
MAT247 Algebra II

Assignment 2

Solutions

1. By calculating the characteristic polynomial, eigenvalues and dimensions of the eigenspaces
of each map or matrix below, determine if the given map or matrix is diagonalizable. If a map
or matrix is diagonalizable, diagonalize it (that is, give a basis consisting of its eigenvectors).
The field F over which you consider the problem is given in each part.

(a) A =

1 1 0
0 1 0
0 0 2

 over an arbitrary field F

(b) A =

1 0 1
0 1 0
0 0 2

 over an arbitrary field F

(c) T : P2(R)→ P2(R) given by T(ax2 + bx+ c) = cx2 + ax+ b (Here F = R.)
(d) T : P2(C)→ P2(C) given by T(ax2 + bx+ c) = cx2 + ax+ b (Here F = C.)

Solution: (a) The characteristic polynomial is (1 − t)2(2 − t). The eigenvalues are 1 and 2,
with multiplicities 2 and 1, respectively. We leave it to the reader to check that dim(E1) = 1,
which is less than the multiplicity of eigenvalue 1. Thus the matrix is not diagonalizanble.
(Note that E2 must be 1-dimensional, as the dimension of each eigenspace is no greater than the
multiplicity of the corresponding eigenvalue.)

(b) The characteristic polynomials is the same as in part (a), but this time we easily see
that E1 has dimension 2 with a basis {(1, 0, 0), (0, 1, 0)}, and E2 is 1-dimensional with a basis
{(1, 0, 1)}. The sum of the dimensions of the eigenspaces equals 3 ( = dim F3), so the matrix is
diagonalizable. The basis {(1, 0, 0), (0, 1, 0), (1, 0, 1)} of F3 consists of eigenvectors of A.

(c) We calculate the matrix representation of T with respect to the basis β = {1, x, x2} of
P2(R).

[T ]β =

0 1 0
0 0 1
1 0 0


Thus

pT(t) = det

−t 1 0
0 −t 1
1 0 −t

 = −t3 + 1 = −(t− 1)(t2 + t+ 1).

The characteristic polynomial does not split over R, hence the map is not diagonalizable.
(d) The characteristic polynomial is the same as in part (c). It has three distinct roots in C,

namely 1,ω = (1 +
√
3)/2 and ω2 = (1 −

√
3)/2. Thus the map is diagonalizable. Note that

since the eigenvalues all have multiplicity 1, all eigenspaces are 1-dimensional. We leave it to
the reader to check that x2 + x + 1, x2 +ω2x +ω, and x2 +ωx +ω2 respectively belong to E1,
Eω, and Eω2 (and form a basis for them). Thus {x2+ x+ 1, x2+ω2x+ω, x2+ωx+ω2} is a basis
of P2(C) consisting of eigenvectors of T .

2. Let V be a vector space and k an integer≥ 1. For each integer 1 ≤ i ≤ k, let Vi be a subspace
of V . Show that the following statements are equivalent:
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(i) For every 1 ≤ i ≤ k,

Vi ∩
∑
1≤j≤k

j 6=i

Vj = 0.

(ii) If vi ∈ Vi for 1 ≤ i ≤ k and
k∑
i=1

vi = 0, then vi = 0 for all 1 ≤ i ≤ k.

(iii) If for each 1 ≤ i ≤ k, the set βi is a linearly independent subset of Vi , then the βi are

pairwise disjoint (i.e. βi ∩ βj = ∅whenever i 6= j) and
k⋃
i=1

βi is linearly independent.

Note: I am aware that the proof of this can be found in your textbook, but you should do it
yourself. The empty sum (which appears in (i) when k = 1) is by convention defined to be zero.

Solution:

(i)⇒ (ii) : Suppose vi ∈ Vj for 1 ≤ i ≤ k and
k∑
i=1

vi = 0. Fix i. We have vi = −
∑
j 6=i
vj, so that vi

belongs to Vi ∩
∑
j6=i
Vj. By (i), vi = 0.

