MAT?247 Algebra 11
Assignment 7

Solutions

Notation. In what follows we shall use the following notation: for a polynomial f, we de-

note the companion matrix of f by C(f). Given a scalar A, we denote the n x n Jordan block
corresponding to A by Jj n.

1.

Let F be a field.
(a) Let 1, b2, ..., dk be distinct monic irreducible polynomials in F[t]. For each 1, let p;;

(1 <j < ¢;) be integers with
Piei = Piem1 = - > Pin > 1.
Let R be the following block diagonal matrix:

Cloi"")

C(opi™")

Cl3™)

C(p3>")

Cl")

Clop™")

k )

Show that the minimal polynomial of R is [ | ¢ "t
i=1

nomial of the companion matrix of a monic polynomial f is f itself. Also note that if A

is a block diagonal matrix with diagonal blocks Ay, A,, ... and g € F[t], then g(A) is the

block diagonal matrix with diagonal blocks g(A;), g(A;),....)

. (Remember that the minimal poly-

(b) Let ¢7 and ¢, be two distinct monic irreducible elements of F[t]. Consider the set M

of all matrices A with entries in F whose characteristic polynomial is ¢{¢3. Then sim-
ilarity is an equivalence relation on M. Find the number of equivalence classes of this
relation, give a representative for each class, and give the minimal polynomial of the
matrices in each class.

k .
Solution: (a) Let f = [ ¢} ““'. It is enough to show that given any g € F[t], we have g(R) = 0

i=1

if and only if f | g. By the remark made in the statement of the question, g(R) = 0 if and only
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if g(C(¢p!”)) =0forall1 <i< kand1 <j < e;. Since the minimal polynomial of C(db}"') is
¢P'™, it follows that g(R) = 0 if and only if ¢}’ | gforall1 <i<kand1 <j < e Since the
(pi;); are increasing, the latter is equivalent to that B

1

g for all i. Since the ¢; are pairwise

k :
relatively prime, this is equivalent to f = [ ¢} "

i=1

g.

(b) The elements of M are classified up to similarity by their rational canonical forms over
F. The possibilities for the blocks corresponding to ¢; in the rational canonical form are

4 2
(1) Cer), (2) (C(d)]) C(d>1)> » G) (C(M C(dﬁ))

()
C(¢?)
(4)( Yoo ),(5) Clér)
C(d1)

The possibilities for the blocks corresponding to ¢, are

(1) C(¢3), (2) (CN}Z) C(d)z)) '

In total, there are 10 possibilities for the rational canonical form of a matrix with characteristic
polynomial ¢7¢d3. We leave it to the reader to find the minimal polynomial for each possibility
using part (a).

2. Consider the polynomials ¢ = t* —2, ¢p™ =t — Vv2,and &~ =t + V2 in R[t]. Let Abe a
matrix with entries in Q.
(a) Suppose the characteristic polynomial of A is ¢*. Find all possibilities for the rational
canonical form of A over Q.
(b) With A as in part (a), find all possibilities for the rational canonical form of A over R.
(Keep in mind that the entries of A are in Q.)
(c) Now suppose the characteristic polynomial of A is ¢*. Again, find all possibilities for
the rational canonical form of A over Q and over R.
(d) Let F be a subfield of K. For T < i <k, let ¢; be distinct monic irreducible polynomi-
als in F[t]. Suppose each ¢; factors as [ [ ;; in K[t], where the 1;; are distinct, monic,
j

and irreducible in K[t]. Let A be a matrix with entries in F whose characteristic polyno-
mial is pa = £ ][ ¢;". Formulate a conjecture that describes how the rational canonical

1
forms of A over F and K are related. You don’t need to prove your conjecture.

Solution: (a) There are two possibilities

Ry =C(¢?) and R,= (C(‘b) C(cb))'

(b) The possibilities for the rational canonical form (RCF) over R of a matrix with entries in R
with characteristic polynomial ¢? = $p? $p2 are

Clo,) C(¢?)
R = (19 )R- C(6.) | Rj = C(6.)
(@) C(¢?) Clo )



Cld+)
R/ — C ( (D+ )
! Cl¢-)
Cl-)
Since A has entries in Q, it is similar to one of the matrices R; or R; of part (a). Each of R and R; is
similar to one of the matrices R}, ..., R;. The minimal polynomials of Ry, R, are respectively ¢?,

¢. The minimal polynomials of R}, R}, R}, R} are respectively ¢ dp? = ¢ b b2, d2 b, b b =
¢. Thus Ry (resp. R;) must be similar to Rj (resp. Rj), and the possible RCFs over R of A are Rj
and R;.

(c) There are five possible RCFs over QQ, corresponding to partitions of 4: (4), (3,1), (2,2),
(2,1,1), (1,1,1,1). (The RCF in the first case has one block, which is C(¢?), in the second case
has two blocks C(¢?) and C(¢), etc.) The characteristic polynomial over R factors as ¢4 ¢*. By
considering the minimal polynomials it follows that if the RCF over Q corresponds to the par-
titions (4), (3,1), or (1,1,1,1), the blocks for each of ¢, and ¢_ in the RCF over R will correspond
to the same partition. For instance, if the RCF over Q has one block C(¢*), then the RCF over R
will have one block C(¢%) and one block C(¢?).

