ∈ Gwhich commute with every element of G).

(a) True or false: A group G is abelian if and only if Z(G) = G.
(b) Show that in general, Z(G) is a subgroup of G.
(c) Find the centre of each of the groupsDn, Sn, andGL2(R). (ForDn and Sn assumen ≥ 3.)

Suggestion: For Dn, it might be useful to think about the following question first:
Let r be a reflection and ρ a rotation, with the centre of the rotation on the line of reflec-
tion. When is r ◦ ρ = ρ ◦ r? Think about the image of a point on the line of reflection
under the two compositions. For GL2(R), it is easy to see that any matrix of the form(
a 0
0 a

)
commutes with every 2 × 2 matrix, so that there centre of GL2(R) certainly

contains all such matrices (with a 6= 0, of course). Does the centre of GL2(R) contain
any element besides these?)
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4. LetG be a subgroup of Sn. Note that, in particular, each element ofG is a bijection {1, . . . , n} →
{1, . . . , n}. Define a relation ∼ on the set {1, . . . , n} as follows: for any integers 1 ≤ a, b ≤ n, set
a ∼ b if and only if there exists g ∈ G such that g(a) = b.

(a) Show that ∼ is an equivalence relation.
(b) Let n = 5 and f ∈ S5 be the function that sends 1 7→ 2, 2 7→ 4, 3 7→ 5, 4 7→ 1, 5 7→ 3. Let

G = 〈f〉 (the subgroup of S5 generated by f). Calculate the equivalence classes of the
relation ∼ defined as above.

5. (a) Let G be a group. Let H be a subgroup of G. Define a relation ∼ on G as follows: for
any g, g ′ ∈ G, set g ∼ g ′ if and only if there exists h ∈ H such that g ′ = gh. Show that ∼ is an
equivalence relation.

(b) Take G = D6 and H = 〈ρ2π/3〉, where ρθ denotes counter-clockwise rotation by θ. Calcu-
late the equivalence classes of the relation ∼ defined as above.

6. Calculate the order of every element of each of the following groups: (a) Z/8 ( = residue
classes mod 8 under addition) (b) µ8 ( = the subgroup of C× consisting of the 8th roots of unity)
(c) U(16) (Suggestion: Keep the formula |gk| = |g|

gcd(|g|,k)
in mind.)

Practice Problems: The following problems are for your practice. They are not to be handed in
for grading.

0. Let G be an abelian group and g, h ∈ G be of finite order. Show that |gh| ≤ lcm(|g|, |h|),
where lcm means the least common multiple.

1. Write the subgroup of Q generated by 1
3

explicitly.

2. We say a group G is cyclic if there exists g ∈ G such that G = 〈g〉. Which of the following
groups are cyclic? (a) Z (b) Z/n (c) µn (d) U(16) (e) Dn (f) Q

3. (a) Show that the intersection of any nonempty collection of subgroups of a group G is a
subgroup of G.
(b) Show that the union of two subgroups is a subgroup only if one of the two subgroups is
contained in the other.

4. Let g be an element of a group G.

(a) Show that if a subgroup H of G contains g, then H contains 〈g〉.
(b) Show that 〈g〉 is the intersection of all subgroups of G which contain g. (This char-

acterization of 〈g〉 is used in the next problem to define more generally the subgroup
generated by any subset of a group.)

5. Let G be a group and S be a subset of G. Let 〈S〉 be the intersection of all the subgroups of
G that contain S. (Note that there is at least one such subgroup, namely G itself.) Then 〈S〉 is a
subgroup of G (by 3a); it is called the subgroup generated by S. If S = {g1, . . . , gn}, we might write
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〈g1, . . . , gn〉 instead of 〈S〉.

(a) Write the subgroup 〈2, 3〉 of Q× explicitly.
(b) We say a groupG is finitely generated if there exist finitely many elements g1, . . . , gn ∈ G

such that G = 〈g1, . . . , gn〉. Show that Q× is not finitely generated.

6. Let r, r ′ be any two distinct reflections inD3. Show thatD3 = 〈r, r ′〉. (Larger dihedral groups
are also generated by two reflections, but we cannot pick the reflections arbitrarily.)

7. (a) Let n be a positive integer. Define

Γ(n) := {

(
a b
c d

)
∈ SL2(Z) : a, d ≡ 1 (mod n) and b, c ≡ 0 (mod n)}.

Show that Γ(n) is a subgroup of SL2(Z).

8. True or false: If K ≤ H (i.e. if K is a subgroup of H) and H ≤ G, then K ≤ G.

9. Define
On(R) := {A ∈ GLn(R) : AAT = I}.

Show that On(R) is a subgroup of GLn(R). (The group On(R) is called the orthogonal group of
degree n.)

10. Let V be a vector space and 〈 , 〉 be an inner product on V . LetGL(V) denote the group of all
isomorphisms V → V (under composition, see Question 8 of the practice list given in the first
assignment). Let

H := {g ∈ GL(V) : 〈g(v), g(w)〉 = 〈v,w〉 for all v,w ∈ V}.
(In words, H consists of those isomorphisms V → V which “preserve” 〈 , 〉.) Show that H is a
subgroup of GL(V).

11. Let H be a subgroup of G. Let g ∈ G. Define

gHg−1 := {ghg−1 : h ∈ H}.
Show that gHg−1 is also a subgroup of G.

12. Let S be a subset of a group G. The centralizer of S is defined to be

{g ∈ G : gx = xg for every x ∈ S}
(i.e. the set of those g ∈ G which commute with every element of S). Show that the centralizer
of S is a subgroup of G.

13. (a) Prove Lagrange’s theorem: if H is a subgroup of a finite group G, then |H|
∣∣ |G|. (We

will come back to this result in a few weeks and prove it in class, but I encourage the interested
students to try to prove it themselves. The key is the equivalence relation defined in Question
5a of the assignment. How many elements does each equivalence class have?)

(b) Conclude that if G is a finite group, then the order of every g ∈ G divides |G|. (Apply
Lagrange’s theorem to H = 〈g〉.)
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14. Let H be a nonempty subset of a group G such that for every g, h ∈ H, we have gh−1 ∈ H.
Show that H is a subgroup of G. (This result can help us save some time when we want to
check that a given subset is a subgroup. Instead of checking closedness under the operation
and taking inverses, we can just check that if g, h ∈ H, then gh−1 ∈ H.)

15. Let H be a nonempty subset of a finite group G. Suppose H is closed under the operation
(i.e. if g, h ∈ H, then gh ∈ H). Show that H is a subgroup of G.


