
MAT301 Groups and Symmetry

Assignment 6 Solutions

1. The two parts of this question are not related to one another.
(a) Let G be a group and H a normal subgroup of G. Suppose the index [G : H] is finite. Let

g ∈ G be an element of finite order such that gcd(|g|, [G : H]) = 1. Show that g ∈ H.
(b) Let G be a group and H ≤ G a subgroup of index 2. Show that if g, g ′ ∈ G − H, then

gg ′ ∈ H.

Solution: (a) Since H is a normal subgroup, we have the quotient group G/H. Let π : G →
G/H be the quotient map. Since g has finite order and π is a homomorphism, π(g) has finite
order and we have |π(g)|

∣∣ |g|. On the other hand, by Lagrange’s theorem, |π(g)|
∣∣ |G/H| = [G :

H]. Since gcd(|g|, [G : H]) = 1, it follows that |π(g)| = 1, i.e. gH = H (remember π(g) = gH and
the identity of G/H is H). Thus g ∈ H.

(b) Being a subgroup of index 2, H is normal in G. Let g, g ′ ∈ G−H. Then gH and g ′H are
not equal to H. Since H has only two cosets, it follows that gH = g ′H. In the quotient group
G/H (which is a group of order [G : H] = 2), we have (gg ′)H = gH · g ′H = (gH)2 = H (because
square of an element in a group of order 2 is identity). Thus gg ′ ∈ H.

2. In each part, show that the given two groups are isomorphic.

(a) GLn(Q)/SLn(Q) and Q×
(b) C/Z and C×
(c) R/Z and the unit circle S = {z ∈ C× : |z| = 1} (the latter under multiplication)
(d) C×/R>0 and the unit circle (defined above)
(e) C×/R× and the unit circle S

Solution: (a) Consider the determinant map det : GLn(Q) → Q×. Its kernel is SLn(Q)
and its image is Q×. Applying the first isomorphism theorem to det we get an isomorphism
GLn(Q)/SLn(Q) → Q× (given by A · SLn(Q) 7→ det(A)).

(b) Define φ : C → C× by φ(z) = e2πiz. Then φ is surjective and ker(φ) = Z. Applying the
first isomorphism theorem to φ we get an isomorphism C/Z → C× (what is the isomorphism
induced by φ?).

(c) Consider φ : R → C× defined by φ(x) = e2πix. We have ker(φ) = Z and Im(φ) = S

(why?). By the first isomorphism theorem we have R
/
Z ' S.

(d) Define φ : C× → C× by φ(z) =
z

|z|
. Note that φ is a homomorphism (why?), ker(φ) =

R>0 and Im(φ) = S. By the first isomorphism theorem C×
/
R>0 ' S.

(e) Define φ : C× → C× by φ(z) =
z

z
, where z is the complex conjugate of z. Note that φ

is a homomorphism (why?), ker(φ) = R× and Im(φ) = S. By the first isomorphism theorem
C×

/
R× ' S.

3. (a) Give a complete list of abelian groups of order 32, up to isomorphism. (Your list must
contain exactly one group from each isomorphism class. In other words, your list must be such
that every abelian group of order 32 is isomorphic to exactly one group from the list.)

(b) Find the order of [3] in U(64). (The computations for this should not be difficult at all.)
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(c) Show that U(64) is isomorphic to Z/16Z × Z/2Z.

Solution: (a)
(i) Z/32 (This is cyclic.)

(ii) Z/16× Z/2 (This has an element of order 16.)
(iii) Z/8× Z/4 (No element of order 16 and the equation 2x = 0 has 4 solutions.)
(iv) Z/8× Z/2× Z/2 (It has an element of order 8 and the equation 2x = 0 has 8 solution.)
(v) Z/4× Z/4× Z/2 (no element of order 8 and 8 solutions to 2x = 0)

(vi) Z/4× Z/2× Z/2× Z/2 (16 solutions to 2x = 0)
(vii) Z/2× Z/2× Z/2× Z/2× Z/2 (32 solutions to 2x = 0)

Since every finite abelian group is isomorphic to a direct product of cyclic groups, every abelian
group of order 32 is isomorphic to one of the seven groups above. Moreover, the seven groups
listed above are mutually non-isomorphic (each is distinguished from the other groups by the
property mentioned in front of it).

(b) Since |U(64)| = 32, by Lagrange, |[3]|
∣∣ 32. Since U(64) is not cyclic (see Assignment 3,

Question 2b), |[3]| 6= 32. Thus |[3]| is one of 2, 4, 8, or 16. We have [3]2 = [9], [3]4 = [9]2 = [81] =
[17], and [3]8 = [17]2 = [289] 6= [1]. Thus [3] must have order 16.

(c) The group U(64) is an abelian group of order 32, and as such, it is isomorphic to exactly
one of the groups we listed in Part (a). It is not cyclic and contains an element of order 16. The
only group on the list with those properties is Z/16× Z/2.

4. Throughout this question, we use the following notation: given integers a andn, we denote
the residue class of amod n by [a]n.

(a) Letm and n be positive integers. Show that we have a well-defined homomorphism

ψ : Z/mnZ → Z/mZ
given by ψ([a]mn) = [a]m.

(b) Prove the Chinese remainder theorem: If gcd(m,n) = 1, then the map

Φ : Z/mnZ → Z/mZ × Z/nZ
given by Φ([a]mn) = ([a]m, [a]n) is an isomorphism. (You may use the fact that when m and n
are relatively prime, a number is divisible by bothm and n if and only if it is divisible bymn.)

