MAT247 Algebra II

Assignment 1

Due Friday Jan 18 at 11:59 pm (to be submitted on Crowdmark)

Please write your solutions neatly and clearly. Note that due to time limitations, some questions may not be graded.

1. (a) Let $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$. Find the characteristic polynomial, eigenvalues, and a basis for each (nonzero) eigenspace of A. (Here take $F=\mathbb{R}$.)
(b) Let $L_{A}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the map given by $L_{A}(x)=A x$. Give a basis β of \mathbb{R}^{2} such that $\left[L_{A}\right]_{\beta}$ is diagonal. No explanation is necessary.
(c) Let $x=(a b)^{t}$ (where t denotes the transpose). Find a formula for $A^{n} x$.
(d) Let $\left(a_{n}\right)$ be the Fibonacci sequence, defined by $a_{1}=1, a_{2}=2$, and $a_{n}=a_{n-1}+a_{n-2}$ for $n \geq 3$. Find a non-recursive formula for a_{n}. (Suggestion: For $n \geq 1$, set $x_{n}=\left(a_{n} a_{n+1}\right)^{t}$. Then $x_{n}=A x_{n-1}$.)
2. Let V be a finite-dimensional vector space over a field F of characteristic $\neq 2$. Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ be a linear operator satisfying $\mathrm{T}^{2}=\mathrm{I}$ (where T^{2} means the composition $\mathrm{T} \circ \mathrm{T}$ and I is the identity map on V). Show that T is diagonalizable. (Suggestion: Show that $V=E_{1} \oplus E_{-1}$, where $\mathrm{E}_{\lambda}=\operatorname{ker}(\mathrm{T}-\lambda \mathrm{I})$ is the eigenspace for λ.)
3. Let F be a field and $A \in M_{n \times n}(F)$. Show that A is diagonalizable over F (which by definition, means that the map $L_{A}: F^{n} \rightarrow F^{n}$ given by $v \rightarrow A v$ is diagonalizable) if and only if there exists a matrix $\mathrm{Q} \in M_{\mathrm{n} \times \mathrm{n}}(\mathrm{F})$ such that $\mathrm{Q}^{-1} A \mathrm{Q}$ is diagonal.
4. (a) Let V be a vector space over \mathbb{C}. Then V can also be considered as a vector space over \mathbb{R}. Show that if $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of V over \mathbb{C}, then $\left\{v_{1}, \ldots, v_{n}, \mathfrak{i} v_{1}, \ldots, \mathfrak{i} v_{n}\right\}$ is a basis of V over \mathbb{R}. (In particular, if V has dimension n as a complex vector space, then it has dimension 2 n as a real vector space.)
(b) Let V be an n-dimensional vector space over \mathbb{C} and $T: V \rightarrow V$ linear operator. Let $f(t)$ be the characteristic polynomial of T; thus $f(t)$ is a polynomial of degree n with coefficients in \mathbb{C}. Let $g(t)$ be the characteristic polynomial of T, considered as a linear operator on the underlying real vector space. Thus $g(t)$ is a polynomial of degree $2 n$ with real coefficients (by (a)). Prove that $g(t)=f(t) \bar{f}(t)$, where bar denotes complex conjugation. (The complex conjugate of a polynomial is the polynomial obtained by taking the complex conjugates of the coefficients. That is, if $f(t)=\sum a_{r} t^{r}$, then $\bar{f}(t):=\sum \overline{a_{r}} t^{r}$.)
5. Let F be a field and V a finite-dimensional vector space over F. Let V^{\vee} denote the dual space of V (i.e. V^{\vee} is the set of all linear maps $V \rightarrow F$, with addition and scalar multiplication defined as follows: given $f, g \in V^{\vee}$ and $c \in F$, the maps $f+g: V \rightarrow F$ and $c f: V \rightarrow F$ are given by $(f+g)(v)=f(v)+g(v)$ and $(c f)(v)=c \cdot f(v))$. Let $T: V \rightarrow V$ be a linear operator. Then given any $f \in V^{\vee}$, being a composition of linear transformations, $f \circ T: V \rightarrow F$ is also linear. Let T^{t} (called the transpose or the dual of T) be the map $\mathrm{V}^{\vee} \rightarrow \mathrm{V}^{\vee}$ defined by $\mathrm{T}^{\mathrm{t}}(\mathrm{f})=\mathrm{f} \circ \mathrm{T}$. You can check that T^{t} is indeed linear (but you don't have to include the argument in your solution). Show that the characteristic polynomials of T and T^{t} are equal. (Suggestion: Let β be a basis of V. Let γ be the basis of V^{\vee} dual to β. Try to relate $[T]_{\beta}$ and $\left[T^{\mathrm{t}}\right]_{\gamma}$.)

Practice Problems: The following problems are for your practice. They are not to be handed in for grading.

From the textbook: End of section 5.1 exercises, in particular problems \# 1, 3, 4, 13, 14 (this you will need for problem \# 5 of the assignment), 15, 19, 20, 21, 22, 23

1. Let V be a finite-dimensional vector space over a field F and $T: V \rightarrow V$ a linear operator satisfying $\mathrm{T}^{2}=\mathrm{T}$ (such an operator is called a projection). Show that T is diagonalizable. (Hint: Show that $V=E_{0} \oplus E_{1}$.)
2. Determine if the statements below are true or false. Throughout T is a linear operator on a vector space V (i.e. $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ is a linear map).
(a) Zero is an eigenvalue of T if and only if T is not injective.
(b) Zero is an eigenvalue of T if and only if T is not invertible.
(c) If V is finite-dimensional, then zero is an eigenvalue of T if and only if T is not invertible.
3. Let $a_{1}, a_{2} \in \mathbb{R}$. For $n \geq 3$, set $a_{n}=\frac{5}{2} a_{n-1}-a_{n-2}$. Show that the sequence $\left(a_{n}\right)$ converges if and only if $\left(a_{1}, a_{2}\right) \in \operatorname{span}\{(2,1)\}$.
4. Let $\theta \in \mathbb{R}$ and $A=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$.
(a) Show that for $\theta \notin\{n \pi: n \in \mathbb{Z}\}$, the matrix A is not diagonalizable over \mathbb{R}. (In other words, show that for such θ the map $L_{A}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $L_{A}(x)=A x$ is not diagonalizable.)
(b) Show that A is diagonalizable over \mathbb{C}. Find a basis of \mathbb{C}^{2} consisting of eigenvectors of A. Find matrices $P, D \in M_{2}(\mathbb{C})$ with D diagonal such that $P^{-1} A P=D$.
5. We will use the following notation in this question: given a vector space V over a field F, by $\operatorname{dim}_{F}(V)$ we mean the dimension of V as a vector space over F.

Let F and K be fields and $F \subset K$ (that is, F is a subfield of K).
(a) Let $A \in M_{m \times n}(F)$ (and hence also $A \in M_{m \times n}(K)$). Denote by N (resp. N^{\prime}) the nullspace of A in F^{n} (resp. K^{n}). Is $\operatorname{dim}_{F}(N)=\operatorname{dim}_{K}\left(N^{\prime}\right)$?
(b) Let $A \in M_{n \times n}(F)$ and $\lambda \in F$. Let E_{λ} (resp. E_{λ}^{\prime}) be the eigenspace of A in F^{n} (resp K^{n}) corresponding to λ. $\operatorname{Is} \operatorname{dim}_{F}\left(E_{\lambda}\right)=\operatorname{dim}_{K}\left(E_{\lambda}^{\prime}\right)$?

