
MAT247 Algebra II
Assignment 4

Solutions

1. Let T and S be linear operators on a vector space V such that TS = ST . Show that the kernel
and image of S are T -invariant.

Solution: Let v ∈ ker(S). Then S(T(v)) = T(S(v)) = T(0) = 0, so that T(v) ∈ ker(S). Thus
ker(S) is T -invariant.

Let w ∈ Im(S). Then w = S(u) for some u ∈ V , and T(w) = T(S(u)) = S(T(u)) ∈ Im(S).
Thus Im(S) is also T -invariant.

2. Let T be a linear operator on a nonzero finite-dimensional vector space V . Show that if V
has no nontrivial T -invariant subspace (i.e. has no T -invariant subspaces other than 0 and V),
then the characteristic polynomial of T is irreducible. Note: The converse statement is also true
(and you proved it on the previous assignment).

Solution: Let dim(V) = n. Suppose pT(t) = f(t)g(t). We need to show that either f(t)
or g(t) has degree n. We have pT(T) = f(T) ◦ g(T), so that by the Cayley-Hamilton theorem
f(T)◦g(T) = 0. It follows that either f(T) or g(T) is not injective (as otherwise, f(T)◦g(T) would
be injective). Without loss of generality, say f(T) is not injective. We claim that f(t) has degree n.
Indeed, let v be a nonzero element of ker(f(T)). Let W be the T -cyclic subspace generated by v.
Since V does not have any T -invariant subspaces other that zero and V , we must have W = V ,
so that (since dim(W) = n) by Theorem 5.22(a), {v, T(v), . . . , Tn−1(v)} is linearly independent.

Now note that if deg(f(t)) = m, and f(t) =
m∑
i=0

ait
i with am 6= 0 (note that f(t) is not zero), then

0 = f(T)(v) =

m∑
i=0

aiT
i(v).

If m < n, this contradicts the earlier conclusion that {v, T(v), . . . , Tn−1(v)} is linearly indepen-
dent.

3. Let V be a vector space. Suppose Vi (1 ≤ i ≤ k) are subspaces of V such that V =
k⊕

i=1

Vi. Let

T be a linear operator on V such that each Vi is T -invariant. Show that

ker(T) =
k⊕

i=1

(ker(T) ∩ Vi) =

k⊕
i=1

ker(TVi
)

and

Im(T) =

k⊕
i=1

(Im(T) ∩ Vi) =

k⊕
i=1

Im(TVi
).

(As usual, TW : W → W denotes the restriction of T to a T -invariant subspace W of V .)

Solution: Let us first focus on the assertions regarding kernels. Since the sum of the Vi is
direct, it is clear that the sum of the subspaces ker(T) ∩ Vi is direct. Thus to prove the first
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equality it is enough to show that

(1) ker(T) =
k∑

i=1

(ker(T) ∩ Vi).

Let v ∈ ker(T). Since V =
⊕
i

Vi, we can express v uniquely as v =
∑
i

vi for vectors vi ∈ Vi. (That

we can express v as a sum of vectors in the Vi is because V =
∑
i

Vi, and the uniqueness follows

easily from property (ii) of a direct sum from Problem 2 of Assignment 2.) Then T(v) =
∑
i

T(vi).

Since v ∈ ker(T), we see
∑
i

T(vi) = 0. Since each Vi is T -invariant, we have T(vi) ∈ Vi. Since the

sum of the Vi is direct, it follows that T(vi) = 0 for all i, so that vi ∈ ker(T) ∩ Vi. This completes
the proof of (1).

The equality
k⊕

i=1

(ker(T) ∩ Vi) =

k⊕
i=1

ker(TVi
)

is clear because ker(T) ∩ Vi = ker(TVi
).

We now prove the assertions for images. To prove

Im(T) =

k⊕
i=1

(Im(T) ∩ Vi),

it is enough to show that

(2) Im(T) =

k∑
i=1

(Im(T) ∩ Vi)

(as the sum of Im(T) ∩ Vi is certainly direct). Let v ∈ Im(T). Then v = T(u) for some u ∈ V .
Since V =

⊕
i

Vi, we can write u =
∑
i

ui for unique vectors ui ∈ Vi. Then v = T(u) =
∑
i

T(ui).

