MAT247 Algebra II Assignment 4

Solutions

1. Let T and S be linear operators on a vector space V such that TS = ST. Show that the kernel and image of S are T-invariant.

Solution: Let $v \in \text{ker}(S)$. Then S(T(v)) = T(S(v)) = T(0) = 0, so that $T(v) \in \text{ker}(S)$. Thus ker(S) is T-invariant.

Let $w \in \text{Im}(S)$. Then w = S(u) for some $u \in V$, and $T(w) = T(S(u)) = S(T(u)) \in \text{Im}(S)$. Thus Im(S) is also T-invariant.

2. Let T be a linear operator on a nonzero finite-dimensional vector space V. Show that if V has no nontrivial T-invariant subspace (i.e. has no T-invariant subspaces other than 0 and V), then the characteristic polynomial of T is irreducible. Note: The converse statement is also true (and you proved it on the previous assignment).

Solution: Let dim(V) = n. Suppose $p_T(t) = f(t)g(t)$. We need to show that either f(t) or g(t) has degree n. We have $p_T(T) = f(T) \circ g(T)$, so that by the Cayley-Hamilton theorem $f(T) \circ g(T) = 0$. It follows that either f(T) or g(T) is not injective (as otherwise, $f(T) \circ g(T)$ would be injective). Without loss of generality, say f(T) is not injective. We claim that f(t) has degree n. Indeed, let v be a nonzero element of ker(f(T)). Let W be the T-cyclic subspace generated by v. Since V does not have any T-invariant subspaces other that zero and V, we must have W = V, so that (since dim(W) = n) by Theorem 5.22(a), $\{v, T(v), \ldots, T^{n-1}(v)\}$ is linearly independent. Now note that if deg(f(t)) = m, and $f(t) = \sum_{i=0}^{m} a_i t^i$ with $a_m \neq 0$ (note that f(t) is not zero), then

$$0 = f(T)(\nu) = \sum_{i=0}^{m} \alpha_i T^i(\nu).$$

If m < n, this contradicts the earlier conclusion that $\{v, T(v), \ldots, T^{n-1}(v)\}$ is linearly independent.

3. Let V be a vector space. Suppose V_i $(1 \le i \le k)$ are subspaces of V such that $V = \bigoplus_{i=1}^k V_i$. Let T be a linear operator on V such that each V_i is T-invariant. Show that

$$\ker(\mathsf{T}) = \bigoplus_{i=1}^{k} (\ker(\mathsf{T}) \cap \mathsf{V}_i) = \bigoplus_{i=1}^{k} \ker(\mathsf{T}_{\mathsf{V}_i})$$

and

$$\operatorname{Im}(\mathsf{T}) = \bigoplus_{i=1}^{k} \left(\operatorname{Im}(\mathsf{T}) \cap V_{i} \right) = \bigoplus_{i=1}^{k} \operatorname{Im}(\mathsf{T}_{V_{i}})$$

(As usual, $T_W : W \to W$ denotes the restriction of T to a T-invariant subspace W of V.)

Solution: Let us first focus on the assertions regarding kernels. Since the sum of the V_i is direct, it is clear that the sum of the subspaces ker(T) $\cap V_i$ is direct. Thus to prove the first

equality it is enough to show that

(1)
$$\ker(\mathsf{T}) = \sum_{i=1}^{k} (\ker(\mathsf{T}) \cap \mathsf{V}_i).$$

Let $v \in \text{ker}(T)$. Since $V = \bigoplus_i V_i$, we can express v uniquely as $v = \sum_i v_i$ for vectors $v_i \in V_i$. (That we can express v as a sum of vectors in the V_i is because $V = \sum_i V_i$, and the uniqueness follows easily from property (ii) of a direct sum from Problem 2 of Assignment 2.) Then $T(v) = \sum_i T(v_i)$. Since $v \in \text{ker}(T)$, we see $\sum_i T(v_i) = 0$. Since each V_i is T-invariant, we have $T(v_i) \in V_i$. Since the sum of the V_i is direct, it follows that $T(v_i) = 0$ for all i, so that $v_i \in \text{ker}(T) \cap V_i$. This completes the proof of (1).

The equality

$$\bigoplus_{i=1}^{k} (ker(T) \cap V_i) = \bigoplus_{i=1}^{k} ker(T_{V_i})$$

 $\text{ is clear because } ker(T) \cap V_i = ker(T_{V_i}).$

We now prove the assertions for images. To prove

$$\mathrm{Im}(\mathsf{T}) = \bigoplus_{i=1}^{k} (\mathrm{Im}(\mathsf{T}) \cap \mathsf{V}_{i}),$$

it is enough to show that

(2)
$$\operatorname{Im}(\mathsf{T}) = \sum_{i=1}^{k} (\operatorname{Im}(\mathsf{T}) \cap V_i)$$

(as the sum of $\text{Im}(T) \cap V_i$ is certainly direct). Let $v \in \text{Im}(T)$. Then v = T(u) for some $u \in V$. Since $V = \bigoplus_i V_i$, we can write $u = \sum_i u_i$ for unique vectors $u_i \in V_i$. Then $v = T(u) = \sum_i T(u_i)$. Since each V_i is T-invariant, $T(u_i) \in V_i$, and hence in $V_i \cap \text{Im}(T)$. This proves (2).

