
MAT247 Algebra II
Assignment 7

Solutions

Notation. In what follows we shall use the following notation: for a polynomial f, we de-
note the companion matrix of f by C(f). Given a scalar λ, we denote the n × n Jordan block
corresponding to λ by Jλ,n.

1. Let F be a field.
(a) Let φ1, φ2, . . . , φk be distinct monic irreducible polynomials in F[t]. For each i, let pi,j

(1 ≤ j ≤ ei) be integers with

pi,ei ≥ pi,ei−1 ≥ · · · ≥ pi,1 ≥ 1.

Let R be the following block diagonal matrix:

C(φ
p1,e1
1 )

. . .

C(φp1,11 )

C(φ
p2,e2
2 )

. . .

C(φp2,12 )

. . .

C(φ
pk,ek
k )

. . .

C(φpk,1k )



.

Show that the minimal polynomial of R is
k∏
i=1

φ
pi,ei
i . (Remember that the minimal poly-

nomial of the companion matrix of a monic polynomial f is f itself. Also note that if A
is a block diagonal matrix with diagonal blocks A1, A2, . . . and g ∈ F[t], then g(A) is the
block diagonal matrix with diagonal blocks g(A1), g(A2), . . ..)

(b) Let φ1 and φ2 be two distinct monic irreducible elements of F[t]. Consider the setM
of all matrices A with entries in F whose characteristic polynomial is φ41φ

2
2. Then sim-

ilarity is an equivalence relation onM. Find the number of equivalence classes of this
relation, give a representative for each class, and give the minimal polynomial of the
matrices in each class.

Solution: (a) Let f =
k∏
i=1

φ
pi,ei
i . It is enough to show that given any g ∈ F[t], we have g(R) = 0

if and only if f
∣∣ g. By the remark made in the statement of the question, g(R) = 0 if and only
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if g(C(φpi,ji )) = 0 for all 1 ≤ i ≤ k and 1 ≤ j ≤ ei. Since the minimal polynomial of C(φpi,ji ) is
φ
pi,j
i , it follows that g(R) = 0 if and only if φpi,ji

∣∣ g for all 1 ≤ i ≤ k and 1 ≤ j ≤ ei. Since the
(pi,j)j are increasing, the latter is equivalent to that φ

pi,ei
i

∣∣ g for all i. Since the φi are pairwise

relatively prime, this is equivalent to f =
k∏
i=1

φ
pi,ei
i

∣∣ g.

(b) The elements ofM are classified up to similarity by their rational canonical forms over
F. The possibilities for the blocks corresponding to φ1 in the rational canonical form are

(1) C(φ41) , (2)

(
C(φ41)

C(φ1)

)
, (3)

(
C(φ21)

C(φ21)

)

(4)

C(φ21) C(φ1)
C(φ1)

 , (5)


C(φ1)

C(φ1)
C(φ1)

C(φ1)

 .
The possibilities for the blocks corresponding to φ2 are

(1) C(φ22) , (2)

(
C(φ2)

C(φ2)

)
.

In total, there are 10 possibilities for the rational canonical form of a matrix with characteristic
polynomial φ41φ

2
2. We leave it to the reader to find the minimal polynomial for each possibility

using part (a).

2. Consider the polynomials φ = t2 − 2, φ+ = t −
√
2, and φ− = t +

√
2 in R[t]. Let A be a

matrix with entries in Q.
(a) Suppose the characteristic polynomial of A is φ2. Find all possibilities for the rational

canonical form of A over Q.
(b) With A as in part (a), find all possibilities for the rational canonical form of A over R.

(Keep in mind that the entries of A are in Q.)
(c) Now suppose the characteristic polynomial of A is φ4. Again, find all possibilities for

the rational canonical form of A over Q and over R.
(d) Let F be a subfield of K. For 1 ≤ i ≤ k, let φi be distinct monic irreducible polynomi-

als in F[t]. Suppose each φi factors as
∏
j

ψi,j in K[t], where the ψi,j are distinct, monic,

and irreducible in K[t]. Let A be a matrix with entries in Fwhose characteristic polyno-
mial is pA = ±

∏
i

φni

i . Formulate a conjecture that describes how the rational canonical

forms of A over F and K are related. You don’t need to prove your conjecture.

