1. [8, each part 2 marks] Consider the element $\sigma=(123)(246)(125)(1345)$ of S_{6}.
(a) Express σ as a product of disjoint cycles. No explanation necessary.

$$
\sigma=(254)(36)
$$

(b) Find $|\sigma|$.

$$
\begin{aligned}
&|\sigma|=\operatorname{lcm}(2,3)=6 \\
& 1,1 \\
& \text { lengths of cycles in cycle decomposition of } \sigma
\end{aligned}
$$

(c) Express σ as a product of transpositions. No explanation necessary.

$$
\sigma=(25)(54)(36)
$$

(d) Express σ^{-1} as a product of disjoint cycles. No explanation necessary.

$$
\sigma^{-1}=(254)^{-1}(36)^{-1}=(245)(36)
$$

2. [10, each part 2.5 marks] Determine if each statement below is true or false. Briefly justify your answers.
(a) Every two groups of order 17 are isomorphic.

True
17 is prime, so every group of order 17 is cyclic. cyclic gropes of the save order are isomorphic
(b) Every finite subgroup of \mathbb{C}^{\times}is cyclic.

True
The only finite subgroups of Γ^{x} are the μ_{n} and they are cyclic.
(c) The group $\mathbb{Z} / 12$ has six subgroups.
$\mathbb{Z} / 12$ is cyclic of order 12 , so for each divisor $d / 12$ it has a unique subgroup of order d.
12 has six divisors: $1,2,3,4,6,12$
(d) If G is a group of order 10 with a unique subgroup of order 2 and a unique subgroup of order 5 , then $G \simeq \mathbb{Z} / 10$.

True
Recall onat if a group G of order n has a unique subgroup of order d for every divisor $d I n$, then G is cyclic.

Page 3 of 14
3. [6] Let G be a group. Suppose that the map $\phi: G \rightarrow G$ given by $\phi(\mathrm{g})=\mathrm{g}^{-1}$ is a homomorphism. Show that G is abelian.

Let $g, h \in G$. Then

$$
\phi\left(g^{-1} h^{-1}\right)=\Phi\left(g^{-1}\right) \phi\left(h^{-1}\right)=\left(g^{-1}\right)^{-1}\left(h^{-1}\right)^{-1}=g h
$$ is a ham.

On the other hand,

$$
\begin{equation*}
\Phi\left(g^{-1} h^{-1}\right)=\left(g^{-1} h^{-1}\right)^{-1}=h \cdot g \tag{2}
\end{equation*}
$$

(1), (2) $\Rightarrow \quad g h=h g$

5D62CC63-2843-4266-BD6F-E1263D4D1153
term-test-2-14532
\#1 5 of 14
4. [8] Let G and H be finite groups. Suppose there exists a surjective homomorphism $\phi: G \rightarrow H$. Show that if H has an element of order n , then G also has an element of order n .
${ }_{\text {marks }}^{3}\left(\begin{array}{l}\text { let } h \in H \text { be an element of order } n \text {. } \\ \text { Since } \phi \text { is surjective, there is } g \in G \text { s.t. } \phi(g)=h\end{array}\right.$
1 (Since G is finite, we have $|g|<\infty$.
2 (Thus $|\Phi(g)|||g|$, i.e. $n||g|$.
2 (Let

$$
|g|=n \ell
$$

$$
\left|g^{\ell}\right|=\frac{|g|}{\operatorname{gcd}(|g|, l)}=\frac{n \ell}{\operatorname{gcd}(n l, l)}=\frac{n l}{\ell}=n .
$$

5. [8] Let T be the subgroup of $\mathrm{GL}_{2}(\mathbb{R})$ consisting of all the diagonal matrices in $\mathrm{GL}_{2}(\mathbb{R})$. Show that given any group H, there is no homomorphism

$$
\mathrm{GL}_{2}(\mathbb{R}) \rightarrow \mathrm{H}
$$

whose kernel is equal to T.
We know the kernel of any homomorphism is a normal subgroup of the domain. Thus to show there 4 mads is no homomorphism $G L_{2}(\mathbb{R}) \rightarrow H$ with kernel T it is enough to show T is not normal
in $G L_{2}(\mathbb{R})$
Take $A=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \in T$ and $B=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)$.
Then
4

$$
\begin{aligned}
B A B^{-1} & =\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)\left(\begin{array}{cc}
2 & -1 \\
1 & -1
\end{array}\right) \\
& =\left(\begin{array}{cc}
* & -2 \\
* & *
\end{array}\right) \notin T
\end{aligned}
$$

