
MAT247 Algebra II

Assignment 1

Solutions

1. (a) Let A =

(
0 1
1 1

)
. Find the characteristic polynomial, eigenvalues, and a basis for each

(nonzero) eigenspace of A. (Here take F = R.)
(b) Let LA : R2 → R2 be the map given by LA(x) = Ax. Give a basis β of R2 such that [LA]β

is diagonal. No explanation is necessary.
(c) Let x = (a b)t (where t denotes the transpose). Find a formula for Anx.
(d) Let (an) be the Fibonacci sequence, defined by a1 = 1, a2 = 2, and an = an−1 + an−2 for

n ≥ 3. Find a non-recursive formula for an. (Suggestion: For n ≥ 1, set xn = (an an+1)
t. Then

xn = Axn−1.)

Solution: (a) One easily calculates pA(t) = det(A− tI) = t2− t−1. It has two real roots, and
hence two eigenvalues, λ± = (1 ±

√
5)/2 (this means λ+ = (1 +

√
5)/2 and λ− = (1 −

√
5)/2).

Denote the eigenspaces of λ± respectively by E±. Then {v±} with v± =

(
1
λ±

)
is a basis for

E± = N

(
−λ± 1
1 1− λ±

)
.

(b) Let β = {v+, v−}. Then [LA]β =

(
λ+ 0
0 λ−

)
.

(c) Let P = (v+ v−) (i.e. the first column of P is v+ and its second column is v−). Let γ be the
standard basis of R2. Then [I]γβ = P (with β as in (b) and I the identity map on R2), and by the
change of basis formula

A = [LA]γ = [I]γβ[LA]β[I]
β
γ = P[LA]βP

−1,

so that for any integer n,

An = (P[LA]βP
−1)n

why
= P([LA]β)

nP−1 =
1

λ− − λ+

(
1 1
λ+ λ−

)(
λn+ 0
0 λn−

)(
λ− −1
−λ+ 1

)
.

We leave it to the reader to simplify this and write An(a b)t.
(d) Let xn be as in the suggestion. Then from the definition of the sequence (an) one sees

that xn = Axn−1 for each n. Using this successively we see that

xn = Axn−1 = A
2xn−2 = · · · = An−1x1.

Substituting An−1 from part (c) and x1 =
(
1
2

)
after simplification we get

xn =

(
λn−1
+ (λ−−2)−λn−1

− (λ+−2)

λ−−λ+

∗

)
,

so that (comparing the first entries)

an =
λn−1+ (λ− − 2) − λn−1− (λ+ − 2)

λ− − λ+
.
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REMARK. (1) The expression above can be simplified to

(1) an =
λn+1+ − λn+1−√

5
.

To get this nicer expression directly, add the two terms a−1 = 0 and a0 = 1 to the
sequence. Then setting xn = (an an+1)

t for n ≥ −1, we have xn = An+1x−1. The above
procedure will directly result in Eq. (1).

(2) Using the formula we found for an, since |λ−| < 1, we easily see an+1

an
→ λ+ = (1+

√
5)/2.

The number (1+
√
5)/2 is called the golden ratio, which has a long and rich history. You

should read about it on Wikipedia.

2. Let V be a finite-dimensional vector space over a field F of characteristic 6= 2. Let T : V → V
be a linear operator satisfying T 2 = I (where T 2 means the composition T ◦ T and I is the iden-
tity map on V). Show that T is diagonalizable. (Suggestion: Show that V = E1 ⊕ E−1, where
Eλ = ker(T − λI) is the eigenspace for λ.)

Solution: Following the suggestion we will show that we have a decomposition V = E1 ⊕
E−1. This will prove the result, as if β± is a basis of E±1, then β+ ∪ β+ will be a basis of V which
consists of eigenvectors of T .

To show that V = E1⊕E−1, we need to show that (i) V = E1+E−1, and (ii) E1 ∩E−1 = 0. For
(i), given v ∈ V , since char(F) 6= 2, we can write v as v = v+ + v−, where

v+ =
v+ T(v)

2
, v− =

v− T(v)

2
.

Using the fact that T 2 = I one easily check that v+ ∈ E1 and v− ∈ E−1. For (ii), let v ∈ E1 ∩ E−1.
Then T(v) = v (as v ∈ E1) and T(v) = −v (as v ∈ E−1). Thus v = −v, or in other words 2v = 0.
Since 2 6= 0 is our field, this implies v = 0.