(ii)⇒ (iii) : Suppose a linear combination of some elements of the βi is zero. More precisely, for
each i, let vi,j (1 ≤ j ≤ mi) be in βi, and for some some scalars aij,

k∑
i=1

mi∑
j=1

aijvij = 0.

(Here again, empty sum is interpreted as zero.) Being a linear combination of elements

of Vi, the element
mi∑
j=1

aijvij is in Vi, so that by (ii) we must have
mi∑
j=1

aijvij = 0 for each i.

The linear independence of βi now implies that aij = 0 for all j. Thus all the aij are zero.
It follows that the βi are pairwise disjoint and their union is linearly independent.

(iii)⇒ (i) : Fix i and suppose there exists a nonzero element vi ∈ Vi ∩
∑

1≤j≤k

j6=i

Vj. Then there exist

elements vj ∈ Vj (j 6= i) such that vi =
∑
j6=i
vj. For each 1 ≤ ` ≤ k, let

β` =

{
{v`} if v` 6= 0
∅ otherwise.

In particular, βi = {vi}. Each β` is linearly independence, and hence by (iii), the β` are
pairwise disjoint and their union is linearly independence. But

vi −
∑
j6=i

vj 6=0

vj = 0

gives a linear dependence between the elements of
⋃

1≤`≤k
β`.

3. Let V be a vector space over a field F. Let T : V → V be a linear map. Let W be a subspace
of V . We say W is T -invariant if for every w ∈ W, we have T(w) ∈ W. Let W be T -invariant.
Then T restricts to a linear mapW →W, which we denote by TW (given by TW(w) = T(w)). Let
V/W be the quotient of V by W (to recall its definition and some useful results see Exercise 31
on page 23, Exercise 35 on page 58, and Exercise 40 on page 79 of the textbook).
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(a) Show that T : V/W → V/W given by T(v +W) = T(v) +W is well-defined and linear.
(Being well-defined means that the definition makes sense. The reason we have to
check this is because given v +W ∈ V/W, the formula for T(v +W) makes use of the
representative v of the coset v +W. We need to make sure the output T(v +W) does
not change if we choose a different representative for v +W. More explicitly, we need
to make sure that if v+W = v ′ +W for some v, v ′ ∈ V , then T(v) +W = T(v ′) +W.)

(b) Let V be finite-dimensional and W a nonzero proper T -invariant subspace. Denote the
characteristic polynomials of T , TW , and T respectively by f(t), g(t), and h(t). Show
that f(t) = g(t)h(t). (Suggestion: Exercise 35 on page 58 can be useful.)

Solution: For any v ∈ V , below we write v for the element v+W of V/W.
(a) First, let us check well-definedness. Let v, v ′ ∈ V and v = v ′. We need to show that

T(v) = T(v ′). The former (resp. latter) equation is equivalent to v− v ′ ∈W (resp. T(v) − T(v ′) ∈
W). Since v−v ′ ∈W andW is T -invariant, T(v−v ′) ∈W. Since T is linear, T(v−v ′) = T(v)−T(v ′).

Now we check that T is linear. Given v ∈ V and a scalar c,

T(cv)
(∗)
= T(cv)

(∗∗)
= T(cv)

(†)
= cT(v)

(∗)
= cT(v)

(∗∗)
= cT(v),

where in (∗), (∗∗), and (†) we respectively used the definition of scalar multiplication in V/W,
the definition of the map T , and linearity of T .

Given v1, v2 ∈ V , we have

T(v1 + v2) = T(v1 + v2) = T(v1 + v2) = T(v1) + T(v2) = T(v1) + T(v2) = T(v1) + T(v2).

(Make sure you know why each equality holds.)
(b) Let α = {v1, . . . , vk} be a basis of W. We extend α to a basis β = {v1, . . . , vn} of V . Then

γ = {vk+1, . . . , vn} is a basis of V/W. Let A = [T ]β, with entries denoted by Aij. Since W is
T -invariant, for 1 ≤ j ≤ k, we have

TW(vj) = T(vj) =

k∑
i=1

Aijvi.

