MAT247 Algebra II

Assignment 3

Solutions

1. Let T be a linear operator on a finite-dimensional vector space over a field F. Suppose that the characteristic polynomial of T is $f(t)= \pm t^{2}(t-1)^{3}\left(t^{p}+1\right)$, where p is a prime number.
(a) Suppose $F=\mathbb{R}$. Can T be diagonalizable? What are the eigenvalues of T ? What are the possible values for the dimension of each eigenspace of T ? Give an example for each possibility. (Suggestion: Construct your examples using block diagonal matrices. Exercise 19 of 5.4 gives a way of constructing a matrix with a given characteristic polynomial.)
(b) Suppose $F=\mathbb{C}$. Can T be diagonalizable? If yes, suppose T is diagonalizable. What is the dimension of each eigenspace of T ?
(c) Suppose F has characteristic p. What are the eigenvalues of T? What are the possible values of the dimension of each eigenspace of T? (Suggestion: Expand $(t+1)^{p}$.)
(d) Back to a general F of arbitrary characteristic, show that T is not surjective.

Solution: (a) No, because the characteristic polynomial does not split over \mathbb{R}. The eigenvalues are 0,1 if $p=2$ and $0,1,-1$ if $p>2$. The dimension of E_{0} can be 1 or 2 ($=$ multiplicity of eigenvalue 0), and the dimension of E_{1} can be 1,2 , or 3 . When $p>2$, the eigenspace E_{-1} is one-dimensional as -1 is an eigenvalue of multiplicity 1 . We construct our examples for the case where p is odd. Consider the block-diagonal matrix

$$
A=\left(\begin{array}{ccc}
\mathrm{B}_{0} & & \\
& \mathrm{~B}_{1} & \\
& & C
\end{array}\right)
$$

where C is the companion matrix for the polynomial $t^{p}+1$, i.e.

$$
C=\left(\begin{array}{cccccc}
0 & & & \cdots & -1 \\
1 & 0 & & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & \ddots & & & & \vdots \\
& & & & 0 & 0 \\
0 & & & & 1 & 0
\end{array}\right) \in M_{p \times p}(\mathbb{R})
$$

and the diagonal blocks B_{0} and B_{1} are of the form

$$
B_{0}=\left(\begin{array}{ll}
0 & a \\
0 & 0
\end{array}\right)
$$

and

$$
\mathrm{B}_{1}=\left(\begin{array}{lll}
1 & b & 0 \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)
$$

Then the characteristic polynomial of A is exactly $f(t)$, and moreover by choosing a, b, c we can make sure E_{0} and E_{1} have dimensions as desired (up to the multiplicity of the eigenvalue, of course). If we take $a=1$ (resp. $a=0$), then $\operatorname{dim}\left(E_{0}\right)=1$ (resp. $\operatorname{dim}\left(E_{0}\right)=2$). If we take $b=1$ and $c=0$ (resp. $b=c=1$ and $b=c=0)$, then the dimension of E_{1} is 2 (resp. 1 and 3).
(b) It can. The complex roots of $f(t)$ are 0 (of mult. 2), 1 (of mult. 3), and the p-th roots $\alpha_{1}, \ldots, \alpha_{p}$ of -1 , each of multiplicity 1. The eigenspace $E_{\alpha_{i}}$ are each 1-dimensional, and T is diagonalizable if and only if $\operatorname{dim}\left(E_{0}\right)=2$ and $\operatorname{dim}\left(E_{1}\right)=3$.
(c) Consider

$$
(t+1)^{p}=\sum_{j}\binom{p}{j} t^{j}
$$

For $1<j<p$, the number $j!(p-j)$! is not a multiple of p (the key being that p is a prime number), so that $\binom{p}{j}=\frac{p!}{j!(p-j)!}$ is a multiple of p. Thus if F is a field of characteristic p,

