MAT301 Groups and Symmetry

Assignment 5

Due Monday Nov 26 at 11:59 pm (to be submitted on Crowdmark)

Please write your solutions neatly and clearly. Note that due to time limitations, only some of the questions will be graded.

1. Consider the following subset of S_{4} :

$$
H:=\{e,(12)(34),(13)(24),(14)(23)\} .
$$

(a) Show that H is a normal subgroup of S_{4}. To prove normality you may use the following fact without proof: For every $\sigma, \delta \in S_{n}$, the permutations δ and $\sigma \delta \sigma^{-1}$ have the same cycle type.
(b) Show that the distinct (left or right because H is normal) cosets of H are H , (123) H , $(132) \mathrm{H},(12) \mathrm{H},(13) \mathrm{H}$, and $(23) \mathrm{H}$.
(c) Fill in the blanks with one of $\mathrm{H},(123) \mathrm{H},(132) \mathrm{H},(12) \mathrm{H},(13) \mathrm{H}$, and (23)H. (The operations take place in the quotient group $\mathrm{S}_{4} / \mathrm{H}$.)
(i) $(143) \mathrm{H} \cdot(324) \mathrm{H}=\ldots \ldots$.
(ii) $(1234) \mathrm{H} \cdot(12) \mathrm{H}=$
(d) Show that $S_{4} / H \simeq S_{3}$ by defining an isomorphism $S_{3} \rightarrow S_{4} / H$.
2. Consider the subgroups $\mathrm{H}=\langle[4]\rangle$ and $\mathrm{K}=\langle[-4]\rangle$ of $\mathrm{U}(15)$.
(a) Find $|\mathrm{U}(15) / \mathrm{H}|$ and $|\mathrm{U}(15) / \mathrm{K}|$.
(b) Find the order of the element $[2] \mathrm{K}$ of $\mathrm{U}(15) / \mathrm{K}$.
(c) Is $\mathrm{U}(15) / \mathrm{K}$ cyclic?
(d) Find the order of every element of $\mathrm{U}(15) / \mathrm{H}$. Is $\mathrm{U}(15) / \mathrm{H}$ cyclic?
3. (a) Let G be an abelian group. Let H be the subset of G consisting of all the elements of finite order. By Problem 1(e) of Assignment 2, H is a subgroup of G (it is sometimes called the torsion subgroup of G). Show that the quotient group G/H has no nontrivial element of finite order (i.e. that the only element of finite order in G / H is the identity).
(b) How many elements of order 3 does the quotient group $\mathbb{C}^{\times} / \mu_{4}$ have? (Prove your claim.)
4. Let n be a positive integer and p be a prime number. Write $n=p^{c} m$, where $c \geq 0$ and m are integers and $p \nmid m$ (thus p^{c} is the highest power of p that divides n). Let G be an abelian group of order n. Let

$$
\mathrm{H}:=\left\{\mathrm{g} \in \mathrm{G}: \text { there is } \ell \geq 0 \text { such that } \mathrm{g}^{\mathrm{p}^{\ell}}=e\right\} .
$$

In other words, H consists of all the elements of G whose order is a power of p . Show that $|\mathrm{H}|=\mathrm{p}^{\mathrm{c}}$. (The subset H defined above is called the p-part of G.)
5. The goal of this question is to introduce the construction of direct product of two groups. Let G and H be any groups. Recall that the Cartesian product $\mathrm{G} \times \mathrm{H}$ is the set

$$
G \times H:=\{(g, h): g \in G \text { and } h \in H\} .
$$

We can use the binary operations on G and H to define a binary operation on $G \times H$: define

$$
(g, h) \cdot\left(g^{\prime}, h^{\prime}\right):=\left(g g^{\prime}, h h^{\prime}\right)
$$

