MAT301 Groups and Symmetry
Assignment 4

Solutions

1. (a)Let¢ : G — Hbe a homomorphism. Let g € G. Show that ¢((g)) = ($(g)) (i.e that the
image of the subgroup generated by g under ¢ is the subgroup generated by d)( ).

(b) Conclude that the image of a cyclic group under a homomophism is cyclic (i.e. thatif G
is cyclic and ¢ : G — H is a homomorphism, then ¢(G) is cyclic).

(c) Let G and H be isomorphic groups. Show that G is cyclic if and only if H is cyclic.

Solution: (a) This follows from that for every n, we have ¢(g") = ¢(g)". Indeed, given
any g’ € (g), we have g’ = g" for some n, so that $(g’) = $(g") = $(g)" € ($(g)), hence
d((g)) C (d(g)). On the other hand, given h € ($(g)), we have h = ¢(g)" for some n, so that
h=¢(g") € $((g)). Thus (p(g)) C $((g))-

(b) Let G be cyclicand ¢ : G — H a homomorphism. If G is generated by g, by Part (a),
Im(¢) is generated by ¢(g) and is cyclic.

(c) Let ¢ : G — H be an isomorphism. In particular, ¢ is a surjective homomorphism, so
that (by (b)) if G is cyclic, then so is Im(¢$) = H.

2. (a) For any two groups G and H, we denote the set of all homomorphisms G — H by
Hom(G, H). Show that for any group H, there is a bijective function

Hom(Z, H) — H.

(Suggestion: Define F : Hom(Z,H) — H by F(¢) = &(1). Thus F sends a homomorphism
¢ : Z — Hsimply to ¢(1) € H. Show that F is a bijection. Injectivity of F is the statement that if
¢ and P are homomorphisms Z — H and ¢(1) =P (1), then ¢ =1 (i.e., that a homomorphism
Z — H is determined by its value at 1.) Surjectivity of F is the statement that for any h € H, there
is a homomorphism ¢ : Z — H such that (1) =h.)

(b) List all homomorphisms Z — Ss.

Solution: (a) Let F be the function defined in the suggestion. We show that F is bijective.

- Injectivity: Let ¢, € Hom(Z,H) (so ¢ and 1 are homomorphisms Z — H). Suppose
F(¢) = F(¥), which means ¢(1) = (1). Then for every integer n,

¢(n) =o(1)" =(1)" =(n),

where in the first (resp. last) equality we used the fact that ¢ (resp. ) is a homomor-
phism, and in the middle equality we used the assumption that ¢(1) = P(1). Thus

¢ =1.
- Surjectivity:Let h € H. Define ¢ : Z — H by ¢(n) = h". Then ¢ is a homomorphism,
as

d(m-+n) =h"™" =h™h" = d(m)Pp(n).
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We have F(¢) = (1) = h.

(b) For each o € S;3, define ¢, : Z — S3 by ds(n) = o™. The ¢, are all the homomorphisms
Z — S3. More explicitly, homomorphisms Z — S; are the followings: 1) n — e (the trivial
homomorphism), 2) n — (12)",3) n — (23)", 4) n+— (13)",5) n — (123)", and 6) n — (132)™.

3. Let G and H be finite groups such that |G| and |H| are relatively prime. Show that the only
homomorphism G — H is the trivial map. In other words, show that if ¢ : G — H is a homo-
morphism, then ¢(g) = e for every g € G. (Suggestion: Use Lagrange’s theorem and the fact

that [ (g)| | Igl.)

Solution: Let ¢ : G — H be a homomorphism. Let g € G. We need to show that
¢(g) = e. Since ¢ is a homomorphism and g has finite order, we have |p(g)| ‘ lg| (for ¢p(g)l9 =
(g9 = d(e) = e). By Lagrange’s theorem (applied to the group G) we have |g] ‘ |G|, so
that [¢(g)| | IGl. On the other hand, Lagrange’s theorem (this time applied to the group H) also
implies |<1> )] ‘ [H|. Since |G| and |H| are relatively prime, it follows that [p(g)| = 1,i.e. d(g) =

4. Show that the only homomorphism Q — Q* is the trivial map.

Solution: Let ¢ : Q — Q* be a homomorphism. Suppose ¢(a) # 1 for some a € Q. Let
b = ¢(a). Since b € Q — {0, 1}, there exists a positive integer n such that the equation x™ = b
does not have a rational solution (let us take this for granted - to prove it one uses unique
factorization of integers as products of prime numbers). But we have

b=d(a) =dn- %) "D )

n
which is a contradiction as x = ¢ (1) is in Q and satisfies x™ = b.

5. (a) Let G be a group. We say a subgroup K < G is normal if for every k € Kand g € G,
the element gkg~' is in K. Let ¢ : G — H be a homomorphism. Show that the subgroup ker(¢)
of G is a normal subgroup. (You don’t have to rewrite the proof of the fact that the kernel is a
subgroup; just verify normality.)

(b) Is there a homomorphism with domain S;, whose kernel is {e, (12)}? (Justify your an-
swer.)

Solution: (a) Let k € ker(¢) and g € G. We have

blgkg ™) " d(9)pK)P(g) "E dlg)end(g™)
Thus gkg™' € ker(¢).

why why

b(9)(d(g)™" = en.

(b) By (a), it is enough to show that the subgroup K := {e, (12)} of S, is not normal. Take
= (13), k = (12) € K. We have

gkg™' = (13)(12)(13)7" = (13)(12)(13) = (23) ¢ K,
showing that K is not a normal subgroup of S;o.

6. Determine which of the following groups are isomorphic: Q, Z, R, R*, R, (under multi-
plication), C*, S, ug, W(?), D4, Z/8, U(16).
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You may take the following fact for granted: two cyclic groups of the same order are iso-
morphic. (We will prove this in the next lecture.)

Solution: Note that Z and Q are infinite and countable, while R, R*, R.,, C* are uncount-
able, Sz, pg, U(?) have order 6, and Dy, Z/8, U(16) have order 8. It follows that if two groups on
our list are isomorphic to each other, they both belong to one of the following families:

(i) Zand Q

(i) R, R*, R.y, and C*
(111) Sg,, We and U(g)
(iv) Dy, Z/8, and U(16).

(i) Z and Q are not isomorphic to one another since Z is cyclic but Q is not. (In fact, you can
prove that there is no nontrivial homomorphism Q — Z.)

(ii) R and R are indeed isomorphic; an isomorphism R — R. is given by the exponential
map x — e*. These are the only groups on the list that isomorphic to one another: C* has
infinitely many elements of finite order (all complex roots of unity), R* has two such elements
(£71), whereas R (and R-,) only have one element of finite order.

(iii) e are U(9) are cyclic of order 6, hence isomorphic. The group S; on the other hand is
not abelian is not isomorphic to either of pg or U(?) (which are abelian).

(iv) Dy is not abelian but Z/8 and U(16) are, so D3 is not isomorphic to any of the latter two
groups. Te group Z/8 is cyclic and U(16) is not, so Z/8 and U(16) are not isomorphic.

Thus to summarize, the only isomorphic groups among the given groups are R ~ R., and



