MAT247 Algebra II

Assignment 6 Solutions

- **1.** Let F be a field and f(t), g(t), $h(t) \in F[t]$. Suppose f(t) and g(t) are relatively prime.
 - (a) Show that if $f(t) \mid g(t)h(t)$, then $f(t) \mid h(t)$.
 - (b) Show that if f(t) and g(t) both divide h(t), then $f(t)g(t) \mid h(t)$.
 - (c) Show that for every positive integers m and n, $f(t)^m$ and $g(t)^n$ are relatively prime. (Note: If two polynomials have a common divisor q(x) of positive degree, then they have an irreducible common divisor, because q(x) has an irreducible divisor.)

Solution: (a) Since f(t) and g(t) are relatively prime, there exist $a(t), b(t) \in F[t]$ such that a(t)f(t) + b(t)g(t) = 1.

Thus

$$a(t)f(t)h(t) + b(t)g(t)h(t) = h(t).$$

Since f(t) divides both summands on the left, it also divides h(t).

- (b) Write h(t) = f(t)q(t). Then $g(t) \mid f(t)q(t)$. Since f(t) and g(t) are relatively prime, by (a), $g(t) \mid q(t)$. Writing $q(t) = g(t)q_1(t)$, we then have $h(t) = f(t)g(t)q_1(t)$, so that f(t)g(t) divides h(t).
- (c) Let m, n be positive integers. Suppose $f(t)^m$ and $g(t)^n$ are not relatively prime. Then there exists a polynomial $h(t) \in F[t]$ of positive degree such that h(t) divides both $f(t)^m$ and $g(t)^n$. Being a polynomial of positive degree, h(t) has an irreducible factor $\varphi(t)$. Then $\varphi(t)$ divides both $f(t)^m$ and $g(t)^n$. Since $\varphi(t)$ is irreducible, it follows that $\varphi(t)$ divides both f(t) and g(t), contradicting the assumption that f(t) and g(t) are relatively prime.
- **2.** Let V be a nonzero finite-dimensional vector space over \mathbb{C} . Denote the identity map on V by I. Let T a linear operator on V such that $\mathsf{T}^k = \mathsf{I}$ for some positive integer k. Show that T is diagonalizable. (Suggestion: Use Theorem 7.16 (we'll prove it in class on Tuesday).)

Solution: Consider the polynomial $f(t) = t^k - 1$. Since f(T) = 0, the minimal polynomial of T divides f(t). Since f(t) splits over $\mathbb C$ and has no repeated root (the roots of f(t) being $e^{2\alpha\pi i/k}$, $\alpha = 0, 1, \ldots, k-1$), the same holds for the minimal polynomial of T. By Theorem 7.16, T is diagonalizable.

3. Let V be a nonzero finite-dimensional vector space and T a diagonalizable linear operator on T. Let W be a T-invariant subspace of V. Show that T_W (the restriction of T to W) is diagonalizable. (Suggestion: Use Theorem 7.16. Does the minimal polynomial of T_W divide the minimal polynomial of T?)

Solution: Let f(t) (resp. $f_W(t)$) be the minimal polynomial of T (resp. T_W). Then $f(T_W) = 0$ (as f(T) = 0). Hence $f_W(t) \mid f(t)$. Since T is diagonalizable, f(t) splits and has no repeated root. Since $f_W(t) \mid f(t)$, same is true for $f_W(t)$, so that T_W is also diagonalizable.

4. Let V be a nonzero finite-dimensional vector space. Let S be a collection of diagonalizable linear operators on V such that any two maps in S commute with each other. Show that the maps in S can be simultaneously diagonalized. That is, show that there exists a basis S of V such that for every $T \in S$, the matrix $[T]_S$ is diagonal. (Suggestion: Argue by induction on

the dimension of V. In the induction step, consider two cases: (i) if every $T \in \mathcal{S}$ has only one eigenvalue, and (ii) if there exists $T \in \mathcal{S}$ which has at least two eigenvalues.)