3. Let F be a field and A ∈ Mn×n(F). Show that A is diagonalizable over F (which by defini-
tion, means that the map LA : Fn → Fn given by v → Av is diagonalizable) if and only if there
exists a matrix Q ∈Mn×n(F) such that Q−1AQ is diagonal.

Solution: Throughout the solution LA : Fn → Fn is the map left multiplication by A.
Suppose A is diagonalizable over F. Then there exists a basis β = {v1, . . . , vn} of Fn the

elements of which are eigenvectors of A. Then the matrix [LA]β is diagonal (why?). Let Q ∈
Mn×n(F) be the matrix whose j-th column is vj. Then the change of basis formula implies
Q−1AQ = [LA]β (why?).

Conversely, suppose there exists a matrix Q ∈ Mn×n(F) such that Q−1AQ is diagonal. Let
vj be the j-th column of Q. Then β = {v1, . . . , vn} is a basis of Fn (why?). By the change of basis
formula [LA]β = Q−1AQ. In particular, [LA]β is diagonal, hence LA is diagonalizable, i.e. A is
diagonalizable over F.

4. (a) Let V be a vector space over C. Then V can also be considered as a vector space over R.
Show that if {v1, . . . , vn} is a basis of V over C, then {v1, . . . , vn, iv1, . . . , ivn} is a basis of V over
R. (In particular, if V has dimension n as a complex vector space, then it has dimension 2n as a
real vector space.)

(b) Let V be an n-dimensional vector space over C and T : V → V a linear operator. Let f(t)
be the characteristic polynomial of T ; thus f(t) is a polynomial of degree n with coefficients in
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C. Let g(t) be the characteristic polynomial of T , considered as a linear operator on the under-
lying real vector space. Thus g(t) is a polynomial of degree 2n with real coefficients (by (a)).
Prove that g(t) = f(t)f(t), where bar denotes complex conjugation. (The complex conjugate of
a polynomial is the polynomial obtained by taking the complex conjugates of the coefficients.
That is, if f(t) =

∑
art

r, then f(t) :=
∑
art

r.)

Solution: (a) Let γ = {v1, . . . , vn, iv1, . . . , ivn}. We first show that γ spans V over R. Let v ∈ V .
Since β spans V over C, there exist a1, . . . , an ∈ C such that v =

∑
j

ajvj. Writing aj = bj + icj

with bj, cj ∈ R, we have v =
∑
j

bjvj +
∑
j

cj(ivj), so that v is in the span of γ.

Now we show γ is linearly independent over R. Suppose bj, cj (1 ≤ j ≤ n) are real numbers
such that

∑
j

bjvj +
∑
j

cj(ivj) = 0. Then this can be rewritten as
∑
j

(bj + icj)vj = 0. The linear

independence of the vj over C implies that bj + icj = 0 for all j, which in turn implies that
bj = cj = 0 for all j.

(b) Let β = {v1, . . . , vn} be a basis of V over C. Denote the matrix of T with respect to β by
A; it is an element of Mn×n(C). Write A = B+ iC with B,C ∈Mn×n(R). (Denoting the k` entry
of a matrixM byMk` we have Ak` = Bk` + iCk`.)

Let γ = {v1, . . . , vn, iv1, . . . , ivn}. By (a), γ is a basis of V over R. We find the matrix of T
(considered as a real linear transformation) with respect to γ. For ` ≤ n, we have

T(v`) =
∑
k

Ak`vk =
∑
k

Bk`vk +
∑
k

Ck`(ivk)

and
T(iv`)

C-linearity of T
= iT(v`) =

∑
k

iAk`vk =
∑
k

(−Ck`)vk +
∑
k

Bk`(ivk).

Thus

[T ]γ =

(
B −C
C B

)
(this is an element ofM2n×2n(R)). The characteristic polynomial of T as a real operator is thus

g(t) = det([T ]γ − tI) = det
(
B− tI −C
C B− tI

)
.

