
MAT247 Algebra II

Assignment 6 Solutions

1. Let F be a field and f(t), g(t), h(t) ∈ F[t]. Suppose f(t) and g(t) are relatively prime.
(a) Show that if f(t)

∣∣ g(t)h(t), then f(t)
∣∣ h(t).

(b) Show that if f(t) and g(t) both divide h(t), then f(t)g(t)
∣∣ h(t).

(c) Show that for every positive integers m and n, f(t)m and g(t)n are relatively prime.
(Note: If two polynomials have a common divisor q(x) of positive degree, then they
have an irreducible common divisor, because q(x) has an irreducible divisor.)

Solution: (a) Since f(t) and g(t) are relatively prime, there exist a(t), b(t) ∈ F[t] such that

a(t)f(t) + b(t)g(t) = 1.

Thus
a(t)f(t)h(t) + b(t)g(t)h(t) = h(t).

Since f(t) divides both summands on the left, it also divides h(t).
(b) Write h(t) = f(t)q(t). Then g(t)

∣∣ f(t)q(t). Since f(t) and g(t) are relatively prime, by
(a), g(t)

∣∣ q(t). Writing q(t) = g(t)q1(t), we then have h(t) = f(t)g(t)q1(t), so that f(t)g(t)
divides h(t).

(c) Let m,n be positive integers. Suppose f(t)m and g(t)n are not relatively prime. Then
there exists a polynomial h(t) ∈ F[t] of positive degree such that h(t) divides both f(t)m and
g(t)n. Being a polynomial of positive degree, h(t) has an irreducible factor φ(t). Then φ(t)
divides both f(t)m and g(t)n. Since φ(t) is irreducible, it follows that φ(t) divides both f(t) and
g(t), contradicting the assumption that f(t) and g(t) are relatively prime.

2. Let V be a nonzero finite-dimensional vector space over C. Denote the identity map on V
by I. Let T a linear operator on V such that Tk = I for some positive integer k. Show that T is
diagonalizable. (Suggestion: Use Theorem 7.16 (we’ll prove it in class on Tuesday).)

Solution: Consider the polynomial f(t) = tk − 1. Since f(T) = 0, the minimal polynomial of
T divides f(t). Since f(t) splits over C and has no repeated root (the roots of f(t) being e2aπi/k,
a = 0, 1, . . . , k − 1), the same holds for the minimal polynomial of T . By Theorem 7.16, T is
diagonalizable.

3. Let V be a nonzero finite-dimensional vector space and T a diagonalizable linear operator
on T . LetW be a T -invariant subspace of V . Show that TW (the restriction of T toW) is diagonal-
izable. (Suggestion: Use Theorem 7.16. Does the minimal polynomial of TW divide the minimal
polynomial of T?)

Solution: Let f(t) (resp. fW(t)) be the minimal polynomial of T (resp. TW). Then f(TW) = 0

(as f(T) = 0). Hence fW(t)
∣∣ f(t). Since T is diagonalizable, f(t) splits and has no repeated root.

Since fW(t)
∣∣ f(t), same is true for fW(t), so that TW is also diagonalizable.

4. Let V be a nonzero finite-dimensional vector space. Let S be a collection of diagonalizable
linear operators on V such that any two maps in S commute with each other. Show that the
maps in S can be simultaneously diagonalized. That is, show that there exists a basis β of V
such that for every T ∈ S , the matrix [T ]β is diagonal. (Suggestion: Argue by induction on
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the dimension of V . In the induction step, consider two cases: (i) if every T ∈ S has only one
eigenvalue, and (ii) if there exists T ∈ S which has at least two eigenvalues.)

Solution: We argue by induction on the dimension of V . If dim(V) = 1, then the statement is
certainly true (why?). Suppose n ≥ 2 and that the result is true for vector spaces of dimension
< n. Let dim(V) = n, and S be a family of commuting diagonalizable operators on V . If
all the maps in S have only one eigenvalue, then any basis of V does the job. (Note that any
diagonalizable map with only one eigenvalue is of the form λI.) Suppose S contains an operator
T with at least two eigenvalues. Let λ1, . . . , λk be the distinct eigenvalues of T . Then we have

V =

k⊕
i=1

Eλi(T),

and since k ≥ 2, each eigenspace Eλi(T) has dimension < n. It is enough to show that each
Eλi(T) has a basis βi the elements of which are eigenvectors for all the maps in S; then β = ∪βi
will be a basis of V the elements of which are eigenvectors for all the elements of S, so that [S]β
is diagonal for every S ∈ S.

Fix 1 ≤ i ≤ k and letW = Eλi(T). Let

S ′ = {SW : S ∈ S}.

This is a family of linear operators on W. The maps in S ′ commute with one another (as those
in S do). Since every S ∈ S is diagonalizable, by the previous problem, so is every element of
S ′. Thus S ′ is a family of commuting diagonalizable operators on W. Since dim(W) < n, by
the induction hypothesis, there exists a basis of W the elements of which are eigenvectors for
every SW ∈ S ′, and hence every S ∈ S. (Note that any eigenvector of SW is also an eigenvector
of S.)