Solution: (a) There are two possibilities

R1 = C(φ
2) and R2 =

(
C(φ)

C(φ)

)
.

(b) The possibilities for the rational canonical form (RCF) over R of a matrix with entries in R
with characteristic polynomial φ2 = φ2−φ2+ are

R ′1 =

(
C(φ2+)

C(φ2−)

)
, R ′2 =

C(φ+)
C(φ+)

C(φ2−)

 , R ′3 =
C(φ2+) C(φ−)

C(φ−)
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R ′4 =


C(φ+)

C(φ+)
C(φ−)

C(φ−)

 .
SinceA has entries in Q, it is similar to one of the matrices R1 or R2 of part (a). Each of R1 and R2 is
similar to one of the matrices R ′1, . . . , R

′
4. The minimal polynomials of R1, R2 are respectively φ2,

φ. The minimal polynomials of R ′1, R
′
2, R

′
3, R

′
4 are respectively φ2+φ2− = φ2, φ+φ

2
−, φ

2
+φ−, φ+φ− =

φ. Thus R1 (resp. R2) must be similar to R ′1 (resp. R ′4), and the possible RCFs over R of A are R ′1
and R ′4.

(c) There are five possible RCFs over Q, corresponding to partitions of 4: (4), (3,1), (2,2),
(2,1,1), (1,1,1,1). (The RCF in the first case has one block, which is C(φ4), in the second case
has two blocks C(φ3) and C(φ), etc.) The characteristic polynomial over R factors as φ4+φ4−. By
considering the minimal polynomials it follows that if the RCF over Q corresponds to the par-
titions (4), (3,1), or (1,1,1,1), the blocks for each of φ+ and φ− in the RCF over R will correspond
to the same partition. For instance, if the RCF over Q has one block C(φ4), then the RCF over R
will have one block C(φ4+) and one block C(φ4−).

If the RCF over Q corresponds to the partition (2,2) or (2,1,1), the minimal polynomial is
φ2. This tells us that the partition corresponding to each of φ± in the RCF over R is either (2,2)
or (2,1,1). Suppose the RCF over Q is

R =

(
C(φ2)

C(φ2)

)
.

By part (b), C(φ2) is similar to

R ′ =

(
C(φ2+)

C(φ2−)

)
.

Thus R is similar to
(
R ′

R ′

)
, and the RCF over R has blocks for each ofφ+ andφ− correspond-

ing to the partition (2,2). Similarly, if the RCF over Q corresponds to the partition (2,1,1), then
the RCF over R has blocks for each of φ+ and φ− corresponding to the partition (2,1,1) .

REMARK. For the case of partition (2,2) or (2,1,1), alternatively, we could have taken one of
the following two approaches: (1) First find the JCF, and then recover the RCF over R from the
JCF (see the first practice problem appended to the assignment). (2) Use problems 3b and 4c of
the assignment.

(d) Conjecture: The partition of ni (or the dot diagram) for each of ψi,j in the RCF over K is
the same as the partition of ni for φi in the RCF over F.

3. (a) Let T be a linear operator on a finite-dimensional vector space V over F. Let f, g ∈ F[t] be
relatively prime. Show that the restriction of f(T) to ker(g(T)) is injective. (Note: The statement
is equivalent to saying that ker(f(T)) ∩ ker(g(T)) = 0, which we proved in class a few lectures
ago. You should rewrite the proof.)

(b) Deduce that if φ and ψ are distinct monic irreducible polynomials in F[t], and A is the
companion matrix of ψm, then φ(A) is invertible.

Solution: (a) Note that

ker(f(T)ker(g(T))) = ker(f(T)) ∩ ker(g(T)).
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Suppose v ∈ ker(f(T))∩ ker(g(T)). Since f(t) and g(t) are relatively prime, there exist a(t), b(t)
such that a(t)f(t) + b(t)g(t) = 1. Then a(T)f(T) + b(T)g(T) = I. Applying both sided to v, we
see that v has to be zero.

(b) Let A = C(ψm). Let LA :: Fn → Fn be left multiplication by A. Apply part (a) to LA with
f = φ and g = ψm. By Cayley-Hamilton, ψm(LA) = 0, so that ker(ψm(LA)) = Fn. Thus Part (a)
tells us that φ(LA) = Lφ(A) is injective, which is equivalent to φ(A) being invertible (why?).