Since each Vi is T -invariant, T(ui) ∈ Vi , and hence in Vi ∩ Im(T). This proves (2).
It remains to show that

k⊕
i=1

(Im(T) ∩ Vi) =

k⊕
i=1

Im(TVi
).

It is enough to show that
Im(T) ∩ Vi = Im(TVi

)

for any i. The inclusion Im(T) ∩ Vi ⊃ Im(TVi
) is clear. We shall show Im(T) ∩ Vi ⊂ Im(TVi

). Let
v ∈ Im(T)∩ Vi. Then v = T(u) for some u ∈ V . Write u =

∑
j

uj with uj ∈ Vj. Then v =
∑
j

T(uj).

Since each Vj is T -invariant, we have T(uj) ∈ Vj. Since v ∈ Vi and the sum of the Vj is direct, it
follows that v = T(ui) and T(uj) = 0 for j 6= i. In particular, v ∈ T(Vi) = Im(TVi

), as desired.

4. Let T be a nilponent linear operator on a (possibly infinite-dimensional) vector space V .
Suppose the nilpotency index of T is k. (That is, k is the smallest non-negative integer such that
Tk = 0.) Show that if 0 ≤ i < k, then Im(T i+1) ( Im(T i) and ker(T i) ( ker(T i+1). Suggestion: It
is useful to note that T(Im(T i)) = Im(T i+1) and Im(T i) ⊂ ker(Tk−i).

Solution: It is clear that Im(T i+1) ⊂ Im(T i) for all i (as T i+1(v) = T i(T(v))) for any v). We
need to show that for 0 ≤ i < k, Im(T i+1) 6= Im(T i). Suppose for some 0 ≤ i < k we have
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Im(T i+1) = Im(T i). Then since Im(f ◦ g) = f(Im(g)) for any composable functions f and g,
applying powers of T we see that Im(T j+1) = Im(T j) for all j ≥ i, and hence for all such j,
Im(T j) = Im(T i). In particular, Im(T i) = Im(Tk) = 0, which contradicts the defining property
of k.

As for the assertion regarding kernels, it is clear that for every i, ker(T i) ⊂ ker(T i+1). Let
0 ≤ i < k. We shall show that ker(T i) 6= ker(T i+1). Indeed, suppose ker(T i) = ker(T i+1). Since
Tk = 0 and i < k, we have Im(Tk−i−1)) ⊂ ker(T i+1), so that Im(Tk−i−1) ⊂ ker(T i). But then
Tk−1 = T iTk−i−1 = 0, again contradicting the defining property of k.

5. Let

A =



2 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0
0 0 0 2 1 0 0 0 0
0 0 0 0 2 0 0 0 0
0 0 0 0 0 2 1 0 0
0 0 0 0 0 0 2 1 0
0 0 0 0 0 0 0 2 1
0 0 0 0 0 0 0 0 2


.

(a) Find the dimensions of the nullspaces of (A− 2I)k for k = 1, 2, . . ..
(b) Show that A is not similar to the matrix

B =



2 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0
0 0 0 2 1 0 0 0 0
0 0 0 0 2 1 0 0 0
0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 2 1 0
0 0 0 0 0 0 0 2 1
0 0 0 0 0 0 0 0 2


.

Hint: If A and B are similar, then f(A) and f(B) are similar for any polynomial f(t). Sim-
ilar matrices have the same nullity (for if C = P−1DP, then we have an isomorphism
N(C) → N(D) given by x 7→ Px).

Solution: (a) dim(N(A − 2I)) = 4, dim(N(A − 2I)2) = 7, dim(N(A − 2I)3) = 8, dim(N(A −
2I)k) = 9 for k ≥ 4

(b) We have dim(N(B − 2I)3) = 9 6= dim(N(A − 2I)3), so A and B are not similar. (See the
explanation in the hint.)

6. (reading assignment) Read Theorems E2, E8 and E9 and their proofs (and the relevant
definitions) from Appendix E.


