MAT247 Algebra II

Assignment 1

Solutions

1. (a) Let $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$. Find the characteristic polynomial, eigenvalues, and a basis for each (nonzero) eigenspace of A. (Here take $F=\mathbb{R}$.)
(b) Let $L_{A}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the map given by $L_{A}(x)=A x$. Give a basis β of \mathbb{R}^{2} such that $\left[L_{A}\right]_{\beta}$ is diagonal. No explanation is necessary.
(c) Let $x=(a b)^{t}$ (where t denotes the transpose). Find a formula for $A^{n} x$.
(d) Let $\left(a_{n}\right)$ be the Fibonacci sequence, defined by $a_{1}=1, a_{2}=2$, and $a_{n}=a_{n-1}+a_{n-2}$ for $n \geq 3$. Find a non-recursive formula for a_{n}. (Suggestion: For $n \geq 1$, set $x_{n}=\left(a_{n} a_{n+1}\right)^{t}$. Then $x_{n}=A x_{n-1}$.)

Solution: (a) One easily calculates $p_{A}(t)=\operatorname{det}(A-t I)=t^{2}-t-1$. It has two real roots, and hence two eigenvalues, $\lambda_{ \pm}=(1 \pm \sqrt{5}) / 2$ (this means $\lambda_{+}=(1+\sqrt{5}) / 2$ and $\left.\lambda_{-}=(1-\sqrt{5}) / 2\right)$. Denote the eigenspaces of $\lambda_{ \pm}$respectively by $E_{ \pm}$. Then $\left\{v_{ \pm}\right\}$with $v_{ \pm}=\binom{1}{\lambda_{ \pm}}$is a basis for

$$
E_{ \pm}=N\left(\begin{array}{cc}
-\lambda_{ \pm} & 1 \\
1 & 1-\lambda_{ \pm}
\end{array}\right)
$$

(b) Let $\beta=\left\{v_{+}, \nu_{-}\right\}$. Then $\left[L_{\alpha}\right]_{\beta}=\left(\begin{array}{cc}\lambda_{+} & 0 \\ 0 & \lambda_{-}\end{array}\right)$.
(c) Let $\mathrm{P}=\left(\nu_{+} v_{-}\right)$(i.e. the first column of P is ν_{+}and its second column is $\left.v_{-}\right)$. Let γ be the standard basis of \mathbb{R}^{2}. Then $[I]_{\beta}^{\gamma}=P$ (with β as in (b) and I the identity map on \mathbb{R}^{2}), and by the change of basis formula

$$
A=\left[\mathrm{L}_{\mathcal{A}}\right]_{\gamma}=[\mathrm{I}]_{\beta}^{\gamma}\left[\mathrm{L}_{\mathcal{A}}\right]_{\beta}[\mathrm{I}]_{\gamma}^{\beta}=\mathrm{P}\left[\mathrm{~L}_{\mathcal{A}}\right]_{\beta} \mathrm{P}^{-1}
$$

so that for any integer n,

$$
A^{n}=\left(P\left[L_{A}\right]_{\beta} P^{-1}\right)^{n} \stackrel{\text { why }}{=} P\left(\left[L_{A}\right]_{\beta}\right)^{n} \mathrm{P}^{-1}=\frac{1}{\lambda_{-}-\lambda_{+}}\left(\begin{array}{cc}
1 & 1 \\
\lambda_{+} & \lambda_{-}
\end{array}\right)\left(\begin{array}{cc}
\lambda_{+}^{n} & 0 \\
0 & \lambda_{-}^{n}
\end{array}\right)\left(\begin{array}{cc}
\lambda_{-} & -1 \\
-\lambda_{+} & 1
\end{array}\right)
$$

We leave it to the reader to simplify this and write $A^{n}(a b)^{t}$.
(d) Let x_{n} be as in the suggestion. Then from the definition of the sequence (a_{n}) one sees that $x_{n}=A x_{n-1}$ for each n. Using this successively we see that

$$
x_{n}=A x_{n-1}=A^{2} x_{n-2}=\cdots=A^{n-1} x_{1}
$$

Substituting A^{n-1} from part (c) and $x_{1}=\binom{1}{2}$ after simplification we get

$$
x_{n}=\binom{\frac{\lambda_{+}^{n-1}\left(\lambda_{-}-2\right)-\lambda_{-}^{n-1}\left(\lambda_{+}-2\right)}{\lambda_{-} \lambda_{+}}}{*},
$$

so that (comparing the first entries)

$$
a_{n}=\frac{\lambda_{+}^{n-1}\left(\lambda_{-}-2\right)-\lambda_{-}^{n-1}\left(\lambda_{+}-2\right)}{\lambda_{-}-\lambda_{+}}
$$