4. Suppose T is a linear operator on a finite-dimensional vector space V over a field F. Suppose
moreover that V is a T -cyclic subspace of itself, and that the characteristic polynomial of T is
±φm, where φ is a monic irreducible polynomial in F[t]. Let d = deg(φ). Let v ∈ V be a vector
such that V is the T -cyclic subspace generated by v.

(a) Show that the set

I = {φ(T)m−1(v), φ(T)m−1(T(v)), φ(T)m−1(T 2(v)), . . . , φ(T)m−1(Td−1(v))}

is linearly independent. (Hint: What is the minimal polynomial of T?)
(b) By Cayley-Hamilton, φ(T)m = 0, so that φ(T) is a nilpotent map. Show that the Jordan

canonical form of φ(T) has the form
J0,m

J0,m
. . .

J0,m

 ,
where there are d Jordan blocks in the matrix. In other words, show that the dot dia-
gram for the eigenvalue zero of φ(T) consists of d columns of lengthm. (Hint: For each
wi := φ(T)

m−1(T i(v)) (0 ≤ i < d), form a cycle of length m of generalized eigenvectors
of φ(T) with initial vector wi. Then use Theorem 7.6.)

(c) Let A be the companion matrix of φm (with φ as above: a monic irreducible element of
F[t] of degree d). Deduce from part (b) that for each 1 ≤ r ≤ m, the matrix φr(A) has
nullity rd.

Remark: From Problems 3(b) and 4 one can deduce uniqueness of rational canonical form.
In fact, one can use them to show the following stronger statement: if R and R ′ are block di-
agonal matrices in Mn×n(F) with diagonal blocks that are companion matrices of powers of
irreducible polynomials (that is, if they are matrices in rational canonical form), then, unless R
and R ′ are obtained from each other by a permutation of the diagonal blocks, they are not simi-
lar over any field extension of F. (In short, this is because the nullities of φi(R) and φi(R ′) won’t
be the same for some r and some irreducible polynomialφ ∈ F[t].) This statement together with
existence of rational canonical form can be used to show that if two matrices A,B ∈ Mn×n(F)
are similar over a field extension of F, then A and B are already similar over F.

Solution: (a) Since V has dimension md and is T -cyclically generated by v, the set β =
{v, T(v), . . . , Tmd−1(v)} is a basis ofV . Suppose I is linearly dependent. Then there exist c0, . . . , cd−1 ∈
F, not all zero, such that

d−1∑
i=0

ciφ(T)
m−1(T i(v)) = 0.

Expand
d−1∑
i=0

ciφ(T)
m−1(T i(v)) =

dm−1∑
j=0

ajT
j(v)



5

(note d(m − 1) + (d − 1) = dm − 1). Let k be the largest index such that ck 6= 0. Then the
coefficient of Td(m−1)+k(v) in the above is not zero. Thus we get a nontrivial linear combination
of βwhich is zero, contradicting linear independence of β.

(b) Each of the vectors in I is the initial vector of a cycle of length m of generalized eigen-
vectors (for eigenvalue 0) of φ(T). Indeed, for each 0 ≤ i ≤ d− 1,

γi := {φ(T)m−1(T i(v)), φ(T)m−2(T i(v)), . . . , φ(T)(T i(v)), T i(v)}

is such cycle. The initial vectors of the γi are distinct and linearly independent, so that the
γi are disjoint and ∪γi is linearly independent set with

∑
|γi| = dm elements. Thus α = ∪γi

is a Jordan basis ofφ(T). The Jordan canonical form [φ(T)]α is the matrix given in the statement.

5. So far in MAT240 and MAT247, you have seen the notion of direct sum of a collection of
subspaces of a given vector space. There is another notion of direct sum, which we introduce
in this problem. Let F be a field and Vi (1 ≤ i ≤ k) vector spaces over F. Consider the cartesian
product

V1 × · · · × Vk := {(v1, . . . , vk) : vi ∈ Vi for each 1 ≤ i ≤ k}.
Equip this set with component-wise addition and scalar multiplication. That is, define

(v1, . . . , vk) + (w1, . . . , wk) := (v1 +w1, . . . , vk +wk)

and
c(v1, . . . , vk) := (cv1, . . . , cvk) (c ∈ F).

