MAT247 Algebra II Assignment 7 Solutions

Notation. In what follows we shall use the following notation: for a polynomial f, we denote the companion matrix of f by C(f). Given a scalar λ , we denote the $n \times n$ Jordan block corresponding to λ by $J_{\lambda,n}$.

- 1. Let F be a field.
 - (a) Let $\phi_1, \phi_2, \dots, \phi_k$ be distinct monic irreducible polynomials in F[t]. For each i, let $p_{i,j}$ $(1 \le j \le e_i)$ be integers with

$$p_{i,e_i} \geq p_{i,e_i-1} \geq \cdots \geq p_{i,1} \geq 1.$$

Let R be the following block diagonal matrix:

Show that the minimal polynomial of R is $\prod_{i=1}^{k} \phi_i^{p_{i,e_i}}$. (Remember that the minimal polynomial of the companion matrix of a monic polynomial f is f itself. Also note that if A is a block diagonal matrix with diagonal blocks A_1, A_2, \ldots and $g \in F[t]$, then g(A) is the block diagonal matrix with diagonal blocks $g(A_1), g(A_2), \ldots$)

(b) Let ϕ_1 and ϕ_2 be two distinct monic irreducible elements of F[t]. Consider the set \mathcal{M} of all matrices A with entries in F whose characteristic polynomial is $\phi_1^4 \phi_2^2$. Then similarity is an equivalence relation on \mathcal{M} . Find the number of equivalence classes of this relation, give a representative for each class, and give the minimal polynomial of the matrices in each class.

Solution: (a) Let $f = \prod_{i=1}^{k} \varphi_i^{p_{i,e_i}}$. It is enough to show that given any $g \in F[t]$, we have g(R) = 0 if and only if $f \mid g$. By the remark made in the statement of the question, g(R) = 0 if and only

if $g(C(\varphi_i^{p_{i,j}})) = 0$ for all $1 \le i \le k$ and $1 \le j \le e_i$. Since the minimal polynomial of $C(\varphi_i^{p_{i,j}})$ is $\phi_{i}^{p_{i,j}}$, it follows that g(R) = 0 if and only if $\phi_{i}^{p_{i,j}} \mid g$ for all $1 \le i \le k$ and $1 \le j \le e_i$. Since the $(p_{i,j})_j$ are increasing, the latter is equivalent to that $\phi_i^{p_{i,e_i}} \mid g$ for all i. Since the ϕ_i are pairwise relatively prime, this is equivalent to $f = \prod_{i=1}^{k} \varphi_{i}^{p_{i,e_{i}}} \mid g.$

(b) The elements of \mathcal{M} are classified up to similarity by their rational canonical forms over F. The possibilities for the blocks corresponding to ϕ_1 in the rational canonical form are

$$(1) C(\phi_1^4), (2) \begin{pmatrix} C(\phi_1^4) \\ C(\phi_1) \end{pmatrix}, (3) \begin{pmatrix} C(\phi_1^2) \\ C(\phi_1^2) \end{pmatrix}$$
$$(4) \begin{pmatrix} C(\phi_1^2) \\ C(\phi_1) \\ C(\phi_1) \end{pmatrix}, (5) \begin{pmatrix} C(\phi_1) \\ C(\phi_1) \\ C(\phi_1) \end{pmatrix}$$

The possibilities for the blocks corresponding to ϕ_2 are

(1)
$$C(\phi_2^2)$$
, (2) $\begin{pmatrix} C(\phi_2) \\ C(\phi_2) \end{pmatrix}$.

In total, there are 10 possibilities for the rational canonical form of a matrix with characteristic polynomial $\phi_1^4 \phi_2^2$. We leave it to the reader to find the minimal polynomial for each possibility using part (a).

Consider the polynomials $\phi = t^2 - 2$, $\phi^+ = t - \sqrt{2}$, and $\phi^- = t + \sqrt{2}$ in $\mathbb{R}[t]$. Let A be a 2. matrix with entries in \mathbb{Q} .