(With abuse of notation we are using the same notation for the n × n and 2n × 2n identity
matrices, but this should not lead to any confusion.) The matrix [T ]γ−tI is a matrix with entries
in the polynomial ring R[t] (or the function field R(t)). We can “extend the scalars” and think
of [T ]γ− tI as a matrix with entries in C[t] (or if you prefer, C(t)). The determinant det([T ]γ− tI)
is the same no matter if the matrix [T ]γ − tI is regarded as a matrix with entries in R[t] or C[t].
Recall that adding a scalar multiple of a row (resp. column) to another row (resp. column) does
not change the determinant. By our previous observation, we may use scalars in C for this (in
fact, C(t) if we wish). Adding i times rows n+ 1, . . . , 2n respectively to rows 1, . . . , n and then
adding −i times columns 1, . . . , n to columns n+ 1, . . . , 2n, we have

g(t) = det
(
B− tI −C
C B− tI

)
= det

(
B+ iC− tI −C+ Bi− tiI

C B− tI

)
= det

(
B+ iC− tI 0

C B− Ci− tI

)
.

Denoting by A the matrix obtained by taking the complex conjugates of the entries of A (i.e.
A = B− Ci)), we thus have

g(t)
why
= det(B+ iC− tI)det(B− Ci− tI) = det(A− tI)det(A− tI)

See the remark below
= f(t)f(t),
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as desired.

REMARK. Let A ∈Mn×n(C). Then we have the following relation between the characteris-
tic polynomials pA(t) and pA(t) of A and A:

pA(t) = pA(t)

(where as in the problem the complex conjugate of a polynomial is obtained by taking complex
conjugates of the coefficients). Here is one way to see this: Let ρ : C[t] → C[t] be the map
given by ρ(f(t)) = f(t). Then a straightforward computation using the facts z+w = z+w and
zw = zz for z,w ∈ C shows that ρ(f(t)+g(t)) = ρ(f(t))+ρ(g(t)) and ρ(f(t)g(t)) = ρ(f(t))ρ(g(t))
(that is, ρ is a ring homomorphism). For simplicity of notation, let B = A− tI. Then

fA(t) =
∑
σ∈Sn

sgn(σ)B1σ(1) . . . Bnσ(n).

Using the fact that ρ is a ring homomorphism, we get

fA(t) = ρ(fA(t)) =
∑
σ∈Sn

sgn(σ)ρ(B1σ(1)) . . . ρ(Bnσ(n)).

The expression on the right is just pA(t).

5. Let F be a field and V a finite-dimensional vector space over F. Let V∨ denote the dual space
of V (i.e. V∨ is the set of all linear maps V → F, with addition and scalar multiplication defined
as follows: given f, g ∈ V∨ and c ∈ F, the maps f + g : V → F and cf : V → F are given by
(f + g)(v) = f(v) + g(v) and (cf)(v) = c · f(v)). Let T : V → V be a linear operator. Then given
any f ∈ V∨, being a composition of linear transformations, f ◦ T : V → F is also linear. Let T t
(called the transpose or the dual of T ) be the map V∨ → V∨ defined by T t(f) = f ◦ T . You can
check that T t is indeed linear (but you don’t have to include the argument in your solution).
Show that the characteristic polynomials of T and T t are equal. (Suggestion: Let β be a basis of
V . Let γ be the basis of V∨ dual to β. Try to relate [T ]β and [T t]γ.)

Solution: Let β be a basis of V and γ be the basis of V∨ dual to β. We will show that
[T∨]γ = ([T ]β)

t. This will prove the result, as then the two matrices [T∨]γ − tI and [T ]β − tI (with
entries in F[t]) are transposes of one another, and hence have the same determinant.

Let β = {v1, . . . , vn}. Then (by definition) γ = {v1
∨, . . . , vn

∨}, where vi∨ : V → F is the linear
map satisfying

vi
∨(vj) =

{
1 if j = i
0 if j 6= i.

Let [T ]β = (Aij) and [T∨]γ = (Bij). The goal is to show Bij = Aji. We have

T∨(vj
∨) =

∑
k

Bkjvk
∨.

Evaluating both sides at vi , in view of T∨(vj
∨) = vj

∨ ◦ T and the definition of the vk∨, we get

vj
∨(T(vi)) = Bij

(as vk∨(vi) = 0 for k 6= i). On the other hand, we have

vj
∨(T(vi)) = vj

∨(
∑
k

Akivk) = Aji.