(In other words, we multiply elements of $\mathrm{G} \times \mathrm{H}$ "component-wise".)
(a) Calculate

$$
((123),[3]) \cdot((12),[4])
$$

in $S_{4} \times \mathbb{Z} / 5$. (Remember the operation in $\mathbb{Z} / 5$ is addition.)
(b) Back to the general G and H, show that $G \times H$ with the operation defined above is a group with identity $\left(e_{G}, e_{\mathrm{H}}\right)$. (This group is called the direct product of G and H .)
(c) Find the order of the element $(g, h) \in G \times H$ in terms of the orders of g and h.
(d) Show that $\mathbb{Z} / \mathrm{m} \times \mathbb{Z} / n$ is cyclic if and only if $\operatorname{gcd}(m, n)=1$.
6. (a) Let G be an abelian group. Let H and K be subgroups of G with $H \cap K=\{e\}$. Show that the map

$$
\phi: \mathrm{H} \times \mathrm{K} \rightarrow \mathrm{G}
$$

defined by $\phi((h, k))=h k$ is an injective homomorphism. (The condition $H \cap K=\{e\}$ should come into play for injectivity. To prove that ϕ is a homomorphism you will use the abelian hypothesis.)
(b) Let G be a finite abelian group of order $m n$, where $\operatorname{gcd}(m, n)=1$. Let H and K be subgroups of G of orders respectively m and n. Show that $G \simeq H \times K$.
(c) Let G be an abelian group of order $p^{a} q^{b}$, where p and q are distinct prime numbers and $a, b \geq 0$ are integers. Show that there are abelian groups H and K of orders p^{a} and q^{b} such that $\mathrm{G} \simeq \mathrm{H} \times \mathrm{K}$. (Suggestion: Take H and K to be the p-part and q-part of G.)

Practice Problems: The following problems are for your practice. They are not to be handed in for grading. I suggest to do questions marked with * first.
1.* Find the flaw(s) in the following argument, which claims to prove that $10 \mid 24$.
"Define the homomorphism $\phi: S_{4} \rightarrow S_{4}$ by $\phi(\sigma)=\sigma^{2}$. Then the kernel of ϕ consists of the identity, permutations of cycle types 2,2 and 2,1,1. In S_{4}, there are 3 permutations of type 2,2, and there are 6 permutations of type 2,1,1. Thus $\operatorname{ker}(\phi)$ contains 10 elements. Since the kernel of a homomorphism is a subgroup, $\operatorname{ker}(\phi)$ is a subgroup of S_{4}. By Lagrange's theorem, $|\operatorname{ker}(\phi)|\left|\left|\mathrm{S}_{4}\right|\right.$, i.e. 10$| 24$."
2.* Let $\mathrm{H} \leq \mathrm{G}$. In class, by considering the equivalence relation \sim defined on G by $\mathrm{g} \sim \mathrm{g}^{\prime}$ if $g^{\prime-1} g \in \mathrm{H}$ we showed the following two statements:
(a) For any $g, g^{\prime} \in G$, either $g H=g^{\prime} H$ or $g H \cap g^{\prime} H=\emptyset$.
(b) For any $g, g^{\prime} \in G$, one has $g H=g^{\prime} H$ if and only $g^{\prime-1} g \in H$.

