MAT247 Algebra II Assignment 8 Solutions

1. (equality cases of Cauchy-Schwarz and triangle inequalities) Let V be an inner product space and $x, y \in V$.

(a) Show that

$$|\langle x,y\rangle| = \|x\| \cdot \|y\|$$

if and only if one of x or y is a scalar multiple of the other. (Suggestion: Go over the proof of Cauchy-Schwarz.)

(b) Show that

$$\|x + y\| = \|x\| + \|y\|$$

if and only if one of x or y is equal to a non-negative real number times the other. (Suggestion: Go over the proof of triangle inequality!)

Solution: (a) The "if" implication is clear and we leave it to the reader. Suppose $|\langle x, y \rangle| = ||x|| \cdot ||y||$. If y is zero, then it is a scalar multiple of x and we are done. Suppose $y \neq 0$. For any $c \in F$, we have

$$|\mathbf{x} - \mathbf{c}\mathbf{y}||^2 = \langle \mathbf{x} - \mathbf{c}\mathbf{y}, \mathbf{x} - \mathbf{c}\mathbf{y} \rangle = \|\mathbf{x}\|^2 + |\mathbf{c}|^2 \|\mathbf{y}\|^2 - \mathbf{c}\langle \mathbf{y}, \mathbf{x} \rangle - \overline{\mathbf{c}}\langle \mathbf{x}, \mathbf{y} \rangle.$$

Taking $c = \frac{\langle x, y \rangle}{\|y\|^2}$, this simplifies to

$$\|\mathbf{x} - \mathbf{c}\mathbf{y}\|^2 = \frac{\|\mathbf{x}\|^2 \|\mathbf{y}\|^2 - |\langle \mathbf{x}, \mathbf{y} \rangle|^2}{\|\mathbf{y}\|^2} = 0.$$

Thus x = cy.

(b) \Rightarrow : We may assume $y \neq 0$. We have

$$\|\mathbf{x} + \mathbf{y}\|^2 = \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle^2 \stackrel{\text{why}}{=} \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle.$$

We also have

$$(||\mathbf{x}|| + ||\mathbf{y}||)^2 = ||\mathbf{x}||^2 + ||\mathbf{y}||^2 + 2||\mathbf{x}|| ||\mathbf{y}||^2$$

Suppose $||x + y||^2 = (||x|| + ||y||)^2$. Then

$$\langle \mathrm{x},\mathrm{y}
angle + \langle \mathrm{y},\mathrm{x}
angle = 2\|\mathrm{x}\|\;\|\mathrm{y}\| \geq 2|\langle \mathrm{x},\mathrm{y}
angle|,$$

by Cauchy-Schwarz. Since $\langle y, x \rangle = \overline{\langle x, y \rangle}$, we get

$$\operatorname{Re}(\langle x,y\rangle) \geq |\langle x,y\rangle|,$$

where Re stands for the real part. It follows that $\langle x,y\rangle$ is real and nonnegative. Eq. (1) now gives

$$2\langle \mathbf{x},\mathbf{y}\rangle|=2\|\mathbf{x}\| \|\mathbf{y}\|\geq 2\langle \mathbf{x},\mathbf{y}\rangle,$$

so that

(1)

 $\|\mathbf{x}\| \|\mathbf{y}\| = \langle \mathbf{x}, \mathbf{y} \rangle.$

Thus by (a), there is $c \in \mathbb{C}$ such that x = cy. We have

$$0 \leq \langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{c} \langle \mathbf{y}, \mathbf{y} \rangle.$$

It follows that c is real and nonnegative, as desired.

2

$\Leftarrow: S$	Suppose	without lo	ss that $x =$	cu for some	e c >	0.	Then
-----------------	---------	------------	---------------	-------------	-------	----	------

$$||x + y|| = ||(c + 1)y|| = |(c + 1)|||y|| = (c + 1)||y||.$$

On the other hand,

$$\|x\| + \|y\| = \|cy\| + \|y\| = (|c|+1)\|y\| = (c+1)\|y\|.$$

- **2.** Let V be an inner product space and $x, y \in V$.
 - (a) Prove the *parallelogram law*:

$$||x + y||^{2} + ||x - y||^{2} = 2||x||^{2} + 2||y||^{2}.$$

Specializing to the case of \mathbb{R}^2 with its standard inner product, what does this identity say about a parallelogram on the plane?

(b) Show that if $\langle x, y \rangle = \overline{0}$, then $||x + y||^2 = ||x||^2 + ||y||^2$.

Solution: We leave this to the reader.

3. Let $F = \mathbb{R}$ or \mathbb{C} and V be an inner product space over F. For each $y \in V$, we have a map

$$\langle -, y \rangle : V \to F \quad x \mapsto \langle x, y \rangle.$$

Linearity of \langle , \rangle in the first component implies that $\langle -, y \rangle$ is linear, so that it belongs to V^{\vee}.