5. Let F be a field and A ∈ Mn×n(F). By the minimal polynomial of A over F we mean the
minimal polynomial of LA : Fn → Fn. Equivalently, the minimal polynomial of A over F is the
unique monic polynomial f(t) ∈ F[t] satisfying the following properties: (i) f(A) = 0, and (ii) if
g(t) ∈ F[t] is any nonzero polynomial such that g(A) = 0, then deg(f(t)) ≤ deg(g(t)).

(a) Show that the degree of the minimal polynomial of A over F is equal to the smallest
integer k such that there exists a nonzero vector (c0, . . . , ck) ∈ Fk+1 such that

c0I+ c1A+ c2A
2 + · · ·+ ckAk = 0.

(b) Let K be a field that contains F (as a subfield). Show that the minimal polynomial of A
over F is the same as its minimal polynomial over K. (Hint: Let B ∈ M`×m(F). If the
equation Bx = 0 has a solution in Km, then does it also have a solution in Fm?)

Solution: (a) Let k be the smallest positive integer such that there exist c0, . . . , ck ∈ F, not
all zero, such that c0I + c1A + c2A

2 + · · · + ckAk = 0. By the minimality of k, ck is nonzero.

Let f(t) = 1
ck

k∑
i=1

cit
i. Note that deg(f(t)) = k. We claim that f(t) is the minimal polynomial of

A over F. That f(t) is monic and f(A) = 0 are clear. Let g(t) be a nonzero polynomial, say of

degreem, such that g(A) = 0. Writing g(t) =
m∑
i=0

ait
i, we have

m∑
i=0

aiA
i = 0, so that by definition

of k, we have k ≤ m.
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(b) Let fF(t) and fK(t) denote the minimal poynomials of A over F and K, respectively. The
minimal polynomial of A over K divides any polynomial g(t) ∈ K[t] such that g(A) = 0. In
particular, it divides fF(t).

Since fK(t) and fF(t) are both monic and fK(t)
∣∣ fF(t), to show that fK(t) = fF(t) it is enough

to argue that deg(fK(t)) = deg(fF(t)). Let

I(F) = {k ≥ 0 : c0I+ c1A+ c2A
2 + · · ·+ ckAk = 0 has a nontrivial solution in F}

and

I(K) = {k ≥ 0 : c0I+ c1A+ c2A
2 + · · ·+ ckAk = 0 has a nontrivial solution in K}.

In view of (a), it is enough to have I(F) = I(K). Let k be a nonnegative integer. The equation

c0I+ c1A+ c2A
2 + · · ·+ ckAk = 0

can be written as a homogeneous system of linear equations with coefficients in F, and as such, it has
a nontrivial solution over F if and only if it has a nontrivial solution over K. Thus I(F) = I(K), as
desired.

(Expanded version of the part in italic: Let β = {E11, . . . , Enn} be the standard ordered basis
ofMn×n(F) (andMn×n(K)). Then the equation

c0I+ c1A+ c2A
2 + · · ·+ ckAk = 0

is equivalent to
c0[I]β + c1[A]β + c2[A

2]β + · · ·+ ck[Ak]β = 0,

which can be rewritten in matrix form as

([I]β [A]β [A
2]β · · · [Ak]β)x = 0,

where x = (c0 · · · ck)t. Let

B = ([I]β [A]β [A
2]β · · · [Ak]β) ∈Mn2×(k+1)(F).

By uniqueness of reduced row echelon form (RREF),

dimF

(
{x ∈ Fk+1 : Bx = 0}

)
= dimK

(
{x ∈ Kk+1 : Bx = 0}

)
.

(Indeed, if R is the RREF of B over F, then it is also the RREF of B over K, and hence the two
dimensions above are both equal to k + 1 minus the number of nonzero rows of R.) Thus in
particular, Bx = 0 has a nontrivial solution in Fk+1 if and only if it has a nontrivial solution in
Kk+1.)

6. Suppose A ∈ M5×5(Q) has characteristic polynomial f(t) = (t + 1)4(t − 2). Let g(t) be the
minimal polynomial of A.

(a) List all possibilities for g(t). What is the Jordan canonical form of A in each case? (List
all possible Jordan canonical forms if there is more than one.)

(b) Suppose g(t) = (t+1)2(t−2) and that moreover dim(N(A+I)) = 2. What is the Jordan
canonical form of A?

(Suggestion: See exercise 13 of 7.3.)

Solution: (a) The minimal polynomial g(t) is of the form (t + 1)i(t − 2), with 1 ≤ i ≤ 4 the
size of the largest Jordan block corresponding to eigenvalue −1 in the Jordan canonical form
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(JFC) of A. If i = 1, then the JCF is diagonal with four -1’s and one 2. If i = 2, the JCF is eitherJ−1,2 J−1,2
2

 or


J−1,2

−1
−1

2

 .
(Here and in what follows Jλ,k denotes the k× k Jordan block with λ on the diagonal.) If i = 3,
then the JCF is J−1,3 −1

2

 .
Finally, if i = 4, the JCF is (

J−1,4
2

)
.

(b) In (a) we saw that there are two cases in which the minimal polynomial is g(t) = (t +
1)2(t − 2). Since dim(E−1) = dim(N(A + I)) = 2, there are two Jordan blocks corresponding to
eigenvalue -1, so that the JCF must beJ−1,2 J−1,2

2

 .