Prove these statements directly, without using the relation.
3.* Let G be a group and $\mathrm{H} \leq \mathrm{G}$.
(a) Show that H is normal if and only if $\mathrm{gH}=\mathrm{Hg}$ for every $\mathrm{g} \in \mathrm{G}$.
(b) Suppose $[\mathrm{G}: \mathrm{H}]=2$. Show that H is normal in G . (In words, prove that every subgroup of index 2 is normal.)
4. Give an example of groups $\mathrm{K} \leq \mathrm{H} \leq \mathrm{G}$ such that K is a normal subgroup of H and H is a normal subgroup of G, but K as a subgroup of G is not normal.
5. Let G and H be groups.
(a) Show that the map $\imath: G \rightarrow G \times H$ defined by $\iota(g)=\left(g, e_{H}\right)$ is an injective homomorphism. (This is called the embedding (or natural embedding) of G in $\mathrm{G} \times \mathrm{H}$. There is similarly a map $H \rightarrow G \times H$ defined by $h \mapsto\left(e_{G}, h\right)$, called the embedding of H in $\mathrm{G} \times \mathrm{H}$.)
(b) Show that the map $\pi: \mathrm{G} \times \mathrm{H} \rightarrow \mathrm{G}$ defined by $\pi((\mathrm{g}, \mathrm{h}))=\mathrm{g}$ is a surjective homomorphism. (This map is called projection to the first coordinate. We similarly have a homomorphism "projection to the second coordinate".)
6.* Let G and H be finite cyclic groups with $\operatorname{gcd}(|G|,|H|)=1$. Let $g \in G$ and $h \in H$. Show that the following two statements are equivalent.
(i) $\mathrm{G}=\langle\mathrm{g}\rangle$ and $\mathrm{H}=\langle\mathrm{h}\rangle$
(ii) $\mathrm{G} \times \mathrm{H}=\langle(\mathrm{g}, \mathrm{h})\rangle$
7. (a) Let $\operatorname{gcd}(m, n)=1$. Show that $\varphi(m n)=\varphi(m) \varphi(n)$. (Here φ is Euler's function. Suggestion: Is $\mathbb{Z} / \mathrm{m} \times \mathbb{Z} / \mathrm{n}$ cyclic? Use the previous problem to count the number of generators of $\mathbb{Z} / \mathrm{m} \times \mathbb{Z} / \mathrm{n}$.)
(b) Let p be a prime number and $a \geq 1$. Show that $\varphi\left(p^{a}\right)=p^{a}-p^{a-1}$. (Don't try to use group theory here.)
(c) Find $\varphi(900)$. (Suggestion: First write 900 as a product of powers of distinct primes.)
8. Let G and H be groups, $K \leq G$ and $L \leq H$. Show that $K \times L$ is a subgroup of $G \times H$, and that $\mathrm{K} \times \mathrm{L}$ is normal in $\mathrm{G} \times \mathrm{H}$ if and only if K and L are respectively normal in G and H .
9.* (universal property of a direct product) (a) Let G and H be groups. Let $\pi_{1}: \mathrm{G} \times \mathrm{H} \rightarrow \mathrm{G}$ and $\pi_{2}: G \times H \rightarrow H$ be the projection maps (defined respectively by $(g, h) \mapsto g$ and $\left.(g, h) \mapsto h\right)$. Let K be an arbitrary group. Let $\phi_{1}: \mathrm{K} \rightarrow \mathrm{G}$ and $\phi_{2}: \mathrm{K} \rightarrow \mathrm{H}$ be homomorphisms. Show that there exists a unique homomorphism $\psi: K \rightarrow G \times H$ such that $\pi_{i} \circ \psi=\phi_{i}$ for $i=1,2$. (Suggestion: Construct ψ. How about defining ψ to be " $\left(\phi_{1}, \phi_{2}\right)$ "?)

(b) Can you reformulate what you proved above in terms of the three sets $\operatorname{Hom}(\mathrm{K}, \mathrm{G})$, $\operatorname{Hom}(\mathrm{K}, \mathrm{H})$, and $\operatorname{Hom}(\mathrm{K}, \mathrm{G} \times \mathrm{H})$?
10.* (universal property of a direct "sum" ${ }^{\dagger}$) Let G, H and K be abelian groups. Let $\phi_{1}: G \rightarrow K$ and $\phi_{2}: \mathrm{H} \rightarrow \mathrm{K}$ be homomorphisms.
(a) Show that the function

$$
\mathrm{G} \times \mathrm{H} \rightarrow \mathrm{~K}
$$

which sends $(\mathrm{g}, \mathrm{h}) \mapsto \phi_{1}(\mathrm{~g}) \phi_{2}(\mathrm{~h})$ is a homomorphism. (Usually this map is denoted by $\phi_{1} \phi_{2}$, as you would expect.)
(b) Let t_{1} and ι_{2} be the natural embeddings $\mathrm{G} \rightarrow \mathrm{G} \times \mathrm{H}$ and $\mathrm{H} \rightarrow \mathrm{G} \times \mathrm{H}$ (defined by $\mathrm{g} \mapsto$ $\left(g, e_{H}\right)$ and $h \mapsto\left(e_{G}, h\right)$ respectively). Show that there exists a unique homomorphism $\psi: G \times H \rightarrow K$ such that $\psi \circ \iota_{1}=\phi_{1}$ and $\psi \circ \iota_{2}=\phi_{2}$.