Solution: We argue by induction on the dimension of V. If $\dim(V) = 1$, then the statement is certainly true (why?). Suppose $n \ge 2$ and that the result is true for vector spaces of dimension < n. Let $\dim(V) = n$, and $\mathcal S$ be a family of commuting diagonalizable operators on V. If all the maps in $\mathcal S$ have only one eigenvalue, then any basis of V does the job. (Note that any diagonalizable map with only one eigenvalue is of the form λI .) Suppose $\mathcal S$ contains an operator T with at least two eigenvalues. Let $\lambda_1, \ldots, \lambda_k$ be the distinct eigenvalues of T. Then we have

$$V = \bigoplus_{i=1}^k E_{\lambda_i}(T),$$

and since $k \geq 2$, each eigenspace $E_{\lambda_i}(T)$ has dimension < n. It is enough to show that each $E_{\lambda_i}(T)$ has a basis β_i the elements of which are eigenvectors for all the maps in \mathcal{S} ; then $\beta = \cup \beta_i$ will be a basis of V the elements of which are eigenvectors for all the elements of \mathcal{S} , so that $[S]_{\beta}$ is diagonal for every $S \in \mathcal{S}$.

Fix
$$1 \le i \le k$$
 and let $W = E_{\lambda_i}(T)$. Let

$$\mathcal{S}' = \{S_W : S \in \mathcal{S}\}.$$

This is a family of linear operators on W. The maps in S' commute with one another (as those in S do). Since every $S \in S$ is diagonalizable, by the previous problem, so is every element of S'. Thus S' is a family of commuting diagonalizable operators on W. Since $\dim(W) < \mathfrak{n}$, by the induction hypothesis, there exists a basis of W the elements of which are eigenvectors for every $S_W \in S'$, and hence every $S \in S$. (Note that any eigenvector of S_W is also an eigenvector of S.)

- **5.** Let F be a field and $A \in M_{n \times n}(F)$. By the minimal polynomial of A over F we mean the minimal polynomial of $L_A : F^n \to F^n$. Equivalently, the minimal polynomial of A over F is the unique monic polynomial $f(t) \in F[t]$ satisfying the following properties: (i) f(A) = 0, and (ii) if $g(t) \in F[t]$ is any nonzero polynomial such that g(A) = 0, then $deg(f(t)) \le deg(g(t))$.
 - (a) Show that the degree of the minimal polynomial of A over F is equal to the smallest integer k such that there exists a nonzero vector $(c_0, \ldots, c_k) \in F^{k+1}$ such that

$$c_0I + c_1A + c_2A^2 + \cdots + c_kA^k = 0.$$

(b) Let K be a field that contains F (as a subfield). Show that the minimal polynomial of A over F is the same as its minimal polynomial over K. (Hint: Let $B \in M_{\ell \times m}(F)$. If the equation Bx = 0 has a solution in K^m , then does it also have a solution in F^m ?)

Solution: (a) Let k be the smallest positive integer such that there exist $c_0,\ldots,c_k\in F$, not all zero, such that $c_0I+c_1A+c_2A^2+\cdots+c_kA^k=0$. By the minimality of k, c_k is nonzero. Let $f(t)=\frac{1}{c_k}\sum_{i=1}^k c_it^i$. Note that deg(f(t))=k. We claim that f(t) is the minimal polynomial of A over F. That f(t) is monic and f(A)=0 are clear. Let g(t) be a nonzero polynomial, say of degree m, such that g(A)=0. Writing $g(t)=\sum_{i=0}^m \alpha_it^i$, we have $\sum_{i=0}^m \alpha_iA^i=0$, so that by definition of k, we have $k\leq m$.

(b) Let $f_F(t)$ and $f_K(t)$ denote the minimal poynomials of A over F and K, respectively. The minimal polynomial of A over K divides any polynomial $g(t) \in K[t]$ such that g(A) = 0. In particular, it divides $f_F(t)$.

