
MAT247 Algebra II
Assignment 3

Solutions

1. Let T be a linear operator on a finite-dimensional vector space over a field F. Suppose that
the characteristic polynomial of T is f(t) = ±t2(t− 1)3(tp + 1), where p is a prime number.

(a) Suppose F = R. Can T be diagonalizable? What are the eigenvalues of T? What are
the possible values for the dimension of each eigenspace of T? Give an example for
each possibility. (Suggestion: Construct your examples using block diagonal matri-
ces. Exercise 19 of 5.4 gives a way of constructing a matrix with a given characteristic
polynomial.)

(b) Suppose F = C. Can T be diagonalizable? If yes, suppose T is diagonalizable. What is
the dimension of each eigenspace of T?

(c) Suppose F has characteristic p. What are the eigenvalues of T? What are the possible
values of the dimension of each eigenspace of T? (Suggestion: Expand (t+ 1)p.)

(d) Back to a general F of arbitrary characteristic, show that T is not surjective.

Solution: (a) No, because the characteristic polynomial does not split over R. The eigen-
values are 0, 1 if p = 2 and 0, 1,−1 if p > 2. The dimension of E0 can be 1 or 2 (= multiplicity
of eigenvalue 0), and the dimension of E1 can be 1,2, or 3. When p > 2, the eigenspace E−1 is
one-dimensional as −1 is an eigenvalue of multiplicity 1. We construct our examples for the
case where p is odd. Consider the block-diagonal matrix

A =

B0 B1
C

 ,
where C is the companion matrix for the polynomial tp + 1, i.e.

C =



0 . . . −1
1 0 . . . 0
0 1 0 . . . 0
... . . . ...

0 0
0 1 0

 ∈Mp×p(R),

and the diagonal blocks B0 and B1 are of the form

B0 =

(
0 a
0 0

)
and

B1 =

1 b 0
0 1 c
0 0 1

 .
Then the characteristic polynomial ofA is exactly f(t), and moreover by choosing a, b, cwe can
make sure E0 and E1 have dimensions as desired (up to the multiplicity of the eigenvalue, of
course). If we take a = 1 (resp. a = 0), then dim(E0) = 1 (resp. dim(E0) = 2). If we take b = 1
and c = 0 (resp. b = c = 1 and b = c = 0), then the dimension of E1 is 2 (resp. 1 and 3).
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(b) It can. The complex roots of f(t) are 0 (of mult. 2), 1 (of mult. 3), and the p-th roots
α1, . . . , αp of -1, each of multiplicity 1. The eigenspace Eαi

are each 1-dimensional, and T is
diagonalizable if and only if dim(E0) = 2 and dim(E1) = 3.

(c) Consider

(t+ 1)p =
∑
j

(
p

j

)
tj.

For 1 < j < p, the number j!(p − j)! is not a multiple of p (the key being that p is a prime
number), so that

(
p
j

)
= p!

j!(p−j)!
is a multiple of p. Thus if F is a field of characteristic p,

(t+ 1)p = tp + 1p = tp + 1.

If p 6= 2, then the distinct roots of f(t) in F (or in other words, eigenvalues of T ) are 0,1,-1,
respectively of multiplicities 2, 3, and p. If p = 2, then −1 = 1 and the distinct roots of f(t)
in F are 0 and 1, respectively of multiplicities 2 and 5. In each case, the dimension of each
eigenspace is bounded from below by 1 and from above by the multiplicity of the corresponding
eigenvalue.

(d) Since T is a linear operator on a finite-dimensional vector space, T is surjective if and
only if it is injective. Since 0 is an eigenvalue of T , ker(T) is not zero and hence T is not injective.

2. For A ∈Mn×n(C), define

eA =

∞∑
k=0

1

k!
Ak.

One can show that the sum converges for every A.
(a) Ignoring all convergence-related questions, show that if AB = BA, then eA+B = eAeB.
(b) Show that ifA is nilpotent, then the characteristic polynomial of eA is (−1)n(t−1)n. (An

element of Mn×n(F) with characteristic polynomial (−1)n(t − 1)n is called a unipotent
matrix. Hint: How are the characteristic polynomials of B and B + λI related to one
another?)