(c) Give a bijection

$$
\operatorname{Hom}(\mathrm{G}, \mathrm{~K}) \times \operatorname{Hom}(\mathrm{H}, \mathrm{~K}) \rightarrow \operatorname{Hom}(\mathrm{G} \times \mathrm{H}, \mathrm{~K}) .
$$

11.* (a) true or false: Every quotient of a cyclic group is cyclic.
(b) true or false: Every quotient of an abelian group is abelian.
(c) true or false: The direct product $\mathrm{G} \times \mathrm{H}$ is abelian if and only if G and H are abelian.
(d) true or false: If the direct product $\mathrm{G} \times \mathrm{H}$ is cyclic, then G and H are cyclic.
12. Let G be a group with more than one element. Show that $\mathbb{Z} \times G$ is not cyclic.
13.* Find the Cayley table of the group $\mathrm{U}(13) / \mathrm{H}$, where $\mathrm{H}=\langle 8\rangle$. (First find the elements of $\mathrm{U}(13) / \mathrm{H}$ and then the table.)
14.* Show that the only element of \mathbb{R} / \mathbb{Q} that has finite order is the identity element.
15. Show that the subgroup of \mathbb{R} / \mathbb{Z} consisting of all the elements of finite order is \mathbb{Q} / \mathbb{Z}.
16.* Find all the elements of order 6 in $\mathbb{C}^{\times} / \mu_{4}$.
17. Let k and n be positive integers. How many elements of order k does $\mathbb{C}^{\times} / \mu_{n}$ have?
18.* Let H be a subgroup if index 2 in G. Let $g, g^{\prime} \in G$. Show that if g, g^{\prime} are both not in H, then $\mathrm{gg}^{\prime} \in \mathrm{H}$. (Suggestion: Remember every subgroup of index 2 is normal. Work with the quotient G/H.)
19. Let $\mathrm{K} \leq \mathrm{H} \leq \mathrm{G}$. Suppose $\mathrm{K} \unlhd \mathrm{G}$.
(a) true or false: K is a normal subgroup of H .
(b) true or false: H / K is a subgroup of G / K.

