MAT247 Algebra II

Assignment 4

Solutions

1. Let T and S be linear operators on a vector space V such that $T S=S T$. Show that the kernel and image of S are T -invariant.

Solution: Let $v \in \operatorname{ker}(S)$. Then $S(T(v))=T(S(v))=T(0)=0$, so that $T(v) \in \operatorname{ker}(S)$. Thus $\operatorname{ker}(S)$ is T -invariant.

Let $w \in \operatorname{Im}(S)$. Then $w=S(u)$ for some $u \in V$, and $T(w)=T(S(u))=S(T(u)) \in \operatorname{Im}(S)$. Thus $\operatorname{Im}(S)$ is also T-invariant.
2. Let T be a linear operator on a nonzero finite-dimensional vector space V. Show that if V has no nontrivial T-invariant subspace (i.e. has no T-invariant subspaces other than 0 and V), then the characteristic polynomial of T is irreducible. Note: The converse statement is also true (and you proved it on the previous assignment).

Solution: Let $\operatorname{dim}(V)=n$. Suppose $p_{T}(t)=f(t) g(t)$. We need to show that either $f(t)$ or $g(t)$ has degree n. We have $p_{T}(T)=f(T) \circ g(T)$, so that by the Cayley-Hamilton theorem $f(T) \circ g(T)=0$. It follows that either $f(T)$ or $g(T)$ is not injective (as otherwise, $f(T) \circ g(T)$ would be injective). Without loss of generality, say $f(T)$ is not injective. We claim that $f(t)$ has degree n. Indeed, let v be a nonzero element of $\operatorname{ker}(f(T))$. Let W be the T-cyclic subspace generated by v. Since V does not have any T-invariant subspaces other that zero and V , we must have $\mathrm{W}=\mathrm{V}$, so that (since $\operatorname{dim}(W)=n$) by Theorem 5.22(a), $\left\{v, T(v), \ldots, T^{n-1}(v)\right\}$ is linearly independent. Now note that if $\operatorname{deg}(f(t))=m$, and $f(t)=\sum_{i=0}^{m} a_{i} t^{i}$ with $a_{m} \neq 0$ (note that $f(t)$ is not zero), then

$$
0=f(T)(v)=\sum_{i=0}^{m} a_{i} T^{i}(v)
$$

If $m<n$, this contradicts the earlier conclusion that $\left\{v, T(v), \ldots, T^{n-1}(v)\right\}$ is linearly independent.
3. Let V be a vector space. Suppose $V_{i}(1 \leq i \leq k)$ are subspaces of V such that $V=\bigoplus_{i=1}^{k} V_{i}$. Let T be a linear operator on V such that each V_{i} is T-invariant. Show that

$$
\operatorname{ker}(\mathrm{T})=\bigoplus_{\mathrm{i}=1}^{\mathrm{k}}\left(\operatorname{ker}(\mathrm{~T}) \cap \mathrm{V}_{\mathrm{i}}\right)=\bigoplus_{\mathrm{i}=1}^{\mathrm{k}} \operatorname{ker}\left(\mathrm{~T}_{\mathrm{V}_{\mathrm{i}}}\right)
$$

and

$$
\operatorname{Im}(T)=\bigoplus_{i=1}^{k}\left(\operatorname{Im}(T) \cap V_{i}\right)=\bigoplus_{i=1}^{k} \operatorname{Im}\left(T_{V_{i}}\right)
$$

(As usual, $T_{W}: W \rightarrow W$ denotes the restriction of T to a T-invariant subspace W of V.)
Solution: Let us first focus on the assertions regarding kernels. Since the sum of the V_{i} is direct, it is clear that the sum of the subspaces $\operatorname{ker}(T) \cap V_{i}$ is direct. Thus to prove the first
equality it is enough to show that

$$
\begin{equation*}
\operatorname{ker}(T)=\sum_{i=1}^{k}\left(\operatorname{ker}(T) \cap V_{i}\right) \tag{1}
\end{equation*}
$$