(c) Does it make sense to define eA with the same formula as above for an n× n matrix A
with entries in an arbitrary field of characteristic zero? What if A is nilpotent?

(d) Can we define eA with the formula as above for a nilpotent matrix A with entries in a
field of positive characteristic?

Solution: (a) Let us start with

eA+B =

∞∑
k=0

1

k!
(A+ B)k.

Since A and B commute, this expands as
∞∑
k=0

1

k!

k∑
j=0

(
k

j

)
AjBk−j =

∞∑
k=0

k∑
j=0

1

k!

(
k

j

)
AjBk−j =

∞∑
k=0

k∑
j=0

1

j!(k− j)!
AjBk−j.

Setting r = j and s = k− j, the sum can be rewritten as†

∞∑
r=0

∞∑
s=0

1

r!s!
ArBs =

∞∑
r=0

(
1

r!
Ar

∞∑
s=0

1

s!
Bs

)
=

( ∞∑
r=0

1

r!
Ar

)( ∞∑
s=0

1

s!
Bs

)
= eAeB.

†The reason we can do this is that each entry of the series above converges absolutely, so that we can rearrange
the sum as we wish.
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(b) Let A be nilpotent, say of nilpotency indexm. Let N = eA − I. We have

N =

∞∑
k=1

1

k!
Ak =

m∑
k=1

1

k!
Ak = A

m∑
k=1

1

k!
Ak−1︸ ︷︷ ︸

B

.

Note that A and B commute, and thusNm = AmBm = 0. In particular,N is nilpotent and hence
its characteristic polynomial is (−1)ntn. Then the characteristic polynomial of eA = N + I is
pN(t − 1) = (−1)n(t − 1)n. (Note that for any map or matrix M, pM+λI(t) = det(M + λI − tI) =
det(M− (t− λ)I) = pM(t− λ).)

(c) In general, for an arbitrary matrix A over an arbitrary field of characteristic zero, this
definition does not make sense, because there is no notion of limit and hence infinite sums don’t
make sense. IfA is nilpotent, then the definition does make sense because there are only finitely
many nonzero terms in the sum anyways.

(d) Here even in the nilpotent case there might be a problem as k! is zero in the field when
k is greater than or equal to the characteristic, and hence does not have a multiplicative inverse.

3. Let T be a linear operator on a nonzero finite-dimensional vector space V over a field F. The
minimal polynomial of T is the monic† polynomial f(t) of smallest degree such that f(T) = 0. It
is easy to show that the minimal polynomial exists and is unique, and by the Cayley-Hamilton
theorem, its degree is ≤ dim(V). You don’t have to include the argument for these facts in your
solution.

Suppose f(t) is the minimal polynomial of T . Let g(t) ∈ F[t] be any polynomial such
that g(T) = 0. Show that f(t)

∣∣ g(t). (Suggestion: By the division algorithm, we can write
g(t) = q(t)f(t) + r(t) with deg(r(t)) < deg(f(t)). It might help to take a look at Exercise 1 of
the extra practice problems below.)

Solution: By the division algorithm we can write g(t) = f(t)q(t)+r(t) for (unique) q(t), r(r) ∈
F[t] with deg(r(t)) < deg(f(t)). We then have g(T) = f(T) ◦ q(T) + r(T). Since g(T) = f(T) = 0,
we get r(T) = 0. This implies r(t) = 0 (and hence f(t)

∣∣ g(t)), as otherwise, if c is the leading
coefficient of r(t), then r1(t) = 1

c
r(t) is a monic polynomial of degree less that deg(f(t)) and

r1(T) =
1
c
r(T) = 0, which contradicts the minimality property of the minimal polynomial of T .

4. Let F be a field. We say a polynomial f(t) ∈ F[t] is irreducible (over F) if it satisfies (both
of) the following conditions: (i) the degree of f(t) is ≥ 1, and (ii) whenever f(t) = g(t)h(t) for
polynomials g(t), h(t) ∈ F[t], then g(t) or h(t) has degree zero (i.e. we cannot write f(t) as
a product of two elements of F[t] with positive degree). For instance, t2 + 1 is an irreducible
polynomial in R[t]. The only irreducible polynomials in C[t] are the degree 1 polynomials.