REMARK. (1) The expression above can be simplified to

$$
\begin{equation*}
a_{n}=\frac{\lambda_{+}^{n+1}-\lambda_{-}^{n+1}}{\sqrt{5}} \tag{1}
\end{equation*}
$$

To get this nicer expression directly, add the two terms $a_{-1}=0$ and $a_{0}=1$ to the sequence. Then setting $x_{n}=\left(a_{n} a_{n+1}\right)^{t}$ for $n \geq-1$, we have $x_{n}=A^{n+1} x_{-1}$. The above procedure will directly result in Eq. (1).
(2) Using the formula we found for a_{n}, since $\left|\lambda_{-}\right|<1$, we easily see $\frac{a_{n+1}}{a_{n}} \rightarrow \lambda_{+}=(1+\sqrt{5}) / 2$. The number $(1+\sqrt{5}) / 2$ is called the golden ratio, which has a long and rich history. You should read about it on Wikipedia.
2. Let V be a finite-dimensional vector space over a field F of characteristic $\neq 2$. Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ be a linear operator satisfying $T^{2}=I$ (where T^{2} means the composition $T \circ T$ and I is the identity map on V). Show that T is diagonalizable. (Suggestion: Show that $V=E_{1} \oplus E_{-1}$, where $E_{\lambda}=\operatorname{ker}(T-\lambda I)$ is the eigenspace for λ.)

Solution: Following the suggestion we will show that we have a decomposition $\mathrm{V}=\mathrm{E}_{1} \oplus$ E_{-1}. This will prove the result, as if $\beta_{ \pm}$is a basis of $E_{ \pm 1}$, then $\beta_{+} \cup \beta_{+}$will be a basis of V which consists of eigenvectors of T .

To show that $V=E_{1} \oplus \mathrm{E}_{-1}$, we need to show that (i) $\mathrm{V}=\mathrm{E}_{1}+\mathrm{E}_{-1}$, and (ii) $\mathrm{E}_{1} \cap \mathrm{E}_{-1}=0$. For (i), given $v \in \mathrm{~V}$, since $\operatorname{char}(\mathrm{F}) \neq 2$, we can write v as $v=v_{+}+v_{-}$, where

$$
v_{+}=\frac{v+\mathrm{T}(v)}{2}, v_{-}=\frac{v-\mathrm{T}(v)}{2}
$$

Using the fact that $\mathrm{T}^{2}=I$ one easily check that $\nu_{+} \in \mathrm{E}_{1}$ and $\nu_{-} \in \mathrm{E}_{-1}$. For (ii), let $v \in \mathrm{E}_{1} \cap \mathrm{E}_{-1}$. Then $\mathrm{T}(v)=v\left(\right.$ as $\left.v \in \mathrm{E}_{1}\right)$ and $\mathrm{T}(v)=-v\left(\right.$ as $\left.v \in \mathrm{E}_{-1}\right)$. Thus $v=-v$, or in other words $2 v=0$. Since $2 \neq 0$ is our field, this implies $v=0$.
3. Let F be a field and $A \in M_{n \times n}(F)$. Show that A is diagonalizable over F (which by definition, means that the map $L_{A}: F^{n} \rightarrow F^{n}$ given by $v \rightarrow A v$ is diagonalizable) if and only if there exists a matrix $Q \in M_{n \times n}(F)$ such that $Q^{-1} A Q$ is diagonal.

Solution: Throughout the solution $\mathrm{L}_{A}: \mathrm{F}^{n} \rightarrow \mathrm{~F}^{n}$ is the map left multiplication by A.
Suppose A is diagonalizable over F. Then there exists a basis $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ of F^{n} the elements of which are eigenvectors of A. Then the matrix $\left[L_{A}\right]_{\beta}$ is diagonal (why?). Let $Q \in$ $M_{n \times n}(F)$ be the matrix whose j-th column is v_{j}. Then the change of basis formula implies $Q^{-1} A Q=\left[L_{A}\right]_{\beta}$ (why?).