$$
(t+1)^{p}=t^{p}+1^{p}=t^{p}+1
$$

If $p \neq 2$, then the distinct roots of $f(t)$ in F (or in other words, eigenvalues of T) are $0,1,-1$, respectively of multiplicities 2,3 , and p. If $p=2$, then $-1=1$ and the distinct roots of $f(t)$ in F are 0 and 1, respectively of multiplicities 2 and 5. In each case, the dimension of each eigenspace is bounded from below by 1 and from above by the multiplicity of the corresponding eigenvalue.
(d) Since T is a linear operator on a finite-dimensional vector space, T is surjective if and only if it is injective. Since 0 is an eigenvalue of $T, \operatorname{ker}(T)$ is not zero and hence T is not injective.
2. For $A \in M_{n \times n}(\mathbb{C})$, define

$$
e^{A}=\sum_{k=0}^{\infty} \frac{1}{k!} A^{k}
$$

One can show that the sum converges for every A.
(a) Ignoring all convergence-related questions, show that if $A B=B A$, then $e^{A+B}=e^{A} e^{B}$.
(b) Show that if A is nilpotent, then the characteristic polynomial of e^{A} is $(-1)^{n}(t-1)^{n}$. (An element of $M_{n \times n}(F)$ with characteristic polynomial $(-1)^{n}(t-1)^{n}$ is called a unipotent matrix. Hint: How are the characteristic polynomials of B and $B+\lambda I$ related to one another?)
(c) Does it make sense to define e^{A} with the same formula as above for an $n \times n$ matrix A with entries in an arbitrary field of characteristic zero? What if A is nilpotent?
(d) Can we define $e^{\mathcal{A}}$ with the formula as above for a nilpotent matrix A with entries in a field of positive characteristic?

Solution: (a) Let us start with

$$
e^{A+B}=\sum_{k=0}^{\infty} \frac{1}{k!}(A+B)^{k}
$$

Since A and B commute, this expands as

$$
\sum_{k=0}^{\infty} \frac{1}{k!} \sum_{j=0}^{k}\binom{k}{j} A^{j} B^{k-j}=\sum_{k=0}^{\infty} \sum_{j=0}^{k} \frac{1}{k!}\binom{k}{j} A^{j} B^{k-j}=\sum_{k=0}^{\infty} \sum_{j=0}^{k} \frac{1}{j!(k-j)!} A^{j} B^{k-j}
$$

Setting $r=j$ and $s=k-j$, the sum can be rewritten as ${ }^{\dagger}$

$$
\sum_{r=0}^{\infty} \sum_{s=0}^{\infty} \frac{1}{r!s!} A^{r} B^{s}=\sum_{r=0}^{\infty}\left(\frac{1}{r!} A^{r} \sum_{s=0}^{\infty} \frac{1}{s!} B^{s}\right)=\left(\sum_{r=0}^{\infty} \frac{1}{r!} A^{r}\right)\left(\sum_{s=0}^{\infty} \frac{1}{s!} B^{s}\right)=e^{A} e^{B}
$$

[^0](b) Let A be nilpotent, say of nilpotency index m. Let $N=e^{A}-I$. We have
$$
N=\sum_{k=1}^{\infty} \frac{1}{k!} A^{k}=\sum_{k=1}^{m} \frac{1}{k!} A^{k}=A \underbrace{\sum_{k=1}^{m} \frac{1}{k!} A^{k-1}}_{B}
$$

Note that A and B commute, and thus $N^{m}=A^{m} B^{m}=0$. In particular, N is nilpotent and hence its characteristic polynomial is $(-1)^{n} t^{n}$. Then the characteristic polynomial of $e^{A}=N+I$ is $p_{N}(t-1)=(-1)^{n}(t-1)^{n}$. (Note that for any map or matrix $M, p_{M+\lambda I}(t)=\operatorname{det}(M+\lambda I-t I)=$ $\left.\operatorname{det}(M-(t-\lambda) I)=p_{M}(t-\lambda).\right)$
(c) In general, for an arbitrary matrix A over an arbitrary field of characteristic zero, this definition does not make sense, because there is no notion of limit and hence infinite sums don't make sense. If A is nilpotent, then the definition does make sense because there are only finitely many nonzero terms in the sum anyways.
(d) Here even in the nilpotent case there might be a problem as k ! is zero in the field when k is greater than or equal to the characteristic, and hence does not have a multiplicative inverse.
3. Let T be a linear operator on a nonzero finite-dimensional vector space V over a field F. The minimal polynomial of T is the monic ${ }^{\dagger}$ polynomial $f(t)$ of smallest degree such that $f(T)=0$. It is easy to show that the minimal polynomial exists and is unique, and by the Cayley-Hamilton theorem, its degree is $\leq \operatorname{dim}(\mathrm{V})$. You don't have to include the argument for these facts in your solution.

