MAT247 Algebra II

Assignment 6

Due Saturday March 9 at 11:59 pm (to be submitted on Crowdmark)

Please write your solutions neatly and clearly. Note that due to time limitations, some questions may not be graded.

- **1.** Let F be a field and $f(t), g(t), h(t) \in F[t]$. Suppose f(t) and g(t) are relatively prime.
 - (a) Show that if $f(t) \mid g(t)h(t)$, then $f(t) \mid h(t)$.
 - (b) Show that if f(t) and g(t) both divide h(t), then $f(t)g(t) \mid h(t)$.
 - (c) Show that for every positive integers m and n, $f(t)^m$ and $g(t)^n$ are relatively prime. (Note: If two polynomials have a common divisor q(x) of positive degree, then they have an irreducible common divisor, because q(x) has an irreducible divisor.)

2. Let V be a nonzero finite-dimensional vector space over \mathbb{C} . Denote the identity map on V by I. Let T a linear operator on V such that $T^k = I$ for some positive integer k. Show that T is diagonalizable. (Suggestion: Use Theorem 7.16 (we'll prove it in class on Tuesday).)

3. Let V be a nonzero finite-dimensional vector space and T a diagonalizable linear operator on T. Let W be a T-invariant subspace of V. Show that T_W (the restriction of T to W) is diagonalizable. (Suggestion: Use Theorem 7.16. Does the minimal polynomial of T_W divide the minimal polynomial of T?)

4. Let *V* be a nonzero finite-dimensional vector space. Let *S* be a collection of diagonalizable linear operators on *V* such that any two maps in *S* commute with each other. Show that the maps in *S* can be simultaneously diagonalized. That is, show that there exists a basis β of *V* such that for every $T \in S$, the matrix $[T]_{\beta}$ is diagonal. (Suggestion: Argue by induction on the dimension of *V*. In the induction step, consider two cases: (i) if every $T \in S$ has only one eigenvalue, and (ii) if there exists $T \in S$ which has at least two eigenvalues.)

5. Let F be a field and $A \in M_{n \times n}(F)$. By the minimal polynomial of A over F we mean the minimal polynomial of $L_A : F^n \to F^n$. Equivalently, the minimal polynomial of A over F is the unique monic polynomial $f(t) \in F[t]$ satisfying the following properties: (i) f(A) = 0, and (ii) if $g(t) \in F[t]$ is any nonzero polynomial such that g(A) = 0, then $deg(f(t)) \le deg(g(t))$.

(a) Show that the degree of the minimal polynomial of A over F is equal to the smallest integer k such that there exists a nonzero vector $(c_0, \ldots, c_k) \in F^{k+1}$ such that

$$\mathbf{c}_0\mathbf{I} + \mathbf{c}_1\mathbf{A} + \mathbf{c}_2\mathbf{A}^2 + \dots + \mathbf{c}_k\mathbf{A}^k = \mathbf{0}.$$

(b) Let K be a field that contains F (as a subfield). Show that the minimal polynomial of A over F is the same as its minimal polynomial over K. (Hint: Let $B \in M_{\ell \times m}(F)$). If the equation Bx = 0 has a solution in K^m , then does it also have a solution in F^m ?)

6. Suppose $A \in M_{5\times 5}(\mathbb{Q})$ has characteristic polynomial $f(t) = (t+1)^4(t-2)$. Let g(t) be the minimal polynomial of A.

- (a) List all possibilities for g(t). What is the Jordan canonical form of A in each case? (List all possible Jordan canonical forms if there is more than one.)
- (b) Suppose $g(t) = (t+1)^2(t-2)$ and that moreover $\dim(N(A+I)) = 2$. What is the Jordan canonical form of A?

(Suggestion: See exercise 13 of 7.3.)

Practice Problems: The following problems are for your practice. They are not to be handed in for grading.

From the textbook: exercises # 1, 2, 3, 5, 11, 12 of 7.3