MAT?247 Algebra 11

Assignment 6 Solutions

1. LetFbeafield and f(t), g(t), h(t) € Ft]. Suppose f(t) and g(t) are relatively prime.
(a) Show that if f(t) | g(t)h(t), then f(t) | h(t).
(b) Show that if f(t) and g(t) both divide h(t), then f(t)g(t) ‘ h(t).
(c) Show that for every positive integers m and n, f(t)™ and g(t)" are relatively prime.
(Note: If two polynomials have a common divisor q(x) of positive degree, then they
have an irreducible common divisor, because q(x) has an irreducible divisor.)

Solution: (a) Since f(t) and g(t) are relatively prime, there exist a(t), b(t) € F[t] such that
a(t)f(t) +b(t)g(t) =1.

Thus
a(t)f(t)h(t) + b(t)g(t)h(t) = h(t).
Since f(t) divides both summands on the left, it also divides h(t).

(b) Write h(t) = f(t)q(t). Then g(t) ] f(t)q(t). Since f(t) and g(t) are relatively prime, by
(@), g(t) ] q(t). Writing q(t) = g(t)q:(t), we then have h(t) = f(t)g(t)q:(t), so that f(t)g(t)
divides h(t).

(c) Let m,n be positive integers. Suppose f(t)™ and g(t)™ are not relatively prime. Then
there exists a polynomial h(t) € F[t] of positive degree such that h(t) divides both f(t)™ and
g(t)". Being a polynomial of positive degree, h(t) has an irreducible factor ¢(t). Then ¢(t)
divides both f(t)™ and g(t)™. Since ¢(t) is irreducible, it follows that ¢ (t) divides both f(t) and
g(t), contradicting the assumption that f(t) and g(t) are relatively prime.

2. Let V be a nonzero finite-dimensional vector space over C. Denote the identity map on V
by I. Let T a linear operator on V such that T = I for some positive integer k. Show that T is
diagonalizable. (Suggestion: Use Theorem 7.16 (we'll prove it in class on Tuesday).)

Solution: Consider the polynomial f(t) = t* — 1. Since f(T) = 0, the minimal polynomial of
T divides f(t). Since f(t) splits over C and has no repeated root (the roots of f(t) being e?*™/,
a =0,1,...,k — 1), the same holds for the minimal polynomial of T. By Theorem 7.16, T is
diagonalizable.

3. Let V be a nonzero finite-dimensional vector space and T a diagonalizable linear operator
on T. Let W be a T-invariant subspace of V. Show that Ty (the restriction of T to W) is diagonal-
izable. (Suggestion: Use Theorem 7.16. Does the minimal polynomial of Ty divide the minimal
polynomial of T?)

Solution: Let f(t) (resp. fw(t)) be the minimal polynomial of T (resp. Tw). Then f(Tw) =0
(as f(T) = 0). Hence fy (t) | f(t). Since T is diagonalizable, f(t) splits and has no repeated root.
Since fyy(t) | f(t), same is true for fy(t), so that Tyy is also diagonalizable.

4. LetV be anonzero finite-dimensional vector space. Let S be a collection of diagonalizable

linear operators on V such that any two maps in S commute with each other. Show that the

maps in S can be simultaneously diagonalized. That is, show that there exists a basis 3 of V

such that for every T € S, the matrix [Tl is diagonal. (Suggestion: Argue by induction on
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the dimension of V. In the induction step, consider two cases: (i) if every T € S has only one
eigenvalue, and (ii) if there exists T € S which has at least two eigenvalues.)

Solution: We argue by induction on the dimension of V. If dim(V) = 1, then the statement is
certainly true (why?). Suppose n > 2 and that the result is true for vector spaces of dimension
< n. Let dim(V) = n, and S be a family of commuting diagonalizable operators on V. If
all the maps in S have only one eigenvalue, then any basis of V does the job. (Note that any
diagonalizable map with only one eigenvalue is of the form Al.) Suppose S contains an operator
T with at least two eigenvalues. Let Ay, ..., Ay be the distinct eigenvalues of T. Then we have

and since k > 2, each eigenspace E,, (T) has dimension < n. It is enough to show that each
Ex, (T) has a basis 3; the elements of which are eigenvectors for all the maps in S; then 3 = UR;
will be a basis of V the elements of which are eigenvectors for all the elements of S, so that [S]
is diagonal for every S € S.

Fix 1 <i<kandlet W =E, (T). Let

S'={Sw:S €Sk

This is a family of linear operators on W. The maps in S’ commute with one another (as those
in § do). Since every S € S is diagonalizable, by the previous problem, so is every element of
S’. Thus &’ is a family of commuting diagonalizable operators on W. Since dim(W) < n, by
the induction hypothesis, there exists a basis of W the elements of which are eigenvectors for

every Sy € §’, and hence every S € S. (Note that any eigenvector of Syy is also an eigenvector
of S.)

