MAT301 Groups and Symmetry

Assignment 4

Solutions

1. (a) Let $\phi: \mathrm{G} \rightarrow \mathrm{H}$ be a homomorphism. Let $\mathrm{g} \in \mathrm{G}$. Show that $\phi(\langle\mathrm{g}\rangle)=\langle\phi(\mathrm{g})\rangle$ (i.e that the image of the subgroup generated by g under ϕ is the subgroup generated by $\phi(\mathrm{g})$).
(b) Conclude that the image of a cyclic group under a homomophism is cyclic (i.e. that if G is cyclic and $\phi: \mathrm{G} \rightarrow \mathrm{H}$ is a homomorphism, then $\phi(\mathrm{G})$ is cyclic).
(c) Let G and H be isomorphic groups. Show that G is cyclic if and only if H is cyclic.

Solution: (a) This follows from that for every n, we have $\phi\left(g^{n}\right)=\phi(g)^{n}$. Indeed, given any $g^{\prime} \in\langle g\rangle$, we have $g^{\prime}=g^{n}$ for some n, so that $\phi\left(g^{\prime}\right)=\phi\left(g^{n}\right)=\phi(g)^{n} \in\langle\phi(g)\rangle$, hence $\phi(\langle g\rangle) \subset\langle\phi(g)\rangle$. On the other hand, given $h \in\langle\phi(g)\rangle$, we have $h=\phi(g)^{n}$ for some n, so that $h=\phi\left(g^{n}\right) \in \phi(\langle g\rangle)$. Thus $\langle\phi(g)\rangle \subset \phi(\langle g\rangle)$.
(b) Let G be cyclic and $\phi: G \rightarrow H$ a homomorphism. If G is generated by g, by Part (a), $\operatorname{Im}(\phi)$ is generated by $\phi(\mathrm{g})$ and is cyclic.
(c) Let $\phi: \mathrm{G} \rightarrow \mathrm{H}$ be an isomorphism. In particular, ϕ is a surjective homomorphism, so that (by $(b))$ if G is cyclic, then so is $\operatorname{Im}(\phi)=H$.
2. (a) For any two groups G and H, we denote the set of all homomorphisms $G \rightarrow H$ by $\operatorname{Hom}(G, H)$. Show that for any group H, there is a bijective function

$$
\operatorname{Hom}(\mathbb{Z}, \mathrm{H}) \rightarrow \mathrm{H}
$$

(Suggestion: Define $\mathrm{F}: \operatorname{Hom}(\mathbb{Z}, \mathrm{H}) \rightarrow \mathrm{H}$ by $\mathrm{F}(\phi)=\phi(1)$. Thus F sends a homomorphism $\phi: \mathbb{Z} \rightarrow \mathrm{H}$ simply to $\phi(1) \in \mathrm{H}$. Show that F is a bijection. Injectivity of F is the statement that if ϕ and ψ are homomorphisms $\mathbb{Z} \rightarrow \mathrm{H}$ and $\phi(1)=\psi(1)$, then $\phi=\psi$ (i.e., that a homomorphism $\mathbb{Z} \rightarrow H$ is determined by its value at 1.) Surjectivity of F is the statement that for any $h \in H$, there is a homomorphism $\phi: \mathbb{Z} \rightarrow \mathrm{H}$ such that $\phi(1)=h$.)
(b) List all homomorphisms $\mathbb{Z} \rightarrow S_{3}$.

Solution: (a) Let F be the function defined in the suggestion. We show that F is bijective.

- Injectivity: Let $\phi, \psi \in \operatorname{Hom}(\mathbb{Z}, H$) (so ϕ and ψ are homomorphisms $\mathbb{Z} \rightarrow H$). Suppose $F(\phi)=F(\psi)$, which means $\phi(1)=\psi(1)$. Then for every integer n,

$$
\phi(n)=\phi(1)^{n}=\psi(1)^{n}=\psi(n)
$$

where in the first (resp. last) equality we used the fact that ϕ (resp. ψ) is a homomorphism, and in the middle equality we used the assumption that $\phi(1)=\psi(1)$. Thus $\phi=\psi$.