It remains to show that

$$\bigoplus_{i=1}^{k} (\mathrm{Im}(\mathsf{T}) \cap \mathsf{V}_i) = \bigoplus_{i=1}^{k} \mathrm{Im}(\mathsf{T}_{\mathsf{V}_i}).$$

It is enough to show that

$$\mathrm{Im}(\mathsf{T})\cap \mathsf{V}_{i}=\mathrm{Im}(\mathsf{T}_{\mathsf{V}_{i}})$$

for any i. The inclusion $\text{Im}(T) \cap V_i \supset \text{Im}(T_{V_i})$ is clear. We shall show $\text{Im}(T) \cap V_i \subset \text{Im}(T_{V_i})$. Let $v \in \text{Im}(T) \cap V_i$. Then v = T(u) for some $u \in V$. Write $u = \sum_j u_j$ with $u_j \in V_j$. Then $v = \sum_j T(u_j)$.

Since each V_j is T-invariant, we have $T(u_j) \in V_j$. Since $\nu \in V_i$ and the sum of the V_j is direct, it follows that $\nu = T(u_i)$ and $T(u_j) = 0$ for $j \neq i$. In particular, $\nu \in T(V_i) = Im(T_{V_i})$, as desired.

4. Let T be a nilponent linear operator on a (possibly infinite-dimensional) vector space V. Suppose the nilpotency index of T is k. (That is, k is the smallest non-negative integer such that $T^{k} = 0$.) Show that if $0 \le i < k$, then $Im(T^{i+1}) \subsetneq Im(T^{i})$ and $ker(T^{i}) \subsetneq ker(T^{i+1})$. Suggestion: It is useful to note that $T(Im(T^{i})) = Im(T^{i+1})$ and $Im(T^{i}) \subset ker(T^{k-i})$.

Solution: It is clear that $Im(T^{i+1}) \subset Im(T^i)$ for all i (as $T^{i+1}(\nu) = T^i(T(\nu))$) for any ν). We need to show that for $0 \le i < k$, $Im(T^{i+1}) \ne Im(T^i)$. Suppose for some $0 \le i < k$ we have

 $Im(T^{i+1}) = Im(T^i)$. Then since $Im(f \circ g) = f(Im(g))$ for any composable functions f and g, applying powers of T we see that $Im(T^{j+1}) = Im(T^j)$ for all $j \ge i$, and hence for all such j, $Im(T^j) = Im(T^i)$. In particular, $Im(T^i) = Im(T^k) = 0$, which contradicts the defining property of k.

As for the assertion regarding kernels, it is clear that for every i, $ker(T^i) \subset ker(T^{i+1})$. Let $0 \leq i < k$. We shall show that $ker(T^i) \neq ker(T^{i+1})$. Indeed, suppose $ker(T^i) = ker(T^{i+1})$. Since $T^k = 0$ and i < k, we have $Im(T^{k-i-1}) \subset ker(T^{i+1})$, so that $Im(T^{k-i-1}) \subset ker(T^i)$. But then $T^{k-1} = T^iT^{k-i-1} = 0$, again contradicting the defining property of k.

5. Let

(a) Find the dimensions of the nullspaces of $(A - 2I)^k$ for k = 1, 2, ...

(b) Show that A is not similar to the matrix

	/2	0	0	0	0	0	0	0	0
B =	0	2	1	0	0	0	0	0	0
	0	0	2	0	0	0	0	0	0
	0	0	0	2	1	0	0	0	0
	0	0	0	0	2	1	0	0	0
	0	0	0	0	0	2	0	0	0
	0	0	0	0	0	0	2	1	0
	0	0	0	0	0	0	0	2	1
	0	0	0	0	0	0	0	0	2/

Hint: If A and B are similar, then f(A) and f(B) are similar for any polynomial f(t). Similar matrices have the same nullity (for if $C = P^{-1}DP$, then we have an isomorphism $N(C) \rightarrow N(D)$ given by $x \mapsto Px$).

Solution: (a) dim(N(A - 2I)) = 4, dim $(N(A - 2I)^2) = 7$, dim $(N(A - 2I)^3) = 8$, dim $(N(A - 2I)^k) = 9$ for $k \ge 4$

(b) We have dim $(N(B - 2I)^3) = 9 \neq dim(N(A - 2I)^3)$, so A and B are not similar. (See the explanation in the hint.)

6. (reading assignment) Read Theorems E2, E8 and E9 and their proofs (and the relevant definitions) from Appendix E.