MAT247 Algebra II
 Assignment 4

Due Saturday Feb 9 at 11:59 pm (to be submitted on Crowdmark)

Please write your solutions neatly and clearly. Note that due to time limitations, some questions may not be graded.

1. Let T and S be linear operators on a vector space V such that $T S=S T$. Show that the kernel and image of S are T-invariant.
2. Let T be a linear operator on a nonzero finite-dimensional vector space V . Show that if V has no nontrivial T-invariant subspace (i.e. has no T-invariant subspaces other than 0 and V), then the characteristic polynomial of T is irreducible. Note: The converse statement is also true (and you proved it on the previous assignment).
3. Let V be a vector space. Suppose $V_{i}(1 \leq i \leq k)$ are subspaces of V such that $V=\bigoplus_{i=1}^{k} V_{i}$. Let T be a linear operator on V such that each V_{i} is T-invariant. Show that

$$
\operatorname{ker}(\mathrm{T})=\bigoplus_{i=1}^{k}\left(\operatorname{ker}(\mathrm{~T}) \cap \mathrm{V}_{\mathrm{i}}\right)=\bigoplus_{i=1}^{k} \operatorname{ker}\left(\mathrm{~T}_{\mathrm{V}_{\mathrm{i}}}\right)
$$

and

$$
\operatorname{Im}(T)=\bigoplus_{i=1}^{k}\left(\operatorname{Im}(T) \cap V_{i}\right)=\bigoplus_{i=1}^{k} \operatorname{Im}\left(T_{V_{i}}\right)
$$

(As usual, $T_{W}: W \rightarrow W$ denotes the restriction of T to a T-invariant subspace W of V.)
4. Let T be a nilponent linear operator on a (possibly infinite-dimensional) vector space V . Suppose the nilpotency index of T is k. (That is, k is the smallest nonnegative integer such that $T^{k}=0$.) Show that if $0 \leq i<k$, then $\operatorname{Im}\left(T^{i+1}\right) \subsetneq \operatorname{Im}\left(T^{i}\right)$ and $\operatorname{ker}\left(T^{i}\right) \subsetneq \operatorname{ker}\left(T^{i+1}\right)$. Suggestion: It is useful to note that $T\left(\operatorname{Im}\left(T^{i}\right)\right)=\operatorname{Im}\left(T^{i+1}\right)$ and $\operatorname{Im}\left(T^{i}\right) \subset \operatorname{ker}\left(T^{k-i}\right)$.
5. Let

$$
A=\left(\begin{array}{lllllllll}
2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 2 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2
\end{array}\right) .
$$

(a) Find the dimensions of the nullspaces of $(A-2 I)^{k}$ for $k=1,2, \ldots$.
(b) Show that A is not similar to the matrix

$$
B=\left(\begin{array}{lllllllll}
2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2
\end{array}\right) .
$$

Hint: If A and B are similar, then $f(A)$ and $f(B)$ are similar for any polynomial $f(t)$. Similar matrices have the same nullity (for if $C=P^{-1} D P$, then we have an isomorphism $N(C) \rightarrow N(D)$ given by $x \mapsto P x)$.
6. (reading assignment) Read Theorems E2, E8 and E9 and their proofs (and the relevant definitions) from Appendix E.

Practice Problems: The following problems are for your practice. They are not to be handed in for grading.

From the textbook: remaining exercises of 5.4, in particular \# 1, 5, 11, 13, 14, 15, 16 (you may need to use the unique factorization theorem from Appendix E), 17, 18, 20-25, 29, 30, 33, 36-38, 39, 41, 42

Extra problems:

1. Let T be a linear operator on a finite-dimensional vector space V over a field F. Let $f(t) \in F[t]$ be a polynomial of degree ≥ 1 which divides the characteristic polynomial of T. Show that $\operatorname{det}(f(T))=0$ (equivalently, that $\operatorname{ker}(f(T)) \neq 0$). (Hint: Here is one approach: First, using the fact that any polynomial of positive degree is a product of irreducible polynomials, argue that without loss of generality we may assume $f(t)$ is irreducible. Now argue by induction on the dimension of V . Consider two cases, based on whether V has any nontrivial T -invariant subspaces. Theorem E8 and quotient vector spaces can be helpful.)
2. Let F be a field and $f(t), g(t) \in F[t]$ relatively prime (or coprime). Let T be a linear operator on a vector space V over F. Show that

$$
\operatorname{ker}(f(T) g(T))=\operatorname{ker}(f(T)) \oplus \operatorname{ker}(g(T))
$$