- (a) Suppose the characteristic polynomial of A is ϕ^2 . Find all possibilities for the rational canonical form of A over \mathbb{Q} .
- (b) With A as in part (a), find all possibilities for the rational canonical form of A over \mathbb{R} . (Keep in mind that the entries of A are in \mathbb{Q} .)
- (c) Now suppose the characteristic polynomial of A is ϕ^4 . Again, find all possibilities for the rational canonical form of A over \mathbb{Q} and over \mathbb{R} .
- (d) Let F be a subfield of K. For $1 \le i \le k$, let ϕ_i be distinct monic irreducible polynomials in F[t]. Suppose each ϕ_i factors as $\prod \psi_{i,j}$ in K[t], where the $\psi_{i,j}$ are distinct, monic, and irreducible in K[t]. Let A be a matrix with entries in F whose characteristic polyno-

mial is $p_A = \pm \prod \phi_i^{n_i}$. Formulate a conjecture that describes how the rational canonical

forms of A over F and K are related. You don't need to prove your conjecture.

Solution: (a) There are two possibilities

$$R_1 = C(\phi^2)$$
 and $R_2 = \begin{pmatrix} C(\phi) \\ C(\phi) \end{pmatrix}$

(b) The possibilities for the rational canonical form (RCF) over \mathbb{R} of a matrix with entries in \mathbb{R} with characteristic polynomial $\phi^2 = \phi_-^2 \phi_+^2$ are

$$R'_{1} = \begin{pmatrix} C(\phi_{+}^{2}) \\ C(\phi_{-}^{2}) \end{pmatrix}, R'_{2} = \begin{pmatrix} C(\phi_{+}) \\ C(\phi_{+}) \\ C(\phi_{-}) \end{pmatrix}, R'_{3} = \begin{pmatrix} C(\phi_{+}^{2}) \\ C(\phi_{-}) \\ C(\phi_{-}) \end{pmatrix}$$

$$R'_{4} = \begin{pmatrix} C(\phi_{+}) & & \\ & C(\phi_{+}) & \\ & & C(\phi_{-}) & \\ & & & C(\phi_{-}) \end{pmatrix}$$

Since A has entries in \mathbb{Q} , it is similar to one of the matrices R_1 or R_2 of part (a). Each of R_1 and R_2 is similar to one of the matrices R'_1, \ldots, R'_4 . The minimal polynomials of R_1, R_2 are respectively ϕ^2 , ϕ . The minimal polynomials of R'_1, R'_2, R'_3, R'_4 are respectively $\phi^2_+\phi^2_- = \phi^2, \phi_+\phi^2_-, \phi_+\phi_- = \phi$. Thus R_1 (resp. R_2) must be similar to R'_1 (resp. R'_4), and the possible RCFs over \mathbb{R} of A are R'_1 and R'_4 .

(c) There are five possible RCFs over \mathbb{Q} , corresponding to partitions of 4: (4), (3,1), (2,2), (2,1,1), (1,1,1,1). (The RCF in the first case has one block, which is $C(\phi^4)$, in the second case has two blocks $C(\phi^3)$ and $C(\phi)$, etc.) The characteristic polynomial over \mathbb{R} factors as $\phi_+^4 \phi_-^4$. By considering the minimal polynomials it follows that if the RCF over \mathbb{Q} corresponds to the partitions (4), (3,1), or (1,1,1,1), the blocks for each of ϕ_+ and ϕ_- in the RCF over \mathbb{R} will correspond to the same partition. For instance, if the RCF over \mathbb{Q} has one block $C(\phi^4)$, then the RCF over \mathbb{R} will have one block $C(\phi_+^4)$ and one block $C(\phi_-^4)$.

If the RCF over \mathbb{Q} corresponds to the partition (2,2) or (2,1,1), the minimal polynomial is ϕ^2 . This tells us that the partition corresponding to each of ϕ_{\pm} in the RCF over \mathbb{R} is either (2,2) or (2,1,1). Suppose the RCF over \mathbb{Q} is

$$R = \begin{pmatrix} C(\varphi^2) & \\ & C(\varphi^2) \end{pmatrix}.$$

By part (b), $C(\phi^2)$ is similar to

$$\mathsf{R}' = \begin{pmatrix} \mathsf{C}(\varphi_+^2) & \\ & \mathsf{C}(\varphi_-^2) \end{pmatrix}.$$

Thus R is similar to $\binom{R'}{R'}$, and the RCF over \mathbb{R} has blocks for each of ϕ_+ and ϕ_- corresponding to the partition (2,2). Similarly, if the RCF over \mathbb{Q} corresponds to the partition (2,1,1), then the RCF over \mathbb{R} has blocks for each of ϕ_+ and ϕ_- corresponding to the partition (2,1,1).