[^0]20.* (a) Let G be a group. Show that $Z(G) \unlhd G$. (Recall that $Z(G)$ is the centre of G. By definition, $Z(G)=\{g \in G: g x=x g$ for all $x \in G\}$.)
(b) Suppose G is a group such that $G / Z(G)$ is cyclic. Show that G is abelian.
(c) Let G be a non-abelian group of order pq , where p and q are prime numbers. Show that the centre of G is the trivial subgroup.
21.* Let H be a normal subgroup of G of finite index. Let $\mathrm{g} \in \mathrm{G}$ be an element of finite order such that $\operatorname{gcd}(|g|,[G: H])=1$. Show that $g \in H$. (Suggestion: Consider the quotient map $\mathrm{G} \rightarrow \mathrm{G} / \mathrm{H}$.)
22.* Let G be an abelian group of order $p q$, where p and q are distinct primes. Show that G is cyclic. Suggestion: Cauchy's theorem implies G contains an element g of order p and an element h of order q.)
23. Give an example of a group G that is not abelian, but $G / Z(G)$ is abelian. (Suggestion: Maybe D_{4} ?)
24. true or false: For any group G, the quotient $G /[G, G]$ is abelian. (Here $[G, G]$ is the commutator subgroup of G, which is normal - see Problems 8 and 9 of the practice list appended to Assignment 4.)
25. (a) Suppose G is a divisible group. Show that G has no proper subgroup of finite index. (For the definition of what it means for a group to be divisible, see Problem 19 of the practice list in Assignment 4. Suggestion: Let $\mathrm{H} \leq \mathrm{G}$ be a proper subgroup of finite index. Is G / H a finite divisible group?)
(b) Conclude that every proper subgroup of $\mathbb{Q}, \mathbb{R}^{\left(\mathbb{R}_{>0}\right.}$ and \mathbb{C}^{\times}has infinite index.
(c) Give an example of an infinite abelian group which has a proper subgroup of finite index.
26. Let G be a group with n elements. Show that G is isomorphic to a subgroup of S_{n}. (Subgroups of the symmetric groups are called permutation groups. By what you prove in this exercise, every finite group is isomorphic to a permutation group. Note: This question is on the material before quotients. Suggestion: Let $\operatorname{Bij}(G)$ denote set of all bijective functions $G \rightarrow G$. Then $\operatorname{Bij}(G)$ is a group under composition. Do you agree that $\operatorname{Bij}(G) \simeq S_{n}$? Try to define an injective homomorphism $G \rightarrow \operatorname{Bij}(\mathrm{G})$. The construction is something you have seen before.)
27.* Suppose H is the unique subgroup of G of order n. Show that H is normal in G. (Suggestion: Let $\mathrm{g} \in \mathrm{G}$. Is $\mathrm{gHg}^{-1}:=\left\{\mathrm{ghg}^{-1}: h \in \mathrm{H}\right\}$ a subgroup of G of order n ?)
28. Let $n \geq 2$. The goal of this question is to show that A_{n} is the only subgroup of index 2 of S_{n}. We shall do this in a few steps. Suppose $H \leq S_{n}$ and $\left[S_{n}: H\right]=2$. Note that it follows automatically that $\mathrm{H} \unlhd \mathrm{S}_{\mathrm{n}}$. The quotient group $\mathrm{S}_{\mathrm{n}} / \mathrm{H}$ has order 2 . Let us call its two elements e and g, where e is the identity. We have $g^{2}=e$.
(a) Let $\delta, \delta^{\prime} \in S_{n}$ be 2 -cycles. Show that there is $\sigma \in S_{n}$ such that $\delta^{\prime}=\sigma \delta \sigma^{-1}$. (One phrases this result by saying that every two 2-cycles are conjugates of one another.)
(b) Let $\pi: \mathrm{G} \rightarrow \mathrm{G} / \mathrm{H}$ be the quotient map. Show that if $\operatorname{ker}(\pi)$ contains one 2 -cycle, then it must contain every 2-cycle.
(c) Note that (b) implies either $\operatorname{ker}(\pi)$ contains every 2-cycle or it contains no 2-cycle. Argue that the former is impossible. (Hence $\pi(\delta)=\mathrm{g}$ for every 2 -cycle δ.)
(d) Show that H contains A_{n}.
(e) Conclude that $H=A_{n}$.
29.* In each case, determine if there is a homomorphism as described. If there is one, give an example. If there isn't, prove so. You may take the following theorem for granted: For $\mathrm{n}>1$ the group $U(n)$ is cyclic if and only if n is either 2,4 , a power of an odd prime number, or 2 times a power of an odd prime number.
(a) a surjective homomorphism $\mu_{16} \rightarrow \mathrm{U}(15)$
(b) a surjective homomorphism $\mathrm{U}(100) \rightarrow \mathbb{Z} / 15 \mathbb{Z}$
(c) a surjective homomorphism $\mathbb{C}^{\times} \rightarrow \mathbb{R}^{\times}$
(d) an injective homomorphism $\mathrm{U}(15) \rightarrow \mathbb{Z} / 40 \mathbb{Z}$
(e) an injective homomorphism $\mathrm{D}_{5} \rightarrow \mathrm{~S}_{4}$
(f) a surjective homomorphism $\mathrm{U}(15) \rightarrow \mathbb{Z} / 4 \mathbb{Z}$
30.* Let G be a group and $\phi: \mathrm{G} \rightarrow \mathrm{H}$ a surjective homomorphism with kernel K. Suppose there is a homomorphism $\rho: G \rightarrow K$ such that $\rho(k)=k$ for every $k \in K$. Show that $G \simeq K \times H$. 31.* Find the flaw(s) in the following argument which claims to prove that D_{7} is abelian.
"Let s be a reflection in D_{7} and $\mathrm{K}=\langle\mathrm{s}\rangle$. Then
$$
\left|\mathrm{D}_{7} / \mathrm{K}\right|=\left[\mathrm{D}_{7}: \mathrm{K}\right]=\frac{\left|\mathrm{D}_{7}\right|}{|\mathrm{K}|}=\frac{14}{2}=7 .
$$