Thus T is not a normal subgroup of $G L_{2}(\mathbb{R})$.
$4448 \mathrm{E} 021-704 \mathrm{~B}-4790-\mathrm{B} 09 \mathrm{~F}-815 \mathrm{E} 844 \mathrm{~A} 329 \mathrm{C}$
term-test-2-14532
6. [12, each part 3 marks] Determine whether the two groups given in each part are isomorphic. Justify your answers.
(a) D_{4} and S_{3}

Not isomorphic, because $\left|D_{4}\right|=8$ and $\left|S_{3}\right|=6$.
(b) $\mathrm{U}(8)$ and μ_{4}

Not isomorphic, because $U(8)$ is not cyclic while μ_{4}^{μ} is.
(c) $\mathbb{Z} / 10$ and μ_{10}

Isomorphic, because $\mathbb{Z} / 10$ and μ_{10} are doth cyclic of order 10 .
(d) S_{4} and D_{12}

Not isomorphic, because D_{12} has an element of order 12 (e.g. rotation by $\frac{2 \pi}{12}$), but S_{4} does not. (possible cycle types

$$
\begin{aligned}
& 4 \leftarrow \text { Elements of this type pagaifiri4 order } 4 \\
& 3,1 \leftarrow \\
& 2,2 \leftarrow \\
& 2,1,1 \leftarrow \\
& 1,1,1,1 \leftarrow
\end{aligned}
$$

7. [8] Find the number of homomorphisms $\mu_{4} \rightarrow A_{7}$. Explain.

S Since μ_{4} is cyclic generated by $\zeta:=e^{2 \pi i / 4}$, any homomorphism $\varnothing: \mu_{4} \rightarrow A_{7}$ is determined by $\phi(\zeta)$. Moreover; $\phi(\xi)$ an take value $\sigma \in A_{7}$ if and only of $\sigma^{4}=e$. Indeed, $f \phi(\xi)=\sigma$, then $\sigma^{4}=\phi\left(\xi^{4}\right)=\phi(1)=e$, and conversely, given arbitrary $\sigma \in A_{7}$ s.t. $\sigma^{4}=e$, then the map $\zeta^{n} \stackrel{\phi}{\longrightarrow} \sigma^{n}$ is well-definied and is a homomorphism that sends $\zeta \mapsto \sigma$. (Argument for why this is well-defined: if $\zeta^{n}=\zeta^{m}$, then $4 / \mathrm{n-m}$, which combined with $\sigma^{4}=e$ gives $\quad \sigma^{n}=\sigma^{m}$.)
Thus

$$
\begin{aligned}
\left|\operatorname{Hom}\left(\mu_{4}, A_{7}\right)\right| & =\left|\left\{\sigma \in A_{7}: \sigma^{4}=e\right\}\right| \\
& =\left|\left\{\sigma \in A_{7}:|\sigma| \in\{1,2,4\}\right\}\right|
\end{aligned}
$$

Here Cycle types in S_{7} that give elements of order 4
to the 4 4 marks $4,2,1$ and $4,1,1,1$. Elements of the former type are in A_{7} while those of the latter type are not. Cycle types in S_{7} giving elements of order 2 are $2,2,2,1$, type page 8 of $142,2,1,1,1$, and type $2,1,1,1,1,1$ Out of these only type $2,2,1,1,1$ gives even permutations

Extra space. What you write here will not be graded unless you write next to the relevant questions) "Continued on page 9 ".

$$
\begin{aligned}
\overrightarrow{\left|\operatorname{Hom}\left(\mu_{4}, A_{7}\right)\right|} & =\text { number of elements of type } 4,2,1 \text { in } S_{7} \\
& + \\
& +1 \quad \text { (for identity element) } \\
& =\binom{7}{4} 3!\binom{3}{2}+\binom{7}{2}\binom{5}{2} \cdot \frac{1}{2}+1 \\
& =\frac{7!}{4!3!} \cdot 3!\cdot 3+21 \cdot 10 \cdot \frac{1}{2}+1 \\
& =630 \\
& =736
\end{aligned}
$$

