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1. [7] Let G be a group. Let g ∈ G be an element of order 10.

(a) [3] List the elements of 〈g〉. No explanation is necessary. (Every element of 〈g〉 must appear

exactly once on your list.)

(b) [4] Find the order of every element of 〈g〉.

Solution:

(a) e, g, g2, . . . , g9 (Here e is the identity element of the group.)

(b) Using the formula |gk| =
|g|

gcd(|g|, k)
we get g, g3, g7 and g9 have order 10, while g2, g4, g6 and g8

have order 5 and g5 has order 2. The identity e has order 1.
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2. [5] Let G be a group and H be a subgroup of G. Define a relation ∼ on G as follows: for any g, g ′ ∈ G,

set g ′ ∼ g if and only if g ′ = hgh−1 for some h ∈ H. Show that ∼ is an equivalence relation on G.

Solution:

(a) Reflexivity: Let g ∈ G. Let e be the identity element of G. We have g = ege−1. Since H is a

subgroup, it contains e. Thus g ∼ g.

(b) Symmetry: Let g, g ′ ∈ G and g ′ ∼ g. Then by the definition of the relation there exists h ∈ H

such that g ′ = hgh−1. We then have g = h−1g ′h = h−1g ′(h−1)−1. Note that h−1 ∈ H, as H is a

subgroup and h ∈ H. Thus g ∼ g ′.

(c) Transitivity: Let g, g ′, g ′′ ∈ G. Suppose g ′′ ∼ g ′ and g ′ ∼ g. Then there are h ′, h ∈ H such that

g ′′ = h ′g ′h ′−1 andg ′ = hgh−1. Substituting the latter in the former we get

g ′′ = h ′hgh−1h ′−1 = (h ′h)g(h ′h)−1.

This together with the fact that h ′h ∈ H (as h, h ′ ∈ H and H is a subgroup) implies that g ′′ ∼ g.
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3. [5] Suppose G is a finite group of even order. Show that G has an element of order 2.

Solution: Let A be the set consisting of the elements of G that are their own inverses, i.e. A = {g ∈

G : g = g−1}. Let B = G − A. Thus B consists of the elements of G that are not their own inverses. The

elements of B can be partitioned into pairs of inverse elements, i.e. pairs of the form {g, g−1}. Thus the

number of elements of B is even. Since |G| is even, it follows that the number of elements of A is even.

Since g−1 = g is equivalent to g2 = e, we can write A as the union of the two disjoint sets

{e} and {g ∈ G : |g| = 2}.

It follows that {g ∈ G : |g| = 2} has an odd number of elements. It particular, it is nonempty.
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4. [5] Let G be a finite group. Let H be a nonempty subset of G that is closed under the operation (i.e. if

g, h ∈ H, then gh ∈ H). Show that H is a subgroup of G.

Solution: We shall show that H contains the identity element and that it is closed under taking

inverses.

- Claim: H contains the identity element.

Proof: Since H is nonempty, there exists an element h ∈ H. Then there exists a positive

integer n such that hn = e (as every element of a finite group has finite order). Since h ∈ H and

H is closed under the operation, it follows that hn ∈ H. Thus e ∈ H.

- Claim: H is closed under taking inverses.

Proof: Let h ∈ H. If h = e then h−1 = h ∈ H. Otherwise, again as above, being an element

of a finite group, h has finite order. Thus there exists a positive integer n > 1 such that hn = e.

Then h−1 = hn−1. Since n − 1 ≥ 1, h ∈ H, and H is closed under the operation, we have

hn−1 ∈ H.
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5. [10] Let U be the subset of GL2(R) consisting of upper triangular matrices of determinant 1. In other

words, let

U =
{ a b

0 c

 : a, b, c ∈ R and ac = 1
}
.

(a) [5] Show that U is a subgroup of GL2(R). (Recall that GL2(R) is the group of invertible 2 × 2

matrices with real entries under matrix multiplication.)

(b) [5] Find the centre of the group U. (Recall that for any group G, the centre of G is by definition

the subset Z(G) := {h ∈ G : gh = hg for every g ∈ G}.)

Solution:

(a) The identity matrix is certainly in U. Let A =

a b

0 c

 ∈ U. Then, since det(A) = ac = 1, we

have

A−1 =

c −b

0 a

 ,
which belongs to U. Thus U is closed under taking inverses. Now suppose moreover that

B =

x y

0 z

 ∈ U. Then

AB =

a b

0 c

x y

0 z

 =

ax ∗

0 cz

 ,
which is upper triangular and moreover its determinant ( = product of diagonal entries) is

det(A)det(B) = 1. Thus AB ∈ U, so that U is closed under the operation.

(b) Let I be the 2 × 2 identity matrix. We claim that Z(U) = {I,−I}. First note that −I (and I) both

belong to U. Being scalar matrices, I and −I commute with every 2 × 2 matrix, in particular,

with every element of U. Thus {I,−I} ⊂ Z(U). (Continued on the next page.)
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Extra space for Question 5. Question 6 is on the next page.