(Hint: Theorem E2.)
3. (a) Let F be a field. Suppose $f(t), g_{1}(t), \ldots, g_{k}(t) \in F[t]$ are such that $f(t)$ is relatively prime to each $g_{i}(t)$. Show that $f(t)$ is relatively prime to $\prod_{i=1}^{k} g_{i}(t)$. (Argue by induction on k.)
(b) Let $f_{1}(t), \ldots, f_{k}(t) \in F[t]$ be pairwise coprime. Let T be a linear operator on a vector space V over F. Show that

$$
\operatorname{ker}\left(f_{1}(T) \cdots f_{k}(T)\right)=\bigoplus_{\mathfrak{i}=1}^{k} \operatorname{ker}\left(f_{i}(T)\right)
$$

(Is it true that if $\mathrm{V}=\mathrm{U}_{1} \oplus \mathrm{~W}$ and $\mathrm{W}=\mathrm{U}_{2} \oplus \cdots \oplus \mathrm{U}_{\mathrm{k}}$, then $\mathrm{V}=\mathrm{U}_{1} \oplus \cdots \oplus \mathrm{U}_{\mathrm{k}}$?)
4. Let V be a vector space. Suppose $V_{i}(1 \leq i \leq k)$ is a subspace of V and $V=\bigoplus_{i=1}^{k} V_{i}$. Then for each $v \in \mathrm{~V}$, there exist unique vectors $v_{i} \in \mathrm{~V}_{\mathrm{i}}(1 \leq \mathfrak{i} \leq \mathrm{k})$ such that $v=\sum_{i=1}^{\mathrm{k}} v_{i}$. (Existence follows from $V=\sum_{i=1}^{k} V_{i}$ and uniqueness follows from the fact that the sum is direct, by the property of direct sum given in Problem 2(ii) of Assignment 2.) We refer to v_{i} as the component of v in V_{i} (or the V_{i}-component of v).

For each $1 \leq i \leq k$, let $\pi_{i}: V \rightarrow V$ (called the projection map to V_{i} relative to the decomposition $V=\bigoplus_{j=1}^{k} V_{j}$) be the map that sends $v \in V$ to its component in V_{i}.
(a) Show that the maps π_{i} satisfy the following properties: (i) they are linear, (ii) $\operatorname{ker}\left(\pi_{i}\right)=$ $\sum_{j \neq i} V_{j}$ and $\operatorname{Im}\left(\pi_{i}\right)=V_{i}$, (iii) $\pi_{i_{v_{i}}}=I_{V_{i}}$ (identity map on V_{i}), (iv) $\pi_{i}^{2}=\pi_{i},(v) \sum_{i=1}^{k} \pi_{i}=I_{V}$, and (vi) $\pi_{i} \pi_{j}=0$ if $j \neq i$.
(b) Let $p_{i}: V \rightarrow V(1 \leq i \leq k)$ be linear maps such that $\sum_{i=1}^{k} p_{i}=I_{V}$ and $p_{i} p_{j}=0$ if $j \neq i$. Show that $V=\bigoplus_{i=1}^{k} \operatorname{Im}\left(p_{i}\right)$ and that p_{i} is the projection map to $\operatorname{Im}\left(V_{i}\right)$ relative to this decomposition.
5. Let V be a vector space, W a subspace of V and T a linear operator on V. Show that the following statements are equivalent:
(i) W is T -invariant.
(ii) If U is any complementary subspace for W and π_{W} is the projection map to W relative to the decomposition $\mathrm{V}=\mathrm{W} \oplus \mathrm{U}$, then the two maps $\pi_{W} T$ and π_{W} agree on W. (Recall that a complementary subspace for W means a subspace U of V such that $V=W \oplus U$.)
(iii) There exists a complementary subspace U for W such that $\pi_{W} T=T \pi_{W}$ on W.