Suppose $f(t)$ is the minimal polynomial of T. Let $g(t) \in F[t]$ be any polynomial such that $g(T)=0$. Show that $f(t) \mid g(t)$. (Suggestion: By the division algorithm, we can write $\mathrm{g}(\mathrm{t})=\mathrm{q}(\mathrm{t}) \mathrm{f}(\mathrm{t})+\mathrm{r}(\mathrm{t})$ with $\operatorname{deg}(\mathrm{r}(\mathrm{t}))<\operatorname{deg}(\mathrm{f}(\mathrm{t}))$. It might help to take a look at Exercise 1 of the extra practice problems below.)

Solution: By the division algorithm we can write $g(t)=f(t) q(t)+r(t)$ for (unique) $q(t), r(r) \in$ $F[t]$ with $\operatorname{deg}(r(t))<\operatorname{deg}(f(t))$. We then have $g(T)=f(T) \circ q(T)+r(T)$. Since $g(T)=f(T)=0$, we get $r(T)=0$. This implies $r(t)=0$ (and hence $f(t) \mid g(t)$), as otherwise, if c is the leading coefficient of $r(t)$, then $r_{1}(t)=\frac{1}{c} r(t)$ is a monic polynomial of degree less that $\operatorname{deg}(f(t))$ and $r_{1}(T)=\frac{1}{c} r(T)=0$, which contradicts the minimality property of the minimal polynomial of T.
4. Let F be a field. We say a polynomial $f(t) \in F[t]$ is irreducible (over F) if it satisfies (both of) the following conditions: (i) the degree of $f(t)$ is ≥ 1, and (ii) whenever $f(t)=g(t) h(t)$ for polynomials $g(t), h(t) \in F[t]$, then $g(t)$ or $h(t)$ has degree zero (i.e. we cannot write $f(t)$ as a product of two elements of $F[t]$ with positive degree). For instance, $t^{2}+1$ is an irreducible polynomial in $\mathbb{R}[t]$. The only irreducible polynomials in $\mathbb{C}[t]$ are the degree 1 polynomials.

Let T be a linear operator on a finite-dimensional vector space over F.
(a) Show that for any $f(t) \in F[t]$, the kernel of $f(T)$ is T-invariant.
(b) Suppose $f(t) \in F[t]$ is an irreducible factor of the characteristic polynomial $p_{T}(t)$ of T (by being a factor we mean $f(t)$ divides $p_{T}(t)$). Show that either $\operatorname{ker}(f(T))=0$ or

$$
\operatorname{dim} \operatorname{ker}(f(T)) \geq \operatorname{deg}(f(t))
$$

(Suggestion: Question 3 can be useful. Note: In fact, $f(T)$ cannot be injective. You can try to prove this (but it is not mandatory).)

[^1]Solution: (a) Given $v \in \operatorname{ker}(f(T))$, we have $f(T)((T(v))=f(T) \circ T(v)=T \circ f(T)(v)=$ $T(f(T)(v))=T(0)=0$. Thus $T(v) \in \operatorname{ker}(f(T))$ and $\operatorname{ker}(f(T))$ is T-invariant.
(b) Suppose $\operatorname{ker}(f(T)) \neq 0$. Set $W=\operatorname{ker}(f(T))$; then W is nonzero and T-invariant. Let $g(t)$ be the minimal polynomial of T_{W}. Since $W \neq 0, \operatorname{deg}(g(t))>0$. Now by definition of $W, f(T)$ is zero on W, so that $f\left(T_{W}\right)=0$. Thus $g(t) \mid f(t)$. Since $f(t)$ is irreducible and $g(t)$ is not constant, it follows that $\operatorname{deg}(f(t))=\operatorname{deg}(g(t))$. On the other hand, by Cayley-Hamilton, $p_{T_{W}}\left(T_{W}\right)=0$, so that $\operatorname{deg}(g(t)) \leq \operatorname{deg}\left(p_{T_{W}}(t)\right)=\operatorname{dim}(W)$. Thus we have