- Surjectivity:Let $h \in H$. Define $\phi: \mathbb{Z} \rightarrow H$ by $\phi(n)=h^{n}$. Then ϕ is a homomorphism,

$$
\phi(m+n)=h_{1}^{m+n}=h^{m} h^{n}=\phi(m) \phi(n)
$$

We have $F(\phi)=\phi(1)=h$.
(b) For each $\sigma \in S_{3}$, define $\phi_{\sigma}: \mathbb{Z} \rightarrow S_{3}$ by $\phi_{\sigma}(n)=\sigma^{n}$. The ϕ_{σ} are all the homomorphisms $\mathbb{Z} \rightarrow S_{3}$. More explicitly, homomorphisms $\mathbb{Z} \rightarrow S_{3}$ are the followings: 1) $n \mapsto e$ (the trivial homomorphism), 2) $n \mapsto(12)^{n}$, 3) $n \mapsto(23)^{n}$, 4) $n \mapsto(13)^{n}$, 5) $n \mapsto(123)^{n}$, and 6) $n \mapsto(132)^{n}$.
3. Let G and H be finite groups such that $|\mathrm{G}|$ and $|\mathrm{H}|$ are relatively prime. Show that the only homomorphism $G \rightarrow \mathrm{H}$ is the trivial map. In other words, show that if $\phi: \mathrm{G} \rightarrow \mathrm{H}$ is a homomorphism, then $\phi(\mathrm{g})=e$ for every $\mathrm{g} \in \mathrm{G}$. (Suggestion: Use Lagrange's theorem and the fact that $|\phi(\mathrm{g})||\mathrm{g}|$.

Solution: Let $\phi: \mathrm{G} \rightarrow \mathrm{H}$ be a homomorphism. Let $\mathrm{g} \in \mathrm{G}$. We need to show that $\phi(\mathrm{g})=e$. Since ϕ is a homomorphism and g has finite order, we have $|\phi(\mathrm{g})|\left||\mathrm{g}|\left(\right.\right.$ for $\phi(\mathrm{g})^{|\mathrm{g}|}=$ $\phi\left(\mathrm{g}^{|g|}\right)=\phi(e)=e$). By Lagrange's theorem (applied to the group G) we have $|\mathrm{g}|||\mathrm{G}|$, so that $|\phi(\mathrm{g})|||\mathrm{G}|$. On the other hand, Lagrange's theorem (this time applied to the group H) also implies $|\phi(\mathrm{g})|||\mathrm{H}|$. Since $| \mathrm{G} \mid$ and $|\mathrm{H}|$ are relatively prime, it follows that $|\phi(\mathrm{g})|=1$, i.e. $\phi(\mathrm{g})=e$.
4. Show that the only homomorphism $\mathbb{Q} \rightarrow \mathbb{Q}^{\times}$is the trivial map.

Solution: Let $\phi: \mathbb{Q} \rightarrow \mathbb{Q}^{\times}$be a homomorphism. Suppose $\phi(a) \neq 1$ for some $a \in \mathbb{Q}$. Let $b=\phi(a)$. Since $b \in \mathbb{Q}-\{0,1\}$, there exists a positive integer n such that the equation $x^{n}=b$ does not have a rational solution (let us take this for granted - to prove it one uses unique factorization of integers as products of prime numbers). But we have

$$
b=\phi(a)=\phi\left(n \cdot \frac{a}{n}\right) \stackrel{\text { why }}{=} \phi\left(\frac{a}{n}\right)^{n}
$$

which is a contradiction as $x=\phi\left(\frac{a}{n}\right)$ is in \mathbb{Q} and satisfies $x^{n}=b$.
5. (a) Let G be a group. We say a subgroup $K \leq G$ is normal if for every $k \in K$ and $g \in G$, the element gkg^{-1} is in K. Let $\phi: \mathrm{G} \rightarrow \mathrm{H}$ be a homomorphism. Show that the subgroup $\operatorname{ker}(\phi)$ of G is a normal subgroup. (You don't have to rewrite the proof of the fact that the kernel is a subgroup; just verify normality.)
(b) Is there a homomorphism with domain S_{10} whose kernel is $\{e,(12)\}$? (Justify your answer.)