Solution to Question 5(b), continued:

Now we show that Z(U) ⊂ {I,−I}. Indeed, let A ∈ Z(U). Let A =

a b

0 c

. Then A commutes with

every element of U, in particular with the matrix B =

2 0

0 1/2

. We have

AB =

2a 1/2 b

0 1/2c

 and BA =

2a 2b

0 1/2c

 .

Since AB = BA, we get b = 0, so that A =

a 0

0 c

. Now consider the matrix C =

1 1

0 1

. Note that

C ∈ U and hence we must have AC = CA. We have

AC =

a a

0 c

 and CA =

a c

0 c

 .
Comparing the (1,2) entries of the two matrices we get a = c. Now on recalling det(A) = ac = 1 we get

that a = c = 1 or a = c = −1, i.e. A = I or A = −I.
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6. [13] A part of the Cayley table of a group G of order 8 is shown below. The elements of G are denoted

by s, t, u, v,w, x, y and z. Answer the following questions (with justification).

s t u v w x y z

s

t w v

u z w

v w

w x y z

x

y y

z

(a) [2] What is the identity element of the group?

(b) [1] Is the group G abelian?

(c) [3] Show that |t| = |u| = |v| = 4. (Suggestion: Use |G| = 8 to limit the possibilities for the order

of the elements of G.)

(d) [2] Show that w2 = s.

(e) [3] Show that x2 = y2 = z2 = w.

(f) [2] Can G = D4? (Suggestion: How many elements of order 4 does D4 have?)

Solution:

(a) The table gives us ys = y. Multiplying by y−1 on the left we see that s is the identity of the

group.

(b) No, as ut = z and tu = v.
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Extra space for Question 6. Question 7 is on the next page.

Solution to Question 6 continued:

(c) Since |G| = 8, by Lagrange’s theorem the order of every element of G divides 8. Thus |t| is one

of the numbers 1,2,4,8. It is not 1 or 2 since t2 = w and w is not the identity element. It is not 8

as otherwise G = 〈t〉 and would be cyclic, and hence abelian (which is not). Thus |t| = 4. The

same argument applies to u and v.

(d) From the table w = t2. Thus w2 = t4, which is s by Parts (c) and (a).

(e) From the table x = wt and w = t2. Thus x = t3 and x2 = t6 = t2 = w (where in t6 = t2 we

used the fact that t4 is the identity, as |t| = 4). The arguments for y and z is similar (with every

occurrence of t replaced respectively by u and v).

(f) No it cannot. Indeed, D4 has only 2 elements of order 4 (namely rotations by π/2 and 3π/2),

whereas G has at least 3 (in fact, 6, as x, y, z also have order 4) such elements.
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7. [10] Let G be a group with the identity element denoted by e. Let H and K be finite subgroups of G

with |H| = m and |K| = n. Suppose that gcd(m,n) = 1.

(a) [5] Show that H ∩ K = {e}.

(b) [5] Suppose moreover that |G| = mn. Show that for every g ∈ G, there are unique h ∈ H and

k ∈ K such that g = hk.

Solution:

(a) Since the intersection of subgroups is a subgroup, H ∩ K is a subgroup of G. Being contained

in H and K, the intersection H ∩ K is then a subgroup of both H and K. By Lagrange’s theorem,

|H∩K| divides bothm = |H| and n = |K|. Sincem and n are relatively prime, we get |H∩K| = 1,

i.e. H ∩ K = {e}.

(b) We first prove a

Claim: If hk = h ′k ′ for some h, h ′ ∈ H and k, k ′ ∈ K, then h = h ′ and k = k ′.

Proof: Indeed, suppose hk = h ′k ′ for some h, h ′ ∈ H and k, k ′ ∈ K. Then h ′−1h = k ′k−1.

Since H is a subgroup and h, h ′ ∈ H, we have h ′−1h ∈ H. Similarly, using the fact that K is a

subgroup, we see k ′k−1 ∈ K. Thus the element h ′−1h = k ′k−1 belongs toH∩K. Combining with

Part (a) we get h ′−1h = k ′k−1 = e, which gives the desired conclusions.

By the above claim, the subset

A := {hk : h ∈ H and k ∈ K}

of G has mn elements. Since |G| = mn, we must have A = G. Thus every element of G can be

written in the form hk for some h ∈ H and k ∈ K. The uniqueness follows from the claim we

first proved.
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Extra space. What you write here will not be graded unless you write next to the relevant question(s)

“Continued on page 11”.
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Extra space. What you write here will not be graded unless you write next to the relevant question(s)

“Continued on page 12”.
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Extra space. What you write here will not be graded unless you write next to the relevant question(s)

“Continued on page 13”.
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Extra space. What you write here will not be graded unless you write next to the relevant question(s)

“Continued on page 14”.
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The end. (Total marks=55)