Since $f_K(t)$ and $f_F(t)$ are both monic and $f_K(t) \mid f_F(t)$, to show that $f_K(t) = f_F(t)$ it is enough to argue that $deg(f_K(t)) = deg(f_F(t))$. Let

$$I(F) = \{k \ge 0 : c_0I + c_1A + c_2A^2 + \cdots + c_kA^k = 0 \text{ has a nontrivial solution in } F\}$$

and

$$I(K) = \{k \ge 0 : c_0I + c_1A + c_2A^2 + \cdots + c_kA^k = 0 \text{ has a nontrivial solution in } K\}.$$

In view of (a), it is enough to have I(F) = I(K). Let k be a nonnegative integer. The equation

$$c_0I + c_1A + c_2A^2 + \cdots + c_kA^k = 0$$

can be written as a homogeneous system of linear equations with coefficients in F, and as such, it has a nontrivial solution over F if and only if it has a nontrivial solution over F. Thus I(F) = I(K), as desired.

(Expanded version of the part in italic: Let $\beta = \{E_{11}, \dots, E_{nn}\}$ be the standard ordered basis of $M_{n \times n}(F)$ (and $M_{n \times n}(K)$). Then the equation

$$c_0I + c_1A + c_2A^2 + \cdots + c_kA^k = 0$$

is equivalent to

$$c_0[I]_{\beta} + c_1[A]_{\beta} + c_2[A^2]_{\beta} + \cdots + c_k[A^k]_{\beta} = 0,$$

which can be rewritten in matrix form as

$$([I]_{\beta} [A]_{\beta} [A^{2}]_{\beta} \cdots [A^{k}]_{\beta})x = 0,$$

where $x = (c_0 \cdots c_k)^t$. Let

$$B = ([I]_{\beta} [A]_{\beta} [A^2]_{\beta} \cdots [A^k]_{\beta}) \in M_{n^2 \times (k+1)}(F).$$

By uniqueness of reduced row echelon form (RREF),

$$dim_F (\{x \in F^{k+1} : Bx = 0\}) = dim_K (\{x \in K^{k+1} : Bx = 0\}).$$

(Indeed, if R is the RREF of B over F, then it is also the RREF of B over K, and hence the two dimensions above are both equal to k + 1 minus the number of nonzero rows of R.) Thus in particular, Bx = 0 has a nontrivial solution in F^{k+1} if and only if it has a nontrivial solution in K^{k+1} .)

- **6.** Suppose $A \in M_{5\times 5}(\mathbb{Q})$ has characteristic polynomial $f(t) = (t+1)^4(t-2)$. Let g(t) be the minimal polynomial of A.
 - (a) List all possibilities for g(t). What is the Jordan canonical form of A in each case? (List all possible Jordan canonical forms if there is more than one.)
 - (b) Suppose $g(t) = (t+1)^2(t-2)$ and that moreover dim(N(A+I)) = 2. What is the Jordan canonical form of A?

(Suggestion: See exercise 13 of 7.3.)

Solution: (a) The minimal polynomial g(t) is of the form $(t+1)^i(t-2)$, with $1 \le i \le 4$ the size of the largest Jordan block corresponding to eigenvalue -1 in the Jordan canonical form

(JFC) of A. If i = 1, then the JCF is diagonal with four -1's and one 2. If i = 2, the JCF is either

$$\begin{pmatrix} J_{-1,2} & & & \\ & J_{-1,2} & & \\ & & 2 \end{pmatrix} \quad \text{or} \quad \begin{pmatrix} J_{-1,2} & & & \\ & -1 & & \\ & & 2 \end{pmatrix}.$$

(Here and in what follows $J_{\lambda,k}$ denotes the $k \times k$ Jordan block with λ on the diagonal.) If i=3, then the JCF is

$$\begin{pmatrix} J_{-1,3} & & \\ & -1 & \\ & & 2 \end{pmatrix}.$$

Finally, if i = 4, the JCF is

$$\begin{pmatrix} J_{-1,4} & \\ & 2 \end{pmatrix}$$
.

(b) In (a) we saw that there are two cases in which the minimal polynomial is $g(t) = (t+1)^2(t-2)$. Since $dim(E_{-1}) = dim(N(A+I)) = 2$, there are two Jordan blocks corresponding to eigenvalue -1, so that the JCF must be

$$\begin{pmatrix} J_{-1,2} & & \\ & J_{-1,2} & \\ & & 2 \end{pmatrix}.$$