MAT247 Algebra II

Assignment 3

Due Friday Feb 1 at 11:59 pm (to be submitted on Crowdmark)

Please write your solutions neatly and clearly. Note that due to time limitations, some questions may not be graded.

- 1. Let T be a linear operator on a finite-dimensional vector space over a field F. Suppose that the characteristic polynomial of T is $f(t) = \pm t^2(t-1)^3(t^p+1)$, where p is a prime number.
 - (a) Suppose $F = \mathbb{R}$. Can T be diagonalizable? What are the eigenvalues of T? What are the possible values for the dimension of each eigenspace of T? Give an example for each possibility. (Suggestion: Construct your examples using block diagonal matrices. Exercise 19 of 5.4 gives a way of constructing a matrix with a given characteristic polynomial.)
 - (b) Suppose $F = \mathbb{C}$. Can T be diagonalizable? If yes, suppose T is diagonalizable. What is the dimension of each eigenspace of T?
 - (c) Suppose F has characteristic p. What are the eigenvalues of T? What are the possible values of the dimension of each eigenspace of T? (Suggestion: Expand $(t + 1)^p$.)
 - (d) Back to a general F of arbitrary characteristic, show that T is not surjective.
- **2.** For $A \in M_{n \times n}(\mathbb{C})$, define

$$e^A = \sum_{k=0}^{\infty} \frac{1}{k!} A^k.$$

One can show that the sum converges for every A.

- (a) Ignoring all convergence-related questions, show that if AB = BA, then $e^{A+B} = e^A e^B$.
- (b) Show that if A is nilpotent, then the characteristic polynomial of e^A is $(-1)^n(t-1)^n$. (An element of $M_{n\times n}(F)$ with characteristic polynomial $(-1)^n(t-1)^n$ is called a *unipotent* matrix. Hint: How are the characteristic polynomials of B and B + λ I related to one another?)
- (c) Does it make sense to define e^A with the same formula as above for an $n \times n$ matrix A with entries in an arbitrary field of characteristic zero? What if A is nilpotent?
- (d) Can we define e^A with the formula as above for a nilpotent matrix A with entries in a field of positive characteristic?
- 3. Let T be a linear operator on a nonzero finite-dimensional vector space V over a field F. The minimal polynomial of T is the monic[†] polynomial f(t) of smallest degree such that f(T) = 0. It is easy to show that the minimal polynomial exists and is unique, and by the Cayley-Hamilton theorem, its degree is $\leq \dim(V)$. You don't have to include the argument for these facts in your solution.

Suppose f(t) is the minimal polynomial of T. Let $g(t) \in F[t]$ be any polynomial such that g(T) = 0. Show that $f(t) \mid g(t)$. (Suggestion: By the division algorithm, we can write g(t) = q(t)f(t) + r(t) with deg(r(t)) < deg(f(t)). It might help to take a look at Exercise 1 of the extra practice problems below.)

4. Let \bar{F} be a field. We say a polynomial $f(t) \in F[t]$ is *irreducible* (over \bar{F}) if it satisfies (both of) the following conditions: (i) the degree of f(t) is ≥ 1 , and (ii) whenever f(t) = g(t)h(t) for

[†]We say a polynomial $f(t) \in F[t]$ is monic if its leading coefficient is 1.

polynomials g(t), $h(t) \in F[t]$, then g(t) or h(t) has degree zero (i.e. we cannot write f(t) as a product of two elements of F[t] with positive degree). For instance, $t^2 + 1$ is an irreducible polynomial in $\mathbb{R}[t]$. The only irreducible polynomials in $\mathbb{C}[t]$ are the degree 1 polynomials.

Let T be a linear operator on a finite-dimensional vector space over F.

- (a) Show that for any $f(t) \in F[t]$, the kernel of f(T) is T-invariant.
- (b) Suppose $f(t) \in F[t]$ is an irreducible factor of the characteristic polynomial $p_T(t)$ of T (by being a factor we mean f(t) divides $p_T(t)$). Show that either ker(f(T)) = 0 or

$$\dim \ker(f(T)) \ge \deg(f(t))$$
.

(Suggestion: Question 3 can be useful. Note: In fact, f(T) cannot be injective. You can try to prove this (but it is not mandatory).)

- **5.** Let V be an n-dimensional vector space over a field F. Suppose $T: V \to V$ is a linear map such that the characteristic polynomial $p_T(t)$ is irreducible.
 - (a) Show that the only T-invariant subspaces of V are 0 and V.
 - (b) Let ν be a nonzero element of V. Show that $\{\nu, T(\nu), \dots, T^{n-1}(\nu)\}$ is a basis of V.
 - (c) Suppose $A \in M_{4\times 4}(\mathbb{Q})$ has characteristic polynomial $p_A(t) = t^4 + t^3 + t^2 + t + 1$. Show that there exists a matrix $P \in M_{4\times 4}(\mathbb{Q})$ such that

$$P^{-1}AP = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{pmatrix}.$$

Note: For parts (b) and (c) you might want to wait until Tuesday. Otherwise, first read about T-cyclic subspaces on the bottom of page 313 and then read Theorem 5.22. For (c), you may take it for granted that $t^4 + t^3 + t^2 + t + 1$ is irreducible over \mathbb{Q} .)

