## MAT301 Groups and Symmetry

## Tutorial Activity: Symmetries of an Equilateral Triangle

 Sep 12 and Sep 13

Let $S$ be the set of all symmetries of the equilateral triangle above. Let $\rho_{1}$ and $\rho_{2}$ be respectively (counter-clockwise) rotations around O by $\frac{2 \pi}{3}$ and $\frac{4 \pi}{3}$. Denote the reflections about $\ell_{1}, \ell_{2}, \ell_{3}$ by $r_{1}, r_{2}, r_{3}$ respectively. Let $e$ be the identity symmetry. We have

$$
S=\left\{e, \rho_{1}, \rho_{2}, r_{1}, r_{2}, r_{3}\right\}
$$

Complete the Cayley table of $S$ under composition of functions.

| $o$ | $e$ | $\rho_{1}$ | $\rho_{2}$ | $r_{1}$ | $r_{2}$ | $r_{3}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $e$ |  |  |  |  |  |  |
| $\rho_{1}$ |  |  |  |  |  |  |
| $\rho_{2}$ |  |  |  |  |  |  |
| $r_{1}$ |  |  |  |  |  |  |
| $r_{2}$ |  |  |  |  |  |  |
| $r_{3}$ |  |  |  |  |  |  |

Some facts: The following facts about composition of symmetries can speed up your calculations:
(1) Composition of two rotations around O is a rotation around O . More precisely, composition of a rotation by $\theta$ around $O$ followed by a rotation by $\theta^{\prime}$ around $O$ is a rotation by $\theta+\theta^{\prime}$ around $O$.
(2) Let $\ell$ be a line passing through O . Composition of a reflection about $\ell$ with a rotation around O is a reflection.
(3) Let $\ell$ and $\ell^{\prime}$ be two intersecting lines. Composition of reflections about $\ell$ and $\ell^{\prime}$ is a rotation.
(4) Let $\ell$ and $\ell^{\prime}$ be two parallel lines. Composition of reflections about $\ell$ and $\ell^{\prime}$ is a translation. (This fact won't be used in calculating Cayley tables of symmetries of bounded plane figures.)

## Questions:

(1) Is the binary operation $\circ$ on $S$ commutative?
(2) What interesting features do you observe in the Cayley table? (For example, does every element of $S$ appear in every row?)