Solution: (a) Let $k \in \operatorname{ker}(\phi)$ and $g \in G$. We have

$$
\phi\left(\mathrm{gkg}^{-1}\right) \stackrel{\text { why }}{=} \phi(\mathrm{g}) \phi(\mathrm{k}) \phi\left(\mathrm{g}^{-1}\right) \stackrel{\text { why }}{=} \phi(\mathrm{g}) e_{\mathrm{H}} \phi\left(\mathrm{~g}^{-1}\right) \stackrel{\text { why }}{=} \phi(\mathrm{g})(\phi(\mathrm{g}))^{-1}=e_{\mathrm{H}}
$$

Thus $\mathrm{gkg}^{-1} \in \operatorname{ker}(\phi)$.
(b) By (a), it is enough to show that the subgroup $K:=\{e,(12)\}$ of S_{10} is not normal. Take $g=(13), k=(12) \in K$. We have

$$
\mathrm{gkg}^{-1}=(13)(12)(13)^{-1}=(13)(12)(13)=(23) \notin \mathrm{K}
$$

showing that K is not a normal subgroup of S_{10}.
6. Determine which of the following groups are isomorphic: $\mathbb{Q}, \mathbb{Z}, \mathbb{R}, \mathbb{R}^{\times}, \mathbb{R}_{>0}$ (under multiplication), $\mathbb{C}^{\times}, S_{3}, \mu_{6}, U(9), D_{4}, \mathbb{Z} / 8, U(16)$.

You may take the following fact for granted: two cyclic groups of the same order are isomorphic. (We will prove this in the next lecture.)

Solution: Note that \mathbb{Z} and \mathbb{Q} are infinite and countable, while $\mathbb{R}, \mathbb{R}^{\times}, \mathbb{R}_{>0}, \mathbb{C}^{\times}$are uncountable, $S_{3}, \mu_{6}, \mathrm{U}(9)$ have order 6 , and $D_{4}, \mathbb{Z} / 8, \mathrm{U}(16)$ have order 8 . It follows that if two groups on our list are isomorphic to each other, they both belong to one of the following families:
(i) \mathbb{Z} and \mathbb{Q}
(ii) $\mathbb{R}, \mathbb{R}^{\times}, \mathbb{R}_{>0}$, and \mathbb{C}^{\times}
(iii) S_{3}, μ_{6} and $\mathrm{U}(9)$
(iv) $\mathrm{D}_{4}, \mathbb{Z} / 8$, and $\mathrm{U}(16)$.
(i) \mathbb{Z} and \mathbb{Q} are not isomorphic to one another since \mathbb{Z} is cyclic but \mathbb{Q} is not. (In fact, you can prove that there is no nontrivial homomorphism $\mathbb{Q} \rightarrow \mathbb{Z}$.)
(ii) \mathbb{R} and $\mathbb{R}_{>0}$ are indeed isomorphic; an isomorphism $\mathbb{R} \rightarrow \mathbb{R}_{>0}$ is given by the exponential $\operatorname{map} x \mapsto e^{x}$. These are the only groups on the list that isomorphic to one another: \mathbb{C}^{\times}has infinitely many elements of finite order (all complex roots of unity), \mathbb{R}^{\times}has two such elements (± 1), whereas \mathbb{R} (and $\mathbb{R}_{>0}$) only have one element of finite order.
(iii) μ_{6} are $U(9)$ are cyclic of order 6 , hence isomorphic. The group S_{3} on the other hand is not abelian is not isomorphic to either of μ_{6} or $\mathrm{U}(9)$ (which are abelian).
(iv) D_{4} is not abelian but $\mathbb{Z} / 8$ and $\mathrm{U}(16)$ are, so D_{3} is not isomorphic to any of the latter two groups. Te group $\mathbb{Z} / 8$ is cyclic and $U(16)$ is not, so $\mathbb{Z} / 8$ and $U(16)$ are not isomorphic.

Thus to summarize, the only isomorphic groups among the given groups are $\mathbb{R} \simeq \mathbb{R}_{>0}$ and $\mu_{6} \simeq \mathrm{U}(9)$.