On the other hand, for k+ 1 ≤ j ≤ n,

T(vj) = T(vj) =

n∑
i=1

Aijvi =

n∑
i=1

Aijvi =

n∑
i=k+1

Aijvi.

Thus the matrix [T ]β (in block form) looks like

[T ]β =

(
[TW]α ∗
0 [T ]γ

)
.

Then [T ]β− tI is block upper triangular with diagonal blocks [TW]α− tI and [T ]γ− tI), and hence

f(t) = det([T ]β − tI) = det([TW]α − tI)det([T ]γ − tI) = g(t)h(t).

4. (a) Let F be a field. Given a polynomial f(t) of degree n over F we say f(t) splits over F if it
factors as

f(t) = c(t− λ1) · · · (t− λn)
for some c ∈ F and (not necessarily distinct) λ1, . . . , λn ∈ F. Let V be an n-dimensional vector
space over F and T : V → V be a linear map whose characteristic polynomial splits over F. Show
that there exists a basis β of V such that the matrix [T ]β is upper triangular. (Suggestion: Argue
by induction on dim(V). The previous problem can be useful.)
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(b) Let A =

 2 0 −1
−1 −1 1
−1 −4 2

 ∈M3(Q). Find a matrix P ∈M3(Q) such that P−1AP is upper

triangular, if such P exists. (Suggestion: Your proof for (a) tells you how to find such P.)

Solution: (a) We argue by induction on the dimension of V . If V is 1-dimensional, then
the result is clear. Suppose n ≥ 2 and the result holds for linear operators on vector spaces of
dimension n− 1. Let T be an operator on a vector space V of dimension n over F, such that the
characteristic polynomial of T splits over F, say

pT(t) = c(t− λ1) · · · (t− λn),
with the λi and c in F (comparing the leading coefficients we see c = (−1)n). Being a root
of pT(t) in F, λ1 is an eigenvalue of T . Let w1 be an eigenvector corresponding to λ1. Let
W = span{w1}; it is a 1-dimensional T -invariant subspace of V . Thus V/W has dimension n−1.
Let T : V/W → V/W be the map induced by T on the quotient V/W (defined by T(v) = T(v) -
note that here we used the fact thatW is T -invariant). By Problem 3, we have

pT(t) = pTW(t)pT(t) = (λ1 − t)pT(t).

It follows that
pT(t) = (−1)n−1(t− λ2) · · · (t− λn).

In particular, the characteristic polynomial of T splits over F. Since V/W has dimension n − 1,
by the induction hypothesis, there exists a basis γ of V/W such that [T ]γ is upper triangular.
Suppose γ = {w2, . . . , wn}, for some w2, . . . , wn ∈ V . We claim that (1) β = {w1, . . . , wn} is a
basis of V , and (2) [T ]β is upper triangular. To see (1), since dim(V) = n, it is enough to show

that β is linearly independent. Suppose
n∑
i=1

aiwi = 0. Then, by linearity of the (quotient) map

V → V/W sending v 7→ v (or by the definition of the operations in the quotient vector space),
and in view of w1 = 0 (the zero of the quotient space), we have

n∑
i=2

aiwi = 0.

Linear independence of γ now implies that ai = 0 for 2 ≤ i ≤ n. Substituting back in
n∑
i=1

aiwi =

0, and on recalling w1 6= 0, we see that a1 = 0 as well. Thus our first claim is established. Now

(2) follows from that [T ]β is of the form
(
λ1 ∗
0 [T ]γ

)
(see the argument for 3b).

(b) Let LA : Q3 → Q3 be the map defined by LA(x) = Ax. By the change of basis formula, if
P ∈M3(Q) is an invertible matrix with columns v1, v2, v3 (where vj is the j-th column), then the
matrix [LA]β of LA with respect to the basis β = {v1, v2, v3} is equal to P−1AP. Thus to answer the
question, we shall find a basis β of Q3 such that [LA]β is upper triangular. For this, we follow
the process of the argument given in part (a).