Let $v \in \operatorname{ker}(T)$. Since $V=\bigoplus_{i} V_{i}$, we can express v uniquely as $v=\sum_{i} v_{i}$ for vectors $v_{i} \in V_{i}$. (That we can express v as a sum of vectors in the V_{i} is because $V=\sum_{i} V_{i}$, and the uniqueness follows easily from property (ii) of a direct sum from Problem 2 of Assignment 2.) Then $T(v)=\sum_{i} T\left(v_{i}\right)$. Since $v \in \operatorname{ker}(T)$, we see $\sum_{i} T\left(v_{i}\right)=0$. Since each V_{i} is T-invariant, we have $T\left(v_{i}\right) \in V_{i}$. Since the sum of the V_{i} is direct, it follows that $T\left(v_{i}\right)=0$ for all i, so that $v_{i} \in \operatorname{ker}(T) \cap V_{i}$. This completes the proof of (1).

The equality

$$
\bigoplus_{i=1}^{k}\left(\operatorname{ker}(T) \cap V_{i}\right)=\bigoplus_{i=1}^{k} \operatorname{ker}\left(T_{V_{i}}\right)
$$

is clear because $\operatorname{ker}(T) \cap V_{i}=\operatorname{ker}\left(T_{V_{i}}\right)$.
We now prove the assertions for images. To prove

$$
\operatorname{Im}(T)=\bigoplus_{i=1}^{k}\left(\operatorname{Im}(T) \cap V_{i}\right)
$$

it is enough to show that

$$
\begin{equation*}
\operatorname{Im}(T)=\sum_{i=1}^{k}\left(\operatorname{Im}(T) \cap V_{i}\right) \tag{2}
\end{equation*}
$$

(as the sum of $\operatorname{Im}(T) \cap V_{i}$ is certainly direct). Let $v \in \operatorname{Im}(T)$. Then $v=T(u)$ for some $u \in V$. Since $V=\bigoplus_{i} V_{i}$, we can write $u=\sum_{i} u_{i}$ for unique vectors $u_{i} \in V_{i}$. Then $v=T(u)=\sum_{i} T\left(u_{i}\right)$. Since each V_{i} is T-invariant, $T\left(u_{i}\right) \in V_{i}$, and hence in $V_{i} \cap \operatorname{Im}(T)$. This proves (2).

It remains to show that

$$
\bigoplus_{i=1}^{k}\left(\operatorname{Im}(T) \cap V_{i}\right)=\bigoplus_{i=1}^{k} \operatorname{Im}\left(T_{V_{i}}\right)
$$

It is enough to show that

$$
\operatorname{Im}(T) \cap V_{i}=\operatorname{Im}\left(T_{V_{i}}\right)
$$

for any i. The inclusion $\operatorname{Im}(T) \cap V_{i} \supset \operatorname{Im}\left(T_{V_{i}}\right)$ is clear. We shall show $\operatorname{Im}(T) \cap V_{i} \subset \operatorname{Im}\left(T_{V_{i}}\right)$. Let $v \in \operatorname{Im}(T) \cap V_{i}$. Then $v=T(u)$ for some $u \in V$. Write $u=\sum_{j} u_{j}$ with $u_{j} \in V_{j}$. Then $v=\sum_{j} T\left(u_{j}\right)$. Since each V_{j} is T-invariant, we have $T\left(u_{j}\right) \in V_{j}$. Since $v \in V_{i}$ and the sum of the V_{j} is direct, it follows that $v=T\left(u_{i}\right)$ and $T\left(u_{j}\right)=0$ for $j \neq i$. In particular, $v \in T\left(V_{i}\right)=\operatorname{Im}\left(T_{V_{i}}\right)$, as desired.
4. Let T be a nilponent linear operator on a (possibly infinite-dimensional) vector space V . Suppose the nilpotency index of T is k . (That is, k is the smallest non-negative integer such that $\mathrm{T}^{k}=0$.) Show that if $0 \leq i<k$, then $\operatorname{Im}\left(T^{i+1}\right) \subsetneq \operatorname{Im}\left(T^{i}\right)$ and $\operatorname{ker}\left(T^{i}\right) \subsetneq \operatorname{ker}\left(T^{i+1}\right)$. Suggestion: It is useful to note that $T\left(\operatorname{Im}\left(T^{i}\right)\right)=\operatorname{Im}\left(T^{i+1}\right)$ and $\operatorname{Im}\left(T^{i}\right) \subset \operatorname{ker}\left(T^{k-i}\right)$.