REMARK. For the case of partition (2,2) or (2,1,1), alternatively, we could have taken one of the following two approaches: (1) First find the JCF, and then recover the RCF over \mathbb{R} from the JCF (see the first practice problem appended to the assignment). (2) Use problems 3b and 4c of the assignment.

(d) Conjecture: The partition of n_i (or the dot diagram) for each of $\psi_{i,j}$ in the RCF over K is the same as the partition of n_i for ϕ_i in the RCF over F.

3. (a) Let T be a linear operator on a finite-dimensional vector space V over F. Let f, $g \in F[t]$ be relatively prime. Show that the restriction of f(T) to ker(g(T)) is injective. (Note: The statement is equivalent to saying that $ker(f(T)) \cap ker(g(T)) = 0$, which we proved in class a few lectures ago. You should rewrite the proof.)

(b) Deduce that if ϕ and ψ are distinct monic irreducible polynomials in F[t], and A is the companion matrix of ψ^m , then $\phi(A)$ is invertible.

Solution: (a) Note that

$$\ker(f(\mathsf{T})_{\ker(\mathfrak{g}(\mathsf{T}))}) = \ker(f(\mathsf{T})) \cap \ker(\mathfrak{g}(\mathsf{T})).$$

Suppose $v \in \text{ker}(f(T)) \cap \text{ker}(g(T))$. Since f(t) and g(t) are relatively prime, there exist a(t), b(t) such that a(t)f(t) + b(t)g(t) = 1. Then a(T)f(T) + b(T)g(T) = I. Applying both sided to v, we see that v has to be zero.

(b) Let $A = C(\psi^m)$. Let $L_A :: F^n \to F^n$ be left multiplication by A. Apply part (a) to L_A with $f = \phi$ and $g = \psi^m$. By Cayley-Hamilton, $\psi^m(L_A) = 0$, so that $ker(\psi^m(L_A)) = F^n$. Thus Part (a) tells us that $\phi(L_A) = L_{\phi(A)}$ is injective, which is equivalent to $\phi(A)$ being invertible (why?).

4. Suppose T is a linear operator on a finite-dimensional vector space V over a field F. Suppose moreover that V is a T-cyclic subspace of itself, and that the characteristic polynomial of T is $\pm \phi^m$, where ϕ is a monic irreducible polynomial in F[t]. Let $d = deg(\phi)$. Let $v \in V$ be a vector such that V is the T-cyclic subspace generated by v.

(a) Show that the set

$$I = \{ \varphi(T)^{m-1}(\nu), \ \varphi(T)^{m-1}(T(\nu)), \ \varphi(T)^{m-1}(T^{2}(\nu)), \dots, \ \varphi(T)^{m-1}(T^{d-1}(\nu)) \}$$

is linearly independent. (Hint: What is the minimal polynomial of T?)

(b) By Cayley-Hamilton, $\phi(T)^m = 0$, so that $\phi(T)$ is a nilpotent map. Show that the Jordan canonical form of $\phi(T)$ has the form

where there are d Jordan blocks in the matrix. In other words, show that the dot diagram for the eigenvalue zero of $\phi(T)$ consists of d columns of length m. (Hint: For each $w_i := \phi(T)^{m-1}(T^i(v))$ ($0 \le i < d$), form a cycle of length m of generalized eigenvectors of $\phi(T)$ with initial vector w_i . Then use Theorem 7.6.)

(c) Let A be the companion matrix of ϕ^m (with ϕ as above: a monic irreducible element of F[t] of degree d). Deduce from part (b) that for each $1 \le r \le m$, the matrix $\phi^r(A)$ has nullity rd.

Remark: From Problems 3(b) and 4 one can deduce uniqueness of rational canonical form. In fact, one can use them to show the following stronger statement: if R and R' are block diagonal matrices in $M_{n\times n}(F)$ with diagonal blocks that are companion matrices of powers of irreducible polynomials (that is, if they are matrices in rational canonical form), then, unless R and R' are obtained from each other by a permutation of the diagonal blocks, they are not similar over any field extension of F. (In short, this is because the nullities of $\phi^i(R)$ and $\phi^i(R')$ won't be the same for some r and some irreducible polynomial $\phi \in F[t]$.) This statement together with existence of rational canonical form can be used to show that if two matrices A, $B \in M_{n\times n}(F)$ are similar over a field extension of F, then A and B are already similar over F.