Let T be a linear operator on a finite-dimensional vector space over F.
(a) Show that for any f(t) ∈ F[t], the kernel of f(T) is T -invariant.
(b) Suppose f(t) ∈ F[t] is an irreducible factor of the characteristic polynomial pT(t) of T

(by being a factor we mean f(t) divides pT(t)). Show that either ker(f(T)) = 0 or

dim ker(f(T)) ≥ deg(f(t)).

(Suggestion: Question 3 can be useful. Note: In fact, f(T) cannot be injective. You can
try to prove this (but it is not mandatory).)

†We say a polynomial f(t) ∈ F[t] is monic if its leading coefficient is 1.
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Solution: (a) Given v ∈ ker(f(T)), we have f(T)((T(v)) = f(T) ◦ T(v) = T ◦ f(T)(v) =
T(f(T)(v)) = T(0) = 0. Thus T(v) ∈ ker(f(T)) and ker(f(T)) is T -invariant.

(b) Suppose ker(f(T)) 6= 0. Set W = ker(f(T)); then W is nonzero and T -invariant. Let g(t)
be the minimal polynomial of TW . Since W 6= 0, deg(g(t)) > 0. Now by definition of W, f(T) is
zero on W, so that f(TW) = 0. Thus g(t)

∣∣ f(t). Since f(t) is irreducible and g(t) is not constant,
it follows that deg(f(t)) = deg(g(t)). On the other hand, by Cayley-Hamilton, pTW(TW) = 0, so
that deg(g(t)) ≤ deg(pTW(t)) = dim(W). Thus we have

deg(f(t)) = deg(g(t)) ≤ deg(pTW(t)) = dim(W),

as desired. (Note: For the question as stated, we don’t need to assume that f(t) divides the
characteristic polynomial of T . With that extra hypothesis, one can prove that f(T) cannot be
injective, so that we must have dim ker(f(T)) ≥ deg(f(t)) (rather than the weaker conclusion
than either ker(f(T)) = 0 or dim ker(f(T)) ≥ deg(f(t))). See the first problem on the extra prac-
tice list for Assignment 4.)

5. Let V be an n-dimensional vector space over a field F. Suppose T : V → V is a linear map
such that the characteristic polynomial pT(t) is irreducible.

(a) Show that the only T -invariant subspaces of V are 0 and V .
(b) Let v be a nonzero element of V . Show that {v, T(v), . . . , Tn−1(v)} is a basis of V .
(c) Suppose A ∈M4×4(Q) has characteristic polynomial pA(t) = t4 + t3 + t2 + t+ 1. Show

that there exists a matrix P ∈M4×4(Q) such that

P−1AP =


0 0 0 −1
1 0 0 −1
0 1 0 −1
0 0 1 −1

 .
Note: For parts (b) and (c) you might want to wait until Tuesday. Otherwise, first

read about T -cyclic subspaces on the bottom of page 313 and then read Theorem 5.22.
For (c), you may take it for granted that t4 + t3 + t2 + t+ 1 is irreducible over Q.)

Solution: (a) If W is a nonzero proper T -invariant subspace of V , then 0 < deg(pTW(t)) =
dim(W) < dim(V) and pT(t) = pTW(t)g(t) for some polynomial g(t) of degree

deg(g(t)) = deg(pT(t)) − deg(pTW(t)) = dim(V) − dim(W) > 0,

contradicting the assumption that pT(t) is irreducible.
(b) Let W be the T -cyclic subspace generated by v. Then W is a nonzero T -invariant sub-

space of V . It follows from (a) that W = V , i.e dim(W) = n. The assertion now follows from
Theorem 5.22(a) of the textbook.

(c) Let v be a nonzero element of Q4. Since pA(t) is irreducible over Q, by (c), β = {v,Av,A2v,A3v}
is a basis of Q4. By Theorem 5.22(b) of the textbook, we must haveA4v+A3v+A2v+Av+v = 0.
The matrix of LA : Q4 → Q4 with respect to the basis β is then exactly the given matrix.
Take P = (v Av A2v A3v) (with v,Av, ... as the columns). By the change of basis formula,
P−1AP = [LA]β.