Solution: It is clear that $\operatorname{Im}\left(T^{i+1}\right) \subset \operatorname{Im}\left(T^{i}\right)$ for all $i\left(\right.$ as $\left.T^{i+1}(v)=T^{i}(T(v))\right)$ for any v). We need to show that for $0 \leq i<k$, $\operatorname{Im}\left(T^{i+1}\right) \neq \operatorname{Im}\left(T^{i}\right)$. Suppose for some $0 \leq i<k$ we have
$\operatorname{Im}\left(T^{i+1}\right)=\operatorname{Im}\left(T^{i}\right)$. Then since $\operatorname{Im}(f \circ g)=f(\operatorname{Im}(g))$ for any composable functions f and g, applying powers of T we see that $\operatorname{Im}\left(T^{j+1}\right)=\operatorname{Im}\left(T^{j}\right)$ for all $j \geq i$, and hence for all such j, $\operatorname{Im}\left(T^{j}\right)=\operatorname{Im}\left(T^{i}\right)$. In particular, $\operatorname{Im}\left(T^{i}\right)=\operatorname{Im}\left(T^{k}\right)=0$, which contradicts the defining property of k.

As for the assertion regarding kernels, it is clear that for every $i, \operatorname{ker}\left(T^{i}\right) \subset \operatorname{ker}\left(T^{i+1}\right)$. Let $0 \leq i<k$. We shall show that $\operatorname{ker}\left(T^{i}\right) \neq \operatorname{ker}\left(T^{i+1}\right)$. Indeed, suppose $\operatorname{ker}\left(T^{i}\right)=\operatorname{ker}\left(T^{i+1}\right)$. Since $T^{k}=0$ and $i<k$, we have $\operatorname{Im}\left(T^{k-i-1)}\right) \subset \operatorname{ker}\left(T^{i+1}\right)$, so that $\operatorname{Im}\left(T^{k-i-1}\right) \subset \operatorname{ker}\left(T^{i}\right)$. But then $\mathrm{T}^{\mathrm{k}-1}=\mathrm{T}^{\mathrm{i}} \mathrm{T}^{\mathrm{k}-\mathrm{i}-1}=0$, again contradicting the defining property of k .
5. Let

$$
A=\left(\begin{array}{lllllllll}
2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 2 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2
\end{array}\right)
$$

(a) Find the dimensions of the nullspaces of $(A-2 I)^{k}$ for $k=1,2, \ldots$.
(b) Show that A is not similar to the matrix

$$
B=\left(\begin{array}{lllllllll}
2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2
\end{array}\right) .
$$

Hint: If A and B are similar, then $f(A)$ and $f(B)$ are similar for any polynomial $f(t)$. Similar matrices have the same nullity (for if $C=P^{-1} D P$, then we have an isomorphism $N(C) \rightarrow N(D)$ given by $x \mapsto P x)$.

Solution: (a) $\operatorname{dim}(\mathrm{N}(A-2 \mathrm{I}))=4, \operatorname{dim}\left(\mathrm{~N}(A-2 \mathrm{I})^{2}\right)=7, \operatorname{dim}\left(\mathrm{~N}(A-2 \mathrm{I})^{3}\right)=8, \operatorname{dim}(\mathrm{~N}(A-$ $\left.2 \mathrm{I})^{\mathrm{k}}\right)=9$ for $\mathrm{k} \geq 4$
(b) We have $\operatorname{dim}\left(N(B-2 I)^{3}\right)=9 \neq \operatorname{dim}\left(N(A-2 I)^{3}\right)$, so A and B are not similar. (See the explanation in the hint.)
6. (reading assignment) Read Theorems E2, E8 and E9 and their proofs (and the relevant definitions) from Appendix E.