Solution: (a) Since V has dimension md and is T-cyclically generated by v, the set $\beta = \{v, T(v), \dots, T^{md-1}(v)\}$ is a basis of V. Suppose I is linearly dependent. Then there exist $c_0, \dots, c_{d-1} \in F$, not all zero, such that

$$\sum_{i=0}^{d-1} c_i \varphi(T)^{m-1}(T^i(\nu)) = 0.$$

Expand

$$\sum_{i=0}^{d-1} c_i \varphi(T)^{m-1}(T^i(\nu)) = \sum_{j=0}^{dm-1} a_j T^j(\nu)$$

(note d(m - 1) + (d - 1) = dm - 1). Let k be the largest index such that $c_k \neq 0$. Then the coefficient of $T^{d(m-1)+k}(v)$ in the above is not zero. Thus we get a nontrivial linear combination of β which is zero, contradicting linear independence of β .

(b) Each of the vectors in I is the initial vector of a cycle of length m of generalized eigenvectors (for eigenvalue 0) of $\phi(T)$. Indeed, for each $0 \le i \le d - 1$,

$$\gamma_i := \{ \varphi(T)^{m-1}(T^i(\nu)), \varphi(T)^{m-2}(T^i(\nu)), \dots, \varphi(T)(T^i(\nu)), T^i(\nu) \}$$

is such cycle. The initial vectors of the γ_i are distinct and linearly independent, so that the γ_i are disjoint and $\cup \gamma_i$ is linearly independent set with $\sum |\gamma_i| = dm$ elements. Thus $\alpha = \cup \gamma_i$ is a Jordan basis of $\phi(T)$. The Jordan canonical form $[\phi(T)]_{\alpha}$ is the matrix given in the statement.

5. So far in MAT240 and MAT247, you have seen the notion of direct sum of a collection of subspaces of a given vector space. There is another notion of direct sum, which we introduce in this problem. Let F be a field and V_i ($1 \le i \le k$) vector spaces over F. Consider the cartesian product

$$V_1 \times \cdots \times V_k := \{ (\nu_1, \dots, \nu_k) : \nu_i \in V_i \text{ for each } 1 \le i \le k \}.$$

Equip this set with component-wise addition and scalar multiplication. That is, define

$$(\mathbf{v}_1,\ldots,\mathbf{v}_k)+(w_1,\ldots,w_k):=(\mathbf{v}_1+w_1,\ldots,\mathbf{v}_k+w_k)$$

and

$$\mathbf{c}(\mathbf{v}_1,\ldots,\mathbf{v}_k) := (\mathbf{c}\mathbf{v}_1,\ldots,\mathbf{c}\mathbf{v}_k) \qquad (\mathbf{c}\in\mathsf{F}).$$

(In more compact notation, $(v_i)_{1 \le i \le k} + (w_i)_{1 \le i \le k} = (v_i + w_i)_{1 \le i \le k}$ and $c(v_i)_{1 \le i \le k} = (cv_i)_{1 \le i \le k}$.) Then you can easily check that $V_1 \times \cdots \times V_k$ together with the operations defined above is a vector space. This vector space is called the direct sum of the V_i , and is denoted by $V_1 \oplus \cdots \oplus V_k$, or $\bigwedge^k V_i$

or $\bigoplus_{i=1}^{\kappa} V_i$.

