MAT247 Algebra II

Assignment 6

Due Saturday March 9 at 11:59 pm (to be submitted on Crowdmark)

Please write your solutions neatly and clearly. Note that due to time limitations, some questions may not be graded.

1. Let F be a field and $f(t), g(t), h(t) \in F[t]$. Suppose $f(t)$ and $g(t)$ are relatively prime.
(a) Show that if $f(t) \mid g(t) h(t)$, then $f(t) \mid h(t)$.
(b) Show that if $f(t)$ and $g(t)$ both divide $h(t)$, then $f(t) g(t) \mid h(t)$.
(c) Show that for every positive integers m and $n, f(t)^{m}$ and $g(t)^{n}$ are relatively prime. (Note: If two polynomials have a common divisor $q(x)$ of positive degree, then they have an irreducible common divisor, because $\mathrm{q}(x)$ has an irreducible divisor.)
2. Let V be a nonzero finite-dimensional vector space over \mathbb{C}. Denote the identity map on V by I. Let T a linear operator on V such that $\mathrm{T}^{\mathrm{k}}=\mathrm{I}$ for some positive integer k . Show that T is diagonalizable. (Suggestion: Use Theorem 7.16 (we'll prove it in class on Tuesday).)
3. Let V be a nonzero finite-dimensional vector space and T a diagonalizable linear operator on T. Let W be a T-invariant subspace of V. Show that T_{W} (the restriction of T to W) is diagonalizable. (Suggestion: Use Theorem 7.16. Does the minimal polynomial of T_{W} divide the minimal polynomial of T?)
4. Let V be a nonzero finite-dimensional vector space. Let \mathcal{S} be a collection of diagonalizable linear operators on V such that any two maps in \mathcal{S} commute with each other. Show that the maps in \mathcal{S} can be simultaneously diagonalized. That is, show that there exists a basis β of V such that for every $\mathrm{T} \in \mathcal{S}$, the matrix $[\mathrm{T}]_{\beta}$ is diagonal. (Suggestion: Argue by induction on the dimension of V. In the induction step, consider two cases: (i) if every $\mathrm{T} \in \mathcal{S}$ has only one eigenvalue, and (ii) if there exists $\mathrm{T} \in \mathcal{S}$ which has at least two eigenvalues.)
5. Let F be a field and $A \in M_{n \times n}(F)$. By the minimal polynomial of A over F we mean the minimal polynomial of $L_{A}: F^{n} \rightarrow F^{n}$. Equivalently, the minimal polynomial of A over F is the unique monic polynomial $f(t) \in F[t]$ satisfying the following properties: (i) $f(A)=0$, and (ii) if $g(t) \in F[t]$ is any nonzero polynomial such that $g(A)=0$, then $\operatorname{deg}(f(t)) \leq \operatorname{deg}(g(t))$.
(a) Show that the degree of the minimal polynomial of A over F is equal to the smallest integer k such that there exists a nonzero vector $\left(c_{0}, \ldots, c_{k}\right) \in F^{k+1}$ such that

$$
c_{0} I+c_{1} A+c_{2} A^{2}+\cdots+c_{k} A^{k}=0
$$

(b) Let K be a field that contains F (as a subfield). Show that the minimal polynomial of A over F is the same as its minimal polynomial over K. (Hint: Let $B \in M_{\ell \times m}(F)$. If the equation $B x=0$ has a solution in K^{m}, then does it also have a solution in F^{m} ?)
6. Suppose $A \in M_{5 \times 5}(\mathbb{Q})$ has characteristic polynomial $f(t)=(t+1)^{4}(t-2)$. Let $g(t)$ be the minimal polynomial of A.
(a) List all possibilities for $g(t)$. What is the Jordan canonical form of A in each case? (List all possible Jordan canonical forms if there is more than one.)
(b) Suppose $g(t)=(t+1)^{2}(t-2)$ and that moreover $\operatorname{dim}(N(A+I))=2$. What is the Jordan canonical form of A ?
(Suggestion: See exercise 13 of 7.3.)

Practice Problems: The following problems are for your practice. They are not to be handed in for grading.

From the textbook: exercises \# 1, 2, 3, 5, 11, 12 of 7.3