Conversely, suppose there exists a matrix $Q \in M_{n \times n}(F)$ such that $Q^{-1} A Q$ is diagonal. Let v_{j} be the j-th column of Q. Then $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of F^{n} (why?). By the change of basis formula $\left[L_{A}\right]_{\beta}=Q^{-1} A Q$. In particular, $\left[L_{A}\right]_{\beta}$ is diagonal, hence L_{A} is diagonalizable, i.e. A is diagonalizable over F.
4. (a) Let V be a vector space over \mathbb{C}. Then V can also be considered as a vector space over \mathbb{R}. Show that if $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of V over \mathbb{C}, then $\left\{v_{1}, \ldots, v_{n}, \mathfrak{i} v_{1}, \ldots, \mathfrak{i} v_{n}\right\}$ is a basis of V over \mathbb{R}. (In particular, if V has dimension n as a complex vector space, then it has dimension $2 n$ as a real vector space.)
(b) Let V be an n-dimensional vector space over \mathbb{C} and $T: V \rightarrow V$ a linear operator. Let $f(t)$ be the characteristic polynomial of T; thus $f(t)$ is a polynomial of degree n with coefficients in
\mathbb{C}. Let $g(t)$ be the characteristic polynomial of T, considered as a linear operator on the underlying real vector space. Thus $g(t)$ is a polynomial of degree $2 n$ with real coefficients (by (a)). Prove that $g(t)=f(t) \bar{f}(t)$, where bar denotes complex conjugation. (The complex conjugate of a polynomial is the polynomial obtained by taking the complex conjugates of the coefficients. That is, if $f(t)=\sum a_{r} t^{r}$, then $\bar{f}(t):=\sum \overline{a_{r}} t^{r}$.)

Solution: (a) Let $\gamma=\left\{v_{1}, \ldots, v_{n}, \mathfrak{i} v_{1}, \ldots, \mathfrak{i} v_{n}\right\}$. We first show that γ spans V over \mathbb{R}. Let $v \in \mathrm{~V}$. Since β spans V over \mathbb{C}, there exist $a_{1}, \ldots, a_{n} \in \mathbb{C}$ such that $v=\sum_{j} a_{j} v_{j}$. Writing $a_{j}=b_{j}+i c_{j}$ with $b_{j}, c_{j} \in \mathbb{R}$, we have $v=\sum_{j} b_{j} v_{j}+\sum_{j} c_{j}\left(i v_{j}\right)$, so that v is in the span of γ.

Now we show γ is linearly independent over \mathbb{R}. Suppose $b_{j}, c_{j}(1 \leq j \leq n)$ are real numbers such that $\sum_{j} b_{j} v_{j}+\sum_{j} c_{j}\left(i v_{j}\right)=0$. Then this can be rewritten as $\sum_{j}\left(b_{j}+i c_{j}\right) v_{j}=0$. The linear independence of the v_{j} over \mathbb{C} implies that $b_{j}+i c_{j}=0$ for all \mathfrak{j}, which in turn implies that $b_{j}=c_{j}=0$ for all j.
(b) Let $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of V over \mathbb{C}. Denote the matrix of T with respect to β by A; it is an element of $M_{n \times n}(\mathbb{C})$. Write $A=B+i C$ with $B, C \in M_{n \times n}(\mathbb{R})$. (Denoting the $k \ell$ entry of a matrix M by $M_{k \ell}$ we have $A_{k \ell}=B_{k \ell}+i C_{k \ell}$.)

Let $\gamma=\left\{v_{1}, \ldots, v_{n}, \mathfrak{i} v_{1}, \ldots, \mathfrak{i} v_{n}\right\}$. By (a), γ is a basis of V over \mathbb{R}. We find the matrix of T (considered as a real linear transformation) with respect to γ. For $\ell \leq n$, we have

$$
T\left(v_{\ell}\right)=\sum_{k} A_{k \ell} v_{k}=\sum_{k} B_{k \ell} v_{k}+\sum_{k} C_{k \ell}\left(i v_{k}\right)
$$

and

$$
\mathrm{T}\left(\mathfrak{i} v_{\ell}\right) \stackrel{\mathbb{C} \text {-linearity of } \mathrm{T}}{=} \mathfrak{i T}\left(v_{\ell}\right)=\sum_{k} \mathfrak{i} A_{k \ell} v_{k}=\sum_{k}\left(-\mathrm{C}_{k \ell}\right) v_{k}+\sum_{k} \mathrm{~B}_{k \ell}\left(\mathfrak{i} v_{k}\right) .
$$