5. Let F be a field and A € M, . (F). By the minimal polynomial of A over F we mean the
minimal polynomial of L : F* — F". Equivalently, the minimal polynomial of A over F is the
unique monic polynomial f(t) € F[t] satisfying the following properties: (i) f(A) = 0, and (ii) if
g(t) € F[t] is any nonzero polynomial such that g(A) = 0, then deg(f(t)) < deg(g(t)).

(a) Show that the degree of the minimal polynomial of A over F is equal to the smallest
integer k such that there exists a nonzero vector (cy,...,cx) € F<"! such that

COI+C1A+C2A2+"'+CkAkZO.

(b) Let K be a field that contains F (as a subfield). Show that the minimal polynomial of A
over F is the same as its minimal polynomial over K. (Hint: Let B € My, (F). If the
equation Bx = 0 has a solution in K™, then does it also have a solution in F™?)

Solution: (a) Let k be the smallest positive integer such that there exist co,...,cx € F, not
all zero, such that col + 1A + A% + -+ + ¢ A¥ = 0. By the minimality of k, ¢y is nonzero.
Let f(t Z cit'. Note that deg(f(t)) = k. We claim that f(t) is the minimal polynomial of

A over F. That f(t) is monic and f(A) = 0 are clear. Let g(t) be a nonzero polynomial, say of

degree m, such that g(A) = 0. Writing g(t Z a;t!, we have Z a;A' = 0, so that by definition
i=0
of k, we have k < m.
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(b) Let fr(t) and fx(t) denote the minimal poynomials of A over F and K, respectively. The
minimal polynomial of A over K divides any polynomial g(t) € K[t] such that g(A) = 0. In
particular, it divides f¢(t).

Since fx(t) and f¢(t) are both monic and f(t) ‘ fr(t), to show that fx (t) = f¢(t) it is enough
to argue that deg(fx(t)) = deg(fr(t)). Let

I(F) ={k > 0:col + ;A + ;A% + - - - + ¢ A* = 0 has a nontrivial solution in F}
and
I(K) ={k > 0:col + c1A + c2A? + - - - + ¢ A¥ = 0 has a nontrivial solution in K}.
In view of (a), it is enough to have I(F) = I(K). Let k be a nonnegative integer. The equation
col + ciA+ A2+ -+ AR =0

can be written as a homogeneous system of linear equations with coefficients in F, and as such, it has
a nontrivial solution over F if and only if it has a nontrivial solution over K. Thus I(F) = I(K), as
desired.

(Expanded version of the part in italic: Let 3 = {Eys, ..., En,} be the standard ordered basis
of My xn(F) (and My «n (K)). Then the equation

CoI+C1A+C2A2—|—"'—|—CkAk:O
is equivalent to
colllp + 1Al + calA%p + - - - + e [AM = 0,

which can be rewritten in matrix form as
([g [Alg [A%lg -+ [A¥g)x =0,
where x = (¢g --- )t Let
B = ([Ilg [Alg [A%lp -+ [AM]p) € Muzyqurn (F).
By uniqueness of reduced row echelon form (RREF),
dims ({x € F*'': Bx = 0}) = dimy ({x € K*"': Bx =0}).

(Indeed, if R is the RREF of B over F, then it is also the RREF of B over K, and hence the two
dimensions above are both equal to k 4 1 minus the number of nonzero rows of R.) Thus in

particular, Bx = 0 has a nontrivial solution in F1 if and only if it has a nontrivial solution in
Kk+1 )

6. Suppose A € Ms,5(Q) has characteristic polynomial f(t) = (t + 1)*(t — 2). Let g(t) be the
minimal polynomial of A.
(a) List all possibilities for g(t). What is the Jordan canonical form of A in each case? (List
all possible Jordan canonical forms if there is more than one.)
(b) Suppose g(t) = (t+1)*(t—2) and that moreover dim(N(A +1)) = 2. What is the Jordan
canonical form of A?

(Suggestion: See exercise 13 of 7.3.)

Solution: (a) The minimal polynomial g(t) is of the form (t + 1)'(t — 2), with 1 < i < 4 the
size of the largest Jordan block corresponding to eigenvalue —1 in the Jordan canonical form
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(JEC) of A. If i = 1, then the JCF is diagonal with four -1’s and one 2. If i = 2, the JCF is either

J-12 Jo2
( ],1’2 ) or - 1
5 _
2

(Here and in what follows ], x denotes the k x k Jordan block with A on the diagonal.) If i =3,

then the JCF is
J-13
—1 .
2

()

(b) In (a) we saw that there are two cases in which the minimal polynomial is g(t) = (t +
1)2(t — 2). Since dim(E_;) = dim(N(A + I)) = 2, there are two Jordan blocks corresponding to
eigenvalue -1, so that the JCF must be

J-12
J-i2 .
2

Finally, if i = 4, the JCF is