If the RCF over Q corresponds to the partition (2,2) or (2,1,1), the minimal polynomial is
¢?. This tells us that the partition corresponding to each of ¢ in the RCF over R is either (2,2)
or (2,1,1). Suppose the RCF over Q is

(C(¢Y)
R= ( C(¢2)> :

o (cmﬁ)

By part (b), C(¢?) is similar to

C(d>2)) '

and the RCF over R has blocks for each of ¢ and ¢_ correspond-

/

Thus R is similar to R |’

ing to the partition (2,2). Similarly, if the RCF over Q corresponds to the partition (2,1,1), then
the RCF over R has blocks for each of ¢, and ¢_ corresponding to the partition (2,1,1) .

REMARK. For the case of partition (2,2) or (2,1,1), alternatively, we could have taken one of
the following two approaches: (1) First find the JCF, and then recover the RCF over R from the
JCF (see the first practice problem appended to the assignment). (2) Use problems 3b and 4c of
the assignment.

(d) Conjecture: The partition of n; (or the dot diagram) for each of 1;; in the RCF over K is
the same as the partition of n; for ¢; in the RCF over F.

3. (a) Let T be a linear operator on a finite-dimensional vector space V over F. Let f, g € F[t] be
relatively prime. Show that the restriction of f(T) to ker(g(T)) is injective. (Note: The statement
is equivalent to saying that ker(f(T)) Nker(g(T)) = 0, which we proved in class a few lectures
ago. You should rewrite the proof.)

(b) Deduce that if ¢ and  are distinct monic irreducible polynomials in F[t], and A is the
companion matrix of ™, then ¢(A) is invertible.

Solution: (a) Note that
ker (f(T)ker(q(r))) = ker(f(T)) Nker(g(T)).
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Suppose v € ker(f(T)) Nker(g(T)). Since f(t) and g(t) are relatively prime, there exist a(t), b(t)
such that a(t)f(t) + b(t)g(t) = 1. Then a(T)f(T) + b(T)g(T) = I. Applying both sided to v, we
see that v has to be zero.

(b) Let A = C(1p™). Let Lo = F* — F" be left multiplication by A. Apply part (a) to L, with
f = ¢ and g = Y™. By Cayley-Hamilton, ™ (La) = 0, so that ker({p™(La)) = F*. Thus Part (a)
tells us that ¢(La) = Ly(a) is injective, which is equivalent to ¢ (A) being invertible (why?).

4. Suppose T is a linear operator on a finite-dimensional vector space V over a field F. Suppose
moreover that V is a T-cyclic subspace of itself, and that the characteristic polynomial of T is
+¢™, where ¢ is a monic irreducible polynomial in F[t]. Let d = deg(¢). Let v € V be a vector
such that V is the T-cyclic subspace generated by v.

(a) Show that the set
L={d(M)™(v), ¢(M™(TW), dM)™ (T’ W)),..., &M™(T'(v)

is linearly independent. (Hint: What is the minimal polynomial of T?)

(b) By Cayley-Hamilton, ¢(T)™ = 0, so that ¢(T) is a nilpotent map. Show that the Jordan
canonical form of ¢(T) has the form

IO,m
IO,m

]O,m

where there are d Jordan blocks in the matrix. In other words, show that the dot dia-
gram for the eigenvalue zero of ¢(T) consists of d columns of length m. (Hint: For each
wi == ¢(T)™(T(v)) (0 < i< d), form a cycle of length m of generalized eigenvectors
of ¢(T) with initial vector w;. Then use Theorem 7.6.)

(c) Let A be the companion matrix of $™ (with ¢ as above: a monic irreducible element of
F[t] of degree d). Deduce from part (b) that for each 1 < r < m, the matrix ¢"(A) has
nullity rd.

Remark: From Problems 3(b) and 4 one can deduce uniqueness of rational canonical form.
In fact, one can use them to show the following stronger statement: if R and R’ are block di-
agonal matrices in M, «n(F) with diagonal blocks that are companion matrices of powers of
irreducible polynomials (that is, if they are matrices in rational canonical form), then, unless R
and R’ are obtained from each other by a permutation of the diagonal blocks, they are not simi-
lar over any field extension of F. (In short, this is because the nullities of ¢'(R) and ¢*(R’) won't
be the same for some r and some irreducible polynomial ¢ € F[t].) This statement together with
existence of rational canonical form can be used to show that if two matrices A,B € M, (F)
are similar over a field extension of F, then A and B are already similar over F.
Solution: (a) Since V has dimension md and is T-cyclically generated by v, the set B =
v, T(v),..., T (v)}is a basis of V. Suppose 1 is linearly dependent. Then there exist ¢y, ..., cq-1 €
F, not all zero, such that
d-1
D (™ (THv) =o.
i=0
Expand
d—1 dm—1
Y cdM™ (M) = Y aTW)
j=0

i=0
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(note d(m — 1) + (d — 1) = dm — 1). Let k be the largest index such that ¢, # 0. Then the
coefficient of T4m=1*¥(y) in the above is not zero. Thus we get a nontrivial linear combination
of 3 which is zero, contradicting linear independence of 3.