Thus

$$
[\mathrm{T}]_{\gamma}=\left(\begin{array}{cc}
\mathrm{B} & -\mathrm{C} \\
\mathrm{C} & \mathrm{~B}
\end{array}\right)
$$

(this is an element of $M_{2 n \times 2 n}(\mathbb{R})$). The characteristic polynomial of T as a real operator is thus

$$
\mathrm{g}(\mathrm{t})=\operatorname{det}\left([\mathrm{T}]_{\gamma}-\mathrm{tI}\right)=\operatorname{det}\left(\begin{array}{cc}
\mathrm{B}-\mathrm{tI} & -\mathrm{C} \\
\mathrm{C} & \mathrm{~B}-\mathrm{tI}
\end{array}\right) .
$$

(With abuse of notation we are using the same notation for the $n \times n$ and $2 n \times 2 n$ identity matrices, but this should not lead to any confusion.) The matrix $[\mathrm{T}]_{\gamma}-\mathrm{tI}$ is a matrix with entries in the polynomial ring $\mathbb{R}[t]$ (or the function field $\mathbb{R}(t)$). We can "extend the scalars" and think of $[\mathrm{T}]_{\gamma}-\mathrm{tI}$ as a matrix with entries in $\mathbb{C}[\mathrm{t}]$ (or if you prefer, $\mathbb{C}(\mathrm{t})$). The determinant $\operatorname{det}\left([\mathrm{T}]_{\gamma}-\mathrm{tI}\right)$ is the same no matter if the matrix $[T]_{\gamma}-t I$ is regarded as a matrix with entries in $\mathbb{R}[t]$ or $\mathbb{C}[t]$. Recall that adding a scalar multiple of a row (resp. column) to another row (resp. column) does not change the determinant. By our previous observation, we may use scalars in \mathbb{C} for this (in fact, $\mathbb{C}(t)$ if we wish). Adding i times rows $n+1, \ldots, 2 n$ respectively to rows $1, \ldots, n$ and then adding $-i$ times columns $1, \ldots, n$ to columns $n+1, \ldots, 2 n$, we have

$$
\mathrm{g}(\mathrm{t})=\operatorname{det}\left(\begin{array}{cc}
\mathrm{B}-\mathrm{tI} & -\mathrm{C} \\
\mathrm{C} & \mathrm{~B}-\mathrm{tI}
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
\mathrm{B}+\mathrm{iC}-\mathrm{tI} & -\mathrm{C}+\mathrm{Bi}-\mathrm{tiI} \\
\mathrm{C} & \mathrm{~B}-\mathrm{tI}
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
\mathrm{B}+\mathrm{iC}-\mathrm{tI} & 0 \\
C & B-C i-\mathrm{tI}
\end{array}\right) .
$$

Denoting by \bar{A} the matrix obtained by taking the complex conjugates of the entries of A (i.e. $\bar{A}=B-C i)$), we thus have

$$
g(t) \stackrel{\text { why }}{=} \operatorname{det}(B+i C-t I) \operatorname{det}(B-C i-t I)=\operatorname{det}(A-t I) \operatorname{det}(\bar{A}-t I) \stackrel{\text { See the remark below }}{=} f(t) \bar{f}(t)
$$

as desired.
REMARK. Let $A \in M_{n \times n}(\mathbb{C})$. Then we have the following relation between the characteristic polynomials $p_{A}(t)$ and $p_{\bar{A}}(t)$ of A and \bar{A} :

$$
p_{\bar{A}}(t)=\overline{p_{A}}(t)
$$

(where as in the problem the complex conjugate of a polynomial is obtained by taking complex conjugates of the coefficients). Here is one way to see this: Let $\rho: \mathbb{C}[t] \rightarrow \mathbb{C}[t]$ be the map given by $\rho(f(t))=\bar{f}(t)$. Then a straightforward computation using the facts $\overline{z+w}=\bar{z}+\bar{w}$ and $\overline{z w}=\overline{z z}$ for $z, w \in \mathbb{C}$ shows that $\rho(f(t)+g(t))=\rho(f(t))+\rho(g(t))$ and $\rho(f(t) g(t))=\rho(f(t)) \rho(g(t))$ (that is, ρ is a ring homomorphism). For simplicity of notation, let $B=A-t I$. Then

$$
\mathrm{f}_{\mathrm{A}}(\mathrm{t})=\sum_{\sigma \in \mathrm{S}_{\mathrm{n}}} \operatorname{sgn}(\sigma) \mathrm{B}_{1 \sigma(1)} \ldots \mathrm{B}_{\mathrm{n} \sigma(\mathrm{n})}
$$