A straightforward calculation shows that pLA(t) = pA(t) = −(t − 1)3. Since the character-
istic polynomial splits over Q, a basis β as desired exists. One easily sees that w1 = (1 0 1)t

is an eigenvector (and that dim(E1) = 1). Set W = span{w1}. Let LA : Q3/W → Q3/W be
the map induced by LA on the quotient (i.e. the map defined by LA(v) = LA(v)). By 3(b), the
characteristic polynomial of LA is then (t− 1)2. If γ = {w2, w3} is a basis of Q3/W such that [LA]γ
is upper triangular, then as we argued in (a), the matrix [LA]β with β = {w1, w2, w3} is upper
triangular. Thus our goal now is to a basis γ that upper triangularizes LA. Note that any basis
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γ = {w2, w3} of Q3/W such that w2 is an eigenvector of LA (corresponding to eigenvalue 1, the

only eigenvalue of LA) will upper triangularize LA, as then the matrix [LA]γ looks like
(
1 ∗
0 ∗

)
.

Thus we just need to find an eigenvector w2 of LA. We consider the equation LAv = v; note
that since 1 is an eigenvalue of LA, this equation must have nonzero solutions in Q3/W. The
equation can be rewritten as Av = v, which is equivalent to Av − v ∈ W. Thus we are looking
for a v ∈ V such that (A − I)v = cw1 for some c ∈ Q, and moreover v /∈ W (so that v 6= 0). The
condition v /∈W = E1(A) is guaranteed if c 6= 0 (why?). Writing v = (x1 x2 x3)

t, we have x1 − x3
−x1 − 2x2 + x3
−x1 − 4x2 + x3

 = c

10
1

 .
Taking say c = 1, we see a solution is v = (0 − 1

2
− 1)t. We thus takew2 = (0 − 1

2
− 1)t and, say,

w3 = (1 0 0)t (or any other vector not in span{w1, w2}). Then the matrix of LA with respect to
{w2, w3} is upper triangular, and so it the matrix of LA with respect to β = {w1, w2, w3}. In view
of our first observation in the solution, we can thus take

P =

1 0 1

0 − 1
2
0

1 −1 0

 .
5. Let V be a vector space over a field F. We say a linear map T : V → V is nilpotent if there
exists a positive integer m such that Tm = 0 (that is, Tm(v) = 0 for all v ∈ V). For instance, the
differentiation map Pn(F)→ Pn(F) is nilpotent.

(a) Let V be finite-dimensional and T : V → V a linear map such that for every v ∈ V , there
exists an integer k ≥ 1 (possibly depending on v) such that Tk(v) = 0. Show that T is
nilpotent.

(b) Let dim(V) = n and T : V → V be a nilpotent linear map. Show that if λ is an eigenvalue
of T , then λ = 0. Conclude that if the characteristic polynomial pT(t) of T splits over F,
then pT(t) = (−1)ntn.

Remark: The extra hypothesis here that pT(t) splits over F is actually not necessary,
as it is automatically satisfied for a nilpotent map. See the practice problems.

Solution: (a) Let {v1, . . . , vn} be a basis of V . For each 1 ≤ i ≤ n, let ki be a positive integer
such that Tki(vi) = 0. Let m be the maximum of k1, . . . , kn. Then Tm vanishes at all the vi, and
hence Tm = 0.

(b) Let λ be an eigenvalue of T . Let v be a corresponding eigenvector. Suppose Tm = 0.
Then 0 = Tm(v) = λmv. Since v 6= 0, it follows that λm is zero, and hence so is λ.

Now suppose pT(t) splits over F. Thus we have

pT(t) = (−1)n
n∏
i=1

(t− λi)

for some λ1, . . . , λn ∈ F. Each λi is a root of the characteristic polynomial, and hence is an
eigenvalue of T . By the first assertion, all the λi are zero, so that pT(t) = (−1)ntn.