(b) Each of the vectors in I is the initial vector of a cycle of length m of generalized eigen-
vectors (for eigenvalue 0) of ¢(T). Indeed, foreach0 <i<d -1,

Y= (oM™ T W), d(T™ T W), .., G(THTHW)), THV))

is such cycle. The initial vectors of the y; are distinct and linearly independent, so that the
v; are disjoint and Uy; is linearly independent set with ) |yi| = dm elements. Thus o« = Uy;
is a Jordan basis of ¢(T). The Jordan canonical form [¢p(T)], is the matrix given in the statement.

5. So far in MAT240 and MAT247, you have seen the notion of direct sum of a collection of
subspaces of a given vector space. There is another notion of direct sum, which we introduce
in this problem. Let F be a field and V; (1 < i < k) vector spaces over F. Consider the cartesian
product

Vi x oo x Vii={(viy...,w) : vi € Viforeach 1 <1i <k}
Equip this set with component-wise addition and scalar multiplication. That is, define
(V],...,Vk) + (W], .. .,Wk) = (\)1 + Wiy oo,V +Wk)
and
c(viy .oy Vi) == (CViy.e.y CVy) (c € F).

(In more compact notation, (vi)i<i<k + (Wi)i<i<k = (vi + Wi)i<i<k and ¢(vi)i<i<k = (evi)i<izk.)
Then you can easily check that V; x --- x Vi together with the operations defined above is a
vector space. This vector space is called the direct sum of the V; , and is denoted by V, & - - - ® V4,

K
or P V..

i=1

For each 1 <1 <k, one has a natural injection
Li:Vi—>V1@---@Vk

sending v € V; to the tuple with v in its i-th entry and zeros elsewhere. One also has a natural
surjection (called the projection to the i-th component)

Vi@ ®dVik—=Vi (viy..., W) — i

K K
(a) Show that if 3; is a basis of V;, then J (i) is a basis of @ V;. Conclude that if the V;

i=1 i=1

K
are finite-dimensional, then dim(€p V;) = >_ dim(V;).
i=1 i=1
K
(b) Let W be any vector space (over the same field F). Show thatamap T: W — @V, is
i=1
linear if and only if the component maps 7ty o T : W — V; are linear.
(c) The goal of this part is to relate the notion of direct sum introduced here to the one we

k
had seen earlier. Suppose Vi, ..., Vi are all subspaces of a vector space V. Let @ V; be

i=1

the direct sum of the V; , as introduced here. Then we have a natural map

K K
“:EBVi_)V (v1,...,vk)|—>Zvi.
i=1 i=1



k
Note that the image of « is the subspace ) V;. Show that the sum of the subspaces V;

i=1
is direct (in the sense we had earlier) if and only if the map « is injective. (Thus when
the sum of the subspaces V; is direct, we have the above distinguished isomorphism
between the two notions of direct sums for the subspaces V;. Sometimes people use the
term internal direct sum for the earlier notion of direct sum, in contrast to the notion
defined here being external.

Solution: (a) Suppose v = (v;); € D, Vi. Then

V= Z ti(vi).
K
Since (;(v;) is in the span of 1;(3;), we get that |J 1i(B:) spans €D, Vi. As for linear independence
i=1

K
of J u(pBi), for each i, suppose vi 1, ..., Vi, are distinct vectors in (3;, and that
i=1

Z Z Qi Li(vi,j) = 0.
j

Applying 7, we get
Z Qijly (Vi,j) = 0.
j

Since u; is injective and {; is linearly independent, from this it follows that a;; is zero for all j.
This is true for all i, so that the a;; are zero for all 1,j.

We showed that U;t;(f;) is a basis of €D, Vi. If the p; are all finite, U;ii(B:) has ) [B:i| =

> dim(V;) elements. (Note that the sets 1;(3;) are disjoint; this is obvious from that Im(y) N

Im(y) = 0. It also follows from the argument given above.)
k

(b) Suppose T : W — @ V; is linear. Since the composition of two linear maps is linear,
i=1
7, o T is linear for all 1.

Conversely, suppose T : W — @Y | V; is a function such that 7; o T is linear for all i. Note
that for any v € @, Vi, we have v = (7;(v));. Given w,w’ € W and a € F, we have

linearity of 7ty o T

Tw+ aw’) = (m(T(w 4 aw’)))i (70 T(w) + a0 T(W'))i = (7 0 T(W))i + a7 o T(W')); = T(w) + aT(w').

(c) We leave it to the reader to check that « is linear. Thus « is injective if and only if
ker(a) =0, i.e. if and only if

k
ZViZO,ViEViHSiSk) = V1:0(1§1§k)
i=1

The latter was one of the equivalent conditions for the sum }_V; to be direct.
i