Using the fact that ρ is a ring homomorphism, we get

$$
\overline{f_{A}}(t)=\rho\left(f_{\mathcal{A}}(t)\right)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \rho\left(B_{1 \sigma(1)}\right) \ldots \rho\left(B_{n \sigma(n)}\right)
$$

The expression on the right is just $p_{\bar{A}}(t)$.
5. Let F be a field and V a finite-dimensional vector space over F. Let V^{\vee} denote the dual space of V (i.e. V^{\checkmark} is the set of all linear maps $V \rightarrow F$, with addition and scalar multiplication defined as follows: given $f, g \in V^{\vee}$ and $c \in F$, the maps $f+g: V \rightarrow F$ and $c f: V \rightarrow F$ are given by $(f+g)(v)=f(v)+g(v)$ and $(c f)(v)=c \cdot f(v))$. Let $T: V \rightarrow V$ be a linear operator. Then given any $f \in V^{\vee}$, being a composition of linear transformations, $f \circ T: V \rightarrow F$ is also linear. Let T^{t} (called the transpose or the dual of T) be the map $\mathrm{V}^{\vee} \rightarrow \mathrm{V}^{\vee}$ defined by $\mathrm{T}^{\mathrm{t}}(\mathrm{f})=\mathrm{f} \circ \mathrm{T}$. You can check that T^{t} is indeed linear (but you don't have to include the argument in your solution). Show that the characteristic polynomials of T and T^{t} are equal. (Suggestion: Let β be a basis of V. Let γ be the basis of V^{\vee} dual to β. Try to relate $[T]_{\beta}$ and $\left[T^{t}\right]_{\gamma}$.)

Solution: Let β be a basis of V and γ be the basis of V^{\vee} dual to β. We will show that $\left[T^{\vee}\right]_{\gamma}=\left([T]_{\beta}\right)^{t}$. This will prove the result, as then the two matrices $\left[T^{\vee}\right]_{\gamma}-t I$ and $[T]_{\beta}-t I$ (with entries in $\mathrm{F}[\mathrm{t}]$) are transposes of one another, and hence have the same determinant.

Let $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$. Then (by definition) $\gamma=\left\{v_{1}{ }^{\vee}, \ldots, v_{n}{ }^{\vee}\right\}$, where $\nu_{i}{ }^{\vee}: V \rightarrow F$ is the linear map satisfying

$$
v_{i}^{\vee}\left(v_{j}\right)= \begin{cases}1 & \text { if } \mathfrak{j}=\mathfrak{i} \\ 0 & \text { if } \mathfrak{j} \neq \mathfrak{i}\end{cases}
$$

Let $[T]_{\beta}=\left(A_{i j}\right)$ and $\left[T^{\vee}\right]_{\gamma}=\left(B_{i j}\right)$. The goal is to show $B_{i j}=A_{j i}$. We have

$$
\mathrm{T}^{\vee}\left(v_{j}^{\vee}\right)=\sum_{k} \mathrm{~B}_{\mathrm{kj}} v_{k}^{\vee} .
$$

Evaluating both sides at v_{i}, in view of $T^{\vee}\left(v_{j}{ }^{\vee}\right)=v_{j}{ }^{\vee} \circ \mathrm{T}$ and the definition of the $v_{k}{ }^{\vee}$, we get

$$
v_{j}^{\vee}\left(\mathrm{T}\left(v_{i}\right)\right)=\mathrm{B}_{i j}
$$

(as $v_{k}{ }^{\vee}\left(v_{i}\right)=0$ for $k \neq i$). On the other hand, we have

$$
v_{\mathrm{j}}^{\vee}\left(\mathrm{T}\left(v_{\mathrm{i}}\right)\right)=v_{\mathrm{j}}^{\vee}\left(\sum_{\mathrm{k}} A_{\mathrm{ki}} v_{\mathrm{k}}\right)=A_{\mathrm{ji}} .
$$