Practice Problems: The following problems are for your practice. They are not to be handed in for grading.

From the textbook: exercises from 5.2 that use the word "multiplicity", exercises # 2, 4, 5, 7, 8, 19 of 5.4

Extra problems:

- 1. Let T be a linear operator on a finite-dimensional vector space over a field F. Let $f(t), g(t) \in F[t]$, h(t) = f(t) + g(t) and k(t) = f(t)g(t). Show that h(T) = f(T) + g(T) and $k(T) = f(T) \circ g(T)$ (composition of f(T) and g(T)). Conclude that the maps f(T) and g(T) commute.
- **2.** Let V be a vector space over F and T : V \rightarrow V a linear map. Let $f(t) \in F[t]$. Show that if $v \in V$ is an eigenvector of T with corresponding eigenvalue λ , then v is an eigenvector of f(T) with corresponding eigenvalue $f(\lambda)$.
- **3.** Suppose T is a diagonalizable operator on a finite-dimensional vector space V over a field F. Show that f(T) is diagonalizable for every $f(t) \in F[t]$.
- 4. Prove Cayley-Hamilton for diagonalizable maps.
- **5.** Let T be a linear operator on a vector space V over a field F. Let W be a T-invariant subspace of V. Show that W is f(T)-invariant for every $f(t) \in F[t]$.
- **6.** (for those interested, will not be on the test/exam) Suppose F is a field of characteristic p. Show that if p = 0 or $p \nmid n$, then $t^n 1$ has no repeated root in F (i.e. has no root of multiplicity > 1).
- 7. Let T be a linear operator on a finite-dimensional vector space V. Suppose there is a decomposition $V = \bigoplus_{i=1}^k W_i$, where the W_i are T-invariant. We denote the restriction of T to W_i by T_{W_i} (our usual notation).
 - (a) Let β_i be a basis of W_i . Let $\beta = \bigcup_i \beta_i$. Show that $[T]_{\beta}$ is the block diagonal matrix with the diagonal blocks $[T_{W_i}]_{\beta_i}$.
 - (b) Let $p_i(t)$ be the characteristic polynomial of T_{W_i} . Show that the characteristic polynomial of T equals $\prod_{i=1}^k p_i(t)$.
- **8.** Let T be a linear operator on a finite-dimensional vector space V over a field F. For any $\lambda \in F$, define the *generalized eigenspace* of T corresponding to λ to be

$$K_{\lambda} := \{ \nu \in V : (T - \lambda I)^m(\nu) = 0 \text{ for some positive integer } m \}.$$

Note that K_{λ} contains the eigenspace E_{λ} .

- (a) Show that K_{λ} is T-invariant and that K_{λ} is nonzero if and only if λ is an eigenvalue of T.
- (b) For an eigenvalue λ of T, let m_{λ} be the multiplicity of λ and $d_{\lambda} = \text{dim}(K_{\lambda})$. Show that the characteristic polynomial of the restriction of T to K_{λ} is $(-1)^{d_{\lambda}}(t-\lambda)^{d_{\lambda}}$. (Suggestion: Is the restriction of T λ I to K_{λ} nilpotent?)
- (c) Let $T: V/K_{\lambda} \to V/K_{\lambda}$ be the map induced by T on the quotient V/K_{λ} (see Problem 3 of Assignment 2). Show that λ is not an eigenvalue of \overline{T} . Conclude that $d_{\lambda} = m_{\lambda}$.
- (d) Show that if $\lambda \neq \lambda'$, then $(T \lambda'I)_{K_{\lambda}}$ (i.e. the restriction of $T \lambda'I$ to K_{λ}) is injective. (Hint: What is the characteristic polynomial of $(T \lambda'I)_{K_{\lambda}}$?)
- (e) Show that the sum of the generalized eigenspaces of T corresponding to distinct eigenvalues is direct.

- (f) Combine parts (c) and (e) to conclude that if the characteristic polynomial of T splits over F, then V decomposes as $\bigoplus_{\lambda} K_{\lambda}$, where the sum is over the eigenvalues of T.
- 9. (a) Let $A,P\in M_{n\times n}(\mathbb{C}).$ Show that $e^{PAP^{-1}}=Pe^AP^{-1}.$
- (b) Suppose $A \in M_{n \times n}(\mathbb{C})$ is diagonalizable over \mathbb{C} . Show that $e^{\text{Tr}(A)} = \text{det}(e^A)$ (where Tr stands for the trace). Note: The identity is also true for non-diagonalizable matrices.
- **10.** (for interested students, will not be on the test/exam) Let F be a field. Let $U_n(F)$ be the set of upper triangular elements of $M_{n\times n}(F)$ with diagonal entries all equal to 1. Let $N_n(F)$ be the set of upper triangular nilpotent elements of $M_{n\times n}(F)$. Show that if F has characteristic zero, then the map $exp: N_n(F) \to U_n(F)$ sending $A \mapsto e^A$ (called the exponential map) is bijective. (Hint: Try to define the inverse of exp. It might be useful to try to borrow ideas from calculus.)