(c) true or false (no explanation necessary): Ifm andn are positive integers with gcd(m,n) =
1, then for every integers a and b, there exists an integer x which satisfies the system of equa-
tions

x ≡ a (mod m)

x ≡ b (mod n).

Moreover, x is unique modmn.

Solution: (a) For the map to be well-defined, we need to have that if [a]mn = [b]mn for
integers a and b, then [a]m = [b]m. For this note that if [a]mn = [b]mn, then mn

∣∣ a − b. Since
m

∣∣ mn, we then havem
∣∣ a− b, and hence [a]m = [b]m.

The following calculation shows that ψ is a homomorphism. Here a and b are arbitrary
integers.

ψ([a]mn + [b]mn) = ψ([a+ b]mn) = [a+ b]m = [a]m + [b]m = ψ([a]mn) +ψ([b]mn).

(b) The fact that Φ is a homomorphism is because each of its coordinate functions is a
homomorphism. More precisely, let ψ1 : Z/mn → Z/m be given by [a]mn 7→ [a]m and ψ2 :
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Z/mn→ Z/n given by [a]mn 7→ [a]n. Then ψ1 and ψ2 are homomorphisms by part (a), and we
have

Φ([a+ b]) = (ψ1([a+ b]), ψ2([a+ b])) = (ψ1([a]) +ψ1([b]), ψ2([a]) +ψ2([b]))

= (ψ1([a]), ψ2([a])) + (ψ1([b]), ψ2([b]))

= Φ([a]) +Φ([b]).

(All the residue classes in the above calculation are modmn.)
Since the domain and codomain ofΦ both havemn elements, to show thatΦ is bijective it

is enough to show that it is injective. Let [a]mn ∈ ker(Φ). This means [a]m = [0]m and [a]n = [0]n,
i.e. m

∣∣ a and n
∣∣ a. Sincem and n are relatively prime, it follows thatmn

∣∣ a, i.e. [a]mn = [0]mn.
This ker(Φ) is trivial.

(c) true (The statement is just paraphrasing bijectivity of the mapΦ of part (b).)

5. Let G1, G2 and H be abelian groups. Construct a bijective function

Hom(G1 ×G2 , H) −→ Hom(G1, H) × Hom(G2, H)

(and prove that your function is bijective).

Solution: Let ι1 : G1 → G1 ×G2 and ι2 : G2 → G1 ×G2 be the natural embeddings (given by
ι1(g1) = (g1, e) and ι2(g2) = (e, g2)). Then we define

F : Hom(G1 ×G2 , H) −→ Hom(G1, H) × Hom(G2, H)

by
φ 7→ (φ ◦ ι1, φ ◦ ι2).

(Note that given any homomorphism φ : G1 × G2 → H, the composition φ ◦ ι1 is a function
G1 → H, and being a composition of homomorphisms it is a homomorphism. Similarly φ ◦ ι2
is a homomorphism G2 → H.)

We claim that F is a bijection. First, let us check injectivity. Suppose φ,ψ ∈ Hom(G1 ×
G2 , H) and F(φ) = F(ψ). This means that φ ◦ ι1 = ψ ◦ ι1and φ ◦ ι2 = ψ ◦ ι2. Given an arbitrary
element (g1, g2) ∈ G1 ×G2, we have (g1, g2) = (g1, e)(e, g2) = ι1(g1)ι2(g2). Thus

φ(g1, g2) = φ(ι1(g1))φ(ι2(g2)) = ψ(ι1(g1))ψ(ι2(g2)) = ψ(g1, g2),

where in the first and last equality we used the fact that φ and ψ are homomorphisms, and in
the middle equality we used the assumption that φ ◦ ι1 = ψ ◦ ι1 and φ ◦ ι2 = ψ ◦ ι2. Thus φ = ψ.

We now show that F is surjective. Let

(φ1, φ2) ∈ Hom(G1, H) × Hom(G2, H).

We shall define a homomorphism φ : G1×G2 → H such that φ ◦ ι1 = φ1 and φ ◦ ι2 = φ2 (so that
F(φ) = (φ1, φ2)). For any (g1, g2) ∈ G1 ×G2 , set

φ(g1, g2) = φ1(g1)φ2(g2).

This defines a function G1 × G2 → H: both φ1(g1) and φ2(g2) belong to H, so we can multiply
them in H. We claim that φ is a homomorphism. Indeed,

(1) φ((g1, g2)(g
′
1, g

′
2)) = φ(g1g

′
1, g2g

′
2) = φ1(g1g

′
1)φ2(g2g

′
2) = φ1(g1)φ1(g

′
1)φ2(g2)φ2(g

′
2),

since φ1, φ2 are homomorphisms. On the other hand,

(2) φ(g1, g2)φ(g
′
1, g

′
2) = φ1(g1)φ2(g2)φ1(g

′
1)φ2(g

′
2).
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Comparing (1) and (2), in view of the fact that H is abelian, we conclude that φ is a homomor-
phism. Finally, note that

φ ◦ ι1(g1) = φ(g1, e) = φ1(g1)φ2(e) = φ1(g1),
so that φ ◦ ι1 = φ1. Similarly, one check that φ ◦ ι2 = φ2, completing the proof.

6. Give an example of an abelian group G and a subgroup H ≤ G such that G is not isomor-
phic to H× (G/H). Give two examples, one with G finite and one with G infinite.

Solution: finite: Take G = Z/4 and H = 〈[2]〉. Then H and G/H are both cyclic of order 2, so
that H× (G/H) is not cyclic (and hence not isomorphic to Z/4).

infinite: Take G = Z and H = 2Z. Then H × (G/H) is 2Z × (Z/2), which is not cyclic (as it
is infinite but has a nontrivial element of finite order, namely, (0, [1])).


