MAT?247 Algebra 11
Assignment 4

Solutions

1. Let T and S be linear operators on a vector space V such that TS = ST. Show that the kernel
and image of S are T-invariant.

Solution: Let v € ker(S). Then S(T(v)) = T(S(v)) = T(0) = 0, so that T(v) € ker(S). Thus
ker(S) is T-invariant.

Letw € Im(S). Thenw = S(u) for some u € V, and T(w) = T(S(u)) = S(T(u)) € Im(S).
Thus Im(S) is also T-invariant.

2. Let T be a linear operator on a nonzero finite-dimensional vector space V. Show that if V
has no nontrivial T-invariant subspace (i.e. has no T-invariant subspaces other than 0 and V),
then the characteristic polynomial of T is irreducible. Note: The converse statement is also true
(and you proved it on the previous assignment).

Solution: Let dim(V) = n. Suppose pr(t) = f(t)g(t). We need to show that either f(t)
or g(t) has degree n. We have pr(T) = f(T) o g(T), so that by the Cayley-Hamilton theorem
f(T)og(T) = 0. It follows that either f(T) or g(T) is not injective (as otherwise, f(T) o g(T) would
be injective). Without loss of generality, say f(T) is not injective. We claim that f(t) has degree n.
Indeed, let v be a nonzero element of ker(f(T)). Let W be the T-cyclic subspace generated by v.
Since V does not have any T-invariant subspaces other that zero and V, we must have W =V,
so that (since dim(W) = n) by Theorem 5.22(a), {v, T(v),..., T"'(v)} is linearly independent.

Now note that if deg(f(t)) = m, and f(t) = }_ a;t" with a,, # 0 (note that f(t) is not zero), then
i=0

0="F(T)(v) = i a;THv).
i=0

If m < n, this contradicts the earlier conclusion that {v, T(v),..., T""(v)} is linearly indepen-
dent.

k

3. Let V be a vector space. Suppose V; (1 <1 < k) are subspaces of V such that V = € V.. Let
=1

T be a linear operator on V such that each V; is T-invariant. Show that

k

k
ker(T) = @) (ker(T) N'Vi) =P ker(Ty,)
i=1

i=1

and
k

k
Im(T) =P (Im(M) nVi) =P Im(Ty,).
i=1 i=1

(As usual, Ty : W — W denotes the restriction of T to a T-invariant subspace W of V.)

Solution: Let us first focus on the assertions regarding kernels. Since the sum of the V; is

direct, it is clear that the sum of the subspaces ker(T) N V; is direct. Thus to prove the first
1
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equality it is enough to show that
k
(1) ker(T) = ) (ker(T) N V4).
i=1

Letv € ker(T). Since V = @ Vi, we can express v uniquely as v = Z v; for vectors v; € V;. (That
Wwe can express v as a sum E)f vectors in the V; is because V = Z Vi,l and the uniqueness follows
easily from property (ii) of a direct sum from Problem 2 of Assilgnment 2.) Then T(v) =3 T(wi).
Since v € ker(T), we see Z T(vi) = 0. Since each V; is T-invariant, we have T(v;) € V,. Silnce the

sum of the V; is direct, it flollows that T(v;) = 0 for all i, so that v; € ker(T) N V;i. This completes
the proof of (1).
The equality

K K
P (ker(T)nVi) =P ker(Ty,)
i=1 i=1
is clear because ker(T) N V; = ker(Ty, ).
We now prove the assertions for images. To prove
k
Im(T) =P (Im(T) N Vi),
i=1
it is enough to show that
K
) Im(T) =) (Im(T)NV)
i=1
(as the sum of Im(T) NV, is certainly direct). Let v € Im(T). Thenv = T(u) for some u € V.
Since V = @ V;, we can write u = ) _u; for unique vectors u; € Vi. Thenv = T(u) = Y T(w).

Since each V; is T-invariant, T(u;) € V;, and hence in V; N Im(T). This proves (2).
It remains to show that

K K
(Im(T)N Vi) =P Im(Ty,).
i=1 i=1
It is enough to show that
ITTL(T) N Vi = ITTL(TVL)
for any i. The inclusion Im(T) N'V; D Im(Ty,) is clear. We shall show Im(T) N V; C Im(Ty,). Let
v e Im(T)NVi. Thenv = T(u) for someu € V. Writeu = ) u; withu; € V;. Thenv =) T(w;).

j j
Since each Vj is T-invariant, we have T(w;) € V;. Since v € V; and the sum of the V; is direct, it
follows that v = T(u;) and T(u;) = 0 for j # i. In particular, v € T(V;) = Im(Ty,), as desired.

4. Let T be a nilponent linear operator on a (possibly infinite-dimensional) vector space V.
Suppose the nilpotency index of T is k. (That is, k is the smallest non-negative integer such that
T* = 0.) Show that if 0 < i < k, then Im(T'"") € Im(T") and ker(T") € ker(T*"). Suggestion: It
is useful to note that T(Im(T")) = Im(T*'") and Im(T!) C ker(T*™).

Solution: 1t is clear that Im(T'") c Im(T!) for all i (as T"'(v) = T{(T(v))) for any v). We
need to show that for 0 < i < k, Im(T"'") # Im(T"). Suppose for some 0 < i < k we have
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Im(TH') = Im(TY). Then since Im(f o g) = f(Im(g)) for any composable functions f and g,
applying powers of T we see that Im(T'"") = Im(T) for all j > i, and hence for all such j,
Im(T) = Im(T"). In particular, Im(T') = Im(T*) = 0, which contradicts the defining property
of k.

As for the assertion regarding kernels, it is clear that for every i, ker(T') C ker(T'""). Let
0 < i < k. We shall show that ker(T") # ker(T""). Indeed, suppose ker(T') = ker(T"""). Since
T = 0and i < k, we have Im(T** )  ker(T*"), so that Im(T** ") C ker(T!). But then
T =TT 1 = 0, again contradicting the defining property of k.

5. Let
200000000
021000000
002000000
00021T00O00O00
A=(000020000
000002100
000000210
000000021
0000O0O0O0OO0?2
(a) Find the dimensions of the nullspaces of (A — 2I)* fork = 1,2,
(b) Show that A is not similar to the matrix
2000000O00O00O
021000000
0 020000O00O0
000210000
B=]1000021000
000002000
000000210
000000021
0O 000O0O0O0O02

Hint: If A and B are similar, then f(A) and f(B) are similar for any polynomial f(t). Sim-
ilar matrices have the same nullity (for if C = P~'DP, then we have an isomorphism
N(C) — N(D) given by x — Px).

Solution: (a) dim(N(A — 2I)) =4, dim(N(A — 21)?) = 7, dim(N(A — 21)?) = 8, dim(N(A —
21)%) =9 fork > 4

(b) We have dim(N(B — 21)3) = 9 # dim(N(A — 21)?), so A and B are not similar. (See the
explanation in the hint.)

6. (reading assignment) Read Theorems E2, E8 and E9 and their proofs (and the relevant
definitions) from Appendix E.