For each $1 \le i \le k$, one has a natural injection

$$\iota_i:V_i\to V_1\oplus\cdots\oplus V_k$$

sending $v \in V_i$ to the tuple with v in its i-th entry and zeros elsewhere. One also has a natural surjection (called the projection to the i-th component)

$$\pi_i: V_1 \oplus \cdots \oplus V_k \to V_i \quad (\nu_1, \ldots, \nu_k) \mapsto \nu_i.$$

- (a) Show that if β_i is a basis of V_i , then $\bigcup_{i=1}^k \iota_i(\beta_i)$ is a basis of $\bigoplus_{i=1}^k V_i$. Conclude that if the V_i are finite-dimensional, then $\dim(\bigoplus_{i=1}^k V_i) = \sum_{i=1}^k \dim(V_i)$.
- (b) Let *W* be any vector space (over the same field F). Show that a map $T : W \to \bigoplus_{i=1}^{k} V_i$ is linear if and only if the component maps $\pi_i \circ T : W \to V_i$ are linear.
- (c) The goal of this part is to relate the notion of direct sum introduced here to the one we had seen earlier. Suppose V_1, \ldots, V_k are all subspaces of a vector space V. Let $\bigoplus_{i=1}^k V_i$ be the direct sum of the V_i , as introduced here. Then we have a natural map

$$\alpha: \bigoplus_{i=1}^k V_i \to V \qquad (\nu_1,\ldots,\nu_k) \mapsto \sum_{i=1}^k \nu_i.$$

Note that the image of α is the subspace $\sum_{i=1}^{\kappa} V_i$. Show that the sum of the subspaces V_i is direct (in the sense we had earlier) if and only if the map α is injective. (Thus when the sum of the subspaces V_i is direct, we have the above distinguished isomorphism between the two notions of direct sums for the subspaces V_i. Sometimes people use the term *internal* direct sum for the earlier notion of direct sum, in contrast to the notion defined here being *external*.

Solution: (a) Suppose $v = (v_i)_i \in \bigoplus_i V_i$. Then

$$\nu = \sum_{i} \iota_{i}(\nu_{i}).$$

Since $\iota_i(\nu_i)$ is in the span of $\iota_i(\beta_i)$, we get that $\bigcup_{i=1}^k \iota_i(\beta_i)$ spans $\bigoplus_i V_i$. As for linear independence of $\bigcup_{i=1}^k \iota_i(\beta_i)$, for each i, suppose $\nu_{i,1}, \ldots, \nu_{i,r_i}$ are distinct vectors in β_i , and that

$$\sum_{i}\sum_{j}a_{i,j}\iota_{i}(\nu_{i,j}) = 0.$$

Applying π_i , we get

$$\sum_{j} a_{i,j}\iota_{i}(\nu_{i,j}) = 0.$$

Since ι_i is injective and β_i is linearly independent, from this it follows that $\mathfrak{a}_{i,j}$ is zero for all j. This is true for all i, so that the $a_{i,j}$ are zero for all i, j.

We showed that $\cup_i \iota_i(\beta_i)$ is a basis of $\bigoplus_i V_i$. If the β_i are all finite, $\cup_i \iota_i(\beta_i)$ has $\sum |\beta_i| =$ $\sum dim(V_i)$ elements. (Note that the sets $\iota_i(\beta_i)$ are disjoint; this is obvious from that $Im(\iota_i) \cap$ $Im(\iota_i) = 0$. It also follows from the argument given above.)

(b) Suppose $T : W \to \bigoplus_{i=1}^{k} V_i$ is linear. Since the composition of two linear maps is linear, $\pi_i \circ T$ is linear for all i.

Conversely, suppose $T: W \to \bigoplus_{i=1}^{k} V_i$ is a function such that $\pi_i \circ T$ is linear for all i. Note that for any $v \in \bigoplus_i V_i$, we have $v = (\pi_i(v))_i$. Given $w, w' \in W$ and $a \in F$, we have

 $\mathsf{T}(w + aw') = (\pi_i(\mathsf{T}(w + aw')))_i \stackrel{\text{linearity of } \pi_i \circ \mathsf{T}}{=} (\pi_i \circ \mathsf{T}(w) + a\pi_i \circ \mathsf{T}(w'))_i = (\pi_i \circ \mathsf{T}(w))_i + a(\pi_i \circ \mathsf{T}(w'))_i = \mathsf{T}(w) + a\mathsf{T}(w').$

(c) We leave it to the reader to check that α is linear. Thus α is injective if and only if $ker(\alpha) = 0$, i.e. if and only if

$$\sum_{i=1}^k \nu_i = 0, \ \nu_i \in V_i \ (1 \leq i \leq k) \qquad \Rightarrow \qquad \nu_i = 0 \ (1 \leq i \leq k).$$

The latter was one of the equivalent conditions for the sum $\sum_{i} V_i$ to be direct.