Being a group of prime order, $\mathrm{D}_{7} / \mathrm{K}$ is cyclic.
Let r be a rotation of order 7 in D_{7} and $\mathrm{L}=\langle\mathrm{r}\rangle$. Then

$$
\left|\mathrm{D}_{7} / \mathrm{L}\right|=\left[\mathrm{D}_{7}: \mathrm{L}\right]=\frac{\left|\mathrm{D}_{7}\right|}{|\mathrm{L}|}=\frac{14}{7}=2 .
$$

Note that $\mathrm{D}_{7} / \mathrm{L}=\{\mathrm{L}, s \mathrm{~L}\}$. Being groups of order 2 , there is a unique isomorphism $\mathrm{D}_{7} / \mathrm{L} \rightarrow \mathrm{K}$ (namely, the map that sends identity to identity and sL to s). Let ρ be the composition

$$
\mathrm{D}_{7} \xrightarrow{\text { quotient }} \mathrm{D}_{7} / \mathrm{L} \longrightarrow \mathrm{~K},
$$

where the second map is the isomorphism just described. Then being a composition of homomorphisms, ρ is a homomorphism. Moreover, we have $\rho(\mathrm{k})$ for every $\mathrm{k} \in \mathrm{K}$ (i.e. for $\mathrm{k}=e, \mathrm{~s}$). It now follows from the previous exercise (applying to the quotient map $\pi: \mathrm{D}_{7} \rightarrow \mathrm{D}_{7} / \mathrm{K}$ and $\rho: \mathrm{D}_{7} \rightarrow \operatorname{ker}(\pi)=\mathrm{K}$) that $\mathrm{D}_{7} \simeq \mathrm{~K} \times\left(\mathrm{D}_{7} / \mathrm{K}\right)$. The groups K and $\mathrm{D}_{7} / \mathrm{K}$ are both cyclic and hence abelian, so that their direct product $\mathrm{K} \times\left(\mathrm{D}_{7} / \mathrm{K}\right)$ is also abelian. Thus D_{7} is abelian as well."
32. Let G be an abelian group and $\phi: G \rightarrow H$ a surjective homomorphism with kernel K. Suppose there is a homomorphism $\psi: \mathrm{H} \rightarrow \mathrm{G}$ such that $\phi \circ \psi: \mathrm{H} \rightarrow \mathrm{H}$ is the identity map on H. Show that $G \simeq K \times H$. (Suggestion: Try to define an isomorphism $K \times H \rightarrow G$. Where are you using the hypothesis that G is abelian?)
33. (universal property of a quotient) Let $K \unlhd G$ and $\pi: G \rightarrow G / K$ be the quotient map. Let $\phi: G \rightarrow \mathrm{H}$ be a homomorphism to an arbitrary group H . Suppose $\mathrm{K} \subset \operatorname{ker}(\phi)$. Show that there exists a unique homomorphism $\bar{\phi}: \mathrm{G} / \mathrm{K} \rightarrow \mathrm{H}$ such that $\phi=\bar{\phi} \circ \pi$. (In words, if $K \subset \operatorname{ker}(\phi)$, then ϕ "factors uniquely through $G / K^{\prime \prime}$. Note that the condition that $K \subset \operatorname{ker}(\phi)$ is crucial. Suggestion: Uniqueness is easy once existence is done. For existence, construct $\bar{\phi}$. The condition that $K \subset \operatorname{ker}(\phi)$ is required to guarantee that $\bar{\phi}$ is well-defined.)

34. Let G be a group, K and H be normal subgroups of G, and $K \leq H$. Construct a natural surjective homomorphism $\mathrm{G} / \mathrm{K} \rightarrow \mathrm{G} / \mathrm{H}$ with kernel H / K.

[^0]: ${ }^{\dagger}$ If the groups G and H are abelian, their direct product is also referred to as their direct sum.