$$
\operatorname{deg}(f(t))=\operatorname{deg}(g(t)) \leq \operatorname{deg}\left(p_{T_{W}}(t)\right)=\operatorname{dim}(W)
$$

as desired. (Note: For the question as stated, we don't need to assume that $f(t)$ divides the characteristic polynomial of T. With that extra hypothesis, one can prove that $f(T)$ cannot be injective, so that we must have $\operatorname{dim} \operatorname{ker}(f(T)) \geq \operatorname{deg}(f(t))$ (rather than the weaker conclusion than either $\operatorname{ker}(f(T))=0$ or $\operatorname{dim} \operatorname{ker}(f(T)) \geq \operatorname{deg}(f(t)))$. See the first problem on the extra practice list for Assignment 4.)
5. Let V be an n-dimensional vector space over a field F. Suppose $T: V \rightarrow V$ is a linear map such that the characteristic polynomial $p_{T}(t)$ is irreducible.
(a) Show that the only T-invariant subspaces of V are 0 and V .
(b) Let v be a nonzero element of V. Show that $\left\{v, T(v), \ldots, T^{n-1}(v)\right\}$ is a basis of V.
(c) Suppose $A \in M_{4 \times 4}(\mathbb{Q})$ has characteristic polynomial $p_{A}(t)=t^{4}+t^{3}+t^{2}+t+1$. Show that there exists a matrix $P \in M_{4 \times 4}(\mathbb{Q})$ such that

$$
\mathrm{P}^{-1} A P=\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1
\end{array}\right)
$$

Note: For parts (b) and (c) you might want to wait until Tuesday. Otherwise, first read about T-cyclic subspaces on the bottom of page 313 and then read Theorem 5.22. For (c), you may take it for granted that $t^{4}+t^{3}+t^{2}+t+1$ is irreducible over \mathbb{Q}.)

Solution: (a) If W is a nonzero proper T-invariant subspace of V, then $0<\operatorname{deg}\left(p_{T_{W}}(t)\right)=$ $\operatorname{dim}(W)<\operatorname{dim}(V)$ and $p_{T}(t)=p_{T_{W}}(t) g(t)$ for some polynomial $g(t)$ of degree

$$
\operatorname{deg}(g(t))=\operatorname{deg}\left(p_{T}(t)\right)-\operatorname{deg}\left(p_{T_{W}}(t)\right)=\operatorname{dim}(V)-\operatorname{dim}(W)>0
$$

contradicting the assumption that $p_{T}(t)$ is irreducible.
(b) Let W be the T-cyclic subspace generated by v. Then W is a nonzero T-invariant subspace of V . It follows from (a) that $\mathrm{W}=\mathrm{V}$, i.e $\operatorname{dim}(W)=\mathrm{n}$. The assertion now follows from Theorem 5.22(a) of the textbook.
(c) Let v be a nonzero element of \mathbb{Q}^{4}. Since $p_{A}(t)$ is irreducible over \mathbb{Q}, by (c), $\beta=\left\{v, A v, A^{2} v, A^{3} v\right\}$ is a basis of \mathbb{Q}^{4}. By Theorem $5.22(b)$ of the textbook, we must have $A^{4} v+A^{3} v+A^{2} v+A v+v=0$. The matrix of $L_{A}: \mathbb{Q}^{4} \rightarrow \mathbb{Q}^{4}$ with respect to the basis β is then exactly the given matrix. Take $P=\left(v A v A^{2} v A^{3} v\right)$ (with $v, A v, \ldots$ as the columns). By the change of basis formula, $\mathrm{P}^{-1} \mathrm{AP}=\left[\mathrm{L}_{\mathcal{A}}\right]_{\beta}$.

[^0]: ${ }^{\dagger}$ The reason we can do this is that each entry of the series above converges absolutely, so that we can rearrange the sum as we wish.

[^1]: ${ }^{\dagger}$ We say a polynomial $f(t) \in F[t]$ is monic if its leading coefficient is 1 .