(In more compact notation, (vi)1≤i≤k + (wi)1≤i≤k = (vi + wi)1≤i≤k and c(vi)1≤i≤k = (cvi)1≤i≤k.)
Then you can easily check that V1 × · · · × Vk together with the operations defined above is a
vector space. This vector space is called the direct sum of the Vi , and is denoted by V1⊕· · ·⊕Vk,

or
k⊕
i=1

Vi.

For each 1 ≤ i ≤ k, one has a natural injection

ιi : Vi → V1 ⊕ · · · ⊕ Vk
sending v ∈ Vi to the tuple with v in its i-th entry and zeros elsewhere. One also has a natural
surjection (called the projection to the i-th component)

πi : V1 ⊕ · · · ⊕ Vk → Vi (v1, . . . , vk) 7→ vi.

(a) Show that if βi is a basis of Vi , then
k⋃
i=1

ιi(βi) is a basis of
k⊕
i=1

Vi. Conclude that if the Vi

are finite-dimensional, then dim(
k⊕
i=1

Vi) =
k∑
i=1

dim(Vi).

(b) Let W be any vector space (over the same field F). Show that a map T : W → k⊕
i=1

Vi is

linear if and only if the component maps πi ◦ T :W → Vi are linear.
(c) The goal of this part is to relate the notion of direct sum introduced here to the one we

had seen earlier. Suppose V1, . . . , Vk are all subspaces of a vector space V . Let
k⊕
i=1

Vi be

the direct sum of the Vi , as introduced here. Then we have a natural map

α :

k⊕
i=1

Vi → V (v1, . . . , vk) 7→ k∑
i=1

vi.
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Note that the image of α is the subspace
k∑
i=1

Vi. Show that the sum of the subspaces Vi

is direct (in the sense we had earlier) if and only if the map α is injective. (Thus when
the sum of the subspaces Vi is direct, we have the above distinguished isomorphism
between the two notions of direct sums for the subspaces Vi. Sometimes people use the
term internal direct sum for the earlier notion of direct sum, in contrast to the notion
defined here being external.

Solution: (a) Suppose v = (vi)i ∈
⊕

i Vi. Then

v =
∑
i

ιi(vi).

Since ιi(vi) is in the span of ιi(βi), we get that
k⋃
i=1

ιi(βi) spans
⊕

i Vi. As for linear independence

of
k⋃
i=1

ιi(βi), for each i, suppose vi,1, . . . , vi,ri are distinct vectors in βi, and that∑
i

∑
j

ai,jιi(vi,j) = 0.

Applying πi, we get ∑
j

ai,jιi(vi,j) = 0.

Since ιi is injective and βi is linearly independent, from this it follows that ai,j is zero for all j.
This is true for all i, so that the ai,j are zero for all i, j.

We showed that ∪iιi(βi) is a basis of
⊕

i Vi. If the βi are all finite, ∪iιi(βi) has
∑
i

|βi| =∑
dim(Vi) elements. (Note that the sets ιi(βi) are disjoint; this is obvious from that Im(ιi) ∩

Im(ιj) = 0. It also follows from the argument given above.)

(b) Suppose T : W → k⊕
i=1

Vi is linear. Since the composition of two linear maps is linear,

πi ◦ T is linear for all i.
Conversely, suppose T : W →⊕k

i=1 Vi is a function such that πi ◦ T is linear for all i. Note
that for any v ∈

⊕
i Vi, we have v = (πi(v))i. Given w,w ′ ∈W and a ∈ F, we have

T(w+ aw ′) = (πi(T(w+ aw ′)))i
linearity of πi ◦ T

= (πi ◦ T(w) + aπi ◦ T(w ′))i = (πi ◦ T(w))i + a(πi ◦ T(w ′))i = T(w) + aT(w ′).

(c) We leave it to the reader to check that α is linear. Thus α is injective if and only if
ker(α) = 0, i.e. if and only if

k∑
i=1

vi = 0, vi ∈ Vi (1 ≤ i ≤ k) ⇒ vi = 0 (1 ≤ i ≤ k).

The latter was one of the equivalent conditions for the sum
∑
i

Vi to be direct.