(a) Show that the function

$$lpha: V
ightarrow V^{arphi}$$

defined by $\alpha(y) = \langle -, y \rangle$ is injective, and that moreover it is linear when $F = \mathbb{R}$.

- (b) Conclude that if $F = \mathbb{R}$ and V is finite-dimensional, then α is an isomorphism. (Remark: In general, there is no natural (or distinguished) isomorphism between a finite-dimensional vector space and its dual. But we see here that if a finite-dimensional vector space over \mathbb{R} is equipped with an inner product, then the inner product gives rise to a natural isomorphism between the vector space and its dual.)
- (c) Suppose $F = \mathbb{R}$ or \mathbb{C} . Let V be finite-dimensional and $\{v_1, \ldots, v_n\}$ an orthonormal basis of V. Let $f \in V^{\vee}$. Show that $f = \sum_{i=1}^{n} f(v_i) \langle -, v_i \rangle$.

Solution: (a) By antilinearily of an inner product in the second factor, α is an \mathbb{R} -linear map (even when $F = \mathbb{C}$). For injectivity, suppose $y \in \text{ker}(\alpha)$. Then $\langle x, y \rangle = 0$ for all x, and in particular, $\langle y, y \rangle = 0$. Thus y = 0 and $\text{ker}(\alpha) = 0$.

(b) The map α is an injective linear map and V and V^{\vee} are finite dimensional vector spaces of the same dimension, so α is an isomorphism. (Note that even if F = \mathbb{C} , by the same reasoning, α is an isomorphism between the underlying real vector spaces of V and V^{\vee}.)

(c) Both f and $g = \sum_{i=1}^{n} f(v_i) \langle -, v_i \rangle$ are linear maps $V \to F$. To prove they are equal, it is enough to check that they agree on a basis of V, say on $\{v_1, \ldots, v_n\}$. For each v_i ,

$$g(v_j) = \sum_{i=1}^n f(v_i) \langle v_j, v_i \rangle = f(v_j),$$

where the last equality is by orthonormality of $\{v_1, \ldots, v_n\}$.

4. Let V be an inner product space (real or complex, possibly infinite-dimensional). Let $\{v_1, \ldots, v_n\}$ be an orthonormal set of vectors.

(a) Show that

$$\|\sum_{i=1}^{n} c_i v_i\|^2 = \sum_{i=1}^{n} |c_i|^2.$$

(b) Show that for every $x \in V$,

$$\|\mathbf{x}\|^2 \ge \sum_{i=1}^n |\langle \mathbf{x}, \mathbf{v}_i \rangle|^2,$$

with equality holding if and only if $x \in \text{span}\{v_1, \ldots, v_n\}$.

(c) Consider the space $C_{\mathbb{C}}[0,1]$ of continuous complex-valued functions on the interval [0,1], equipped with an inner product \langle , \rangle defined by

$$\langle \mathbf{f}, \mathbf{g} \rangle = \int_{0}^{1} \mathbf{f}(\mathbf{t}) \overline{\mathbf{g}(\mathbf{t})} d\mathbf{t}.$$

For any integer k, let $f_k : [0, 1] \to \mathbb{C}$ be the function defined by $f_k(t) = e^{2k\pi i t}$. Show that $\{f_k : k \in \mathbb{Z}\}$ is an orthonormal set. Conclude that for any $g \in V$ and any positive integer n,

$$\|g\|^2 \geq \sum_{|k| \leq n} |\langle g, f_k \rangle|^2.$$

(d) Show that

$$\frac{\pi^2}{6} \ge \sum_{k=1}^{\infty} \frac{1}{k^2}.$$

(Suggestion: Take g to be the function defined by g(t) = t and apply the inequality of (c). Note: This is an example in your textbook, but you should do it yourself.)

Solution: (a) We have

$$\|\sum_{i=1}^n c_i v_i\|^2 = \langle \sum_{i=1}^n c_i v_i, \sum_{i=1}^n c_i v_i \rangle = \sum_{i,j} c_i \overline{c_j} \langle v_i, v_j \rangle = \sum_i |c_i|^2,$$

by orthonormality of the v_i .

(b) Let $U = \text{span}\{v_1, \ldots, v_n\}$. Since U is finite-dimensional, we have $V = U \oplus U^{\perp}$. Given $x \in V$, writing x = y + z with $y \in U$ and $z \in U^{\perp}$, the vector y is given by the formula

$$y = \sum_{i=1}^n \langle x, v_i \rangle v_i.$$

By the Pythagorean theorem (problem 2b),

$$\|\mathbf{x}\|^{2} = \|\mathbf{z}\|^{2} + \|\mathbf{y}\|^{2} \stackrel{\text{part (a)}}{=} \|\mathbf{z}\|^{2} + \sum_{i} |\langle \mathbf{x}, \mathbf{v}_{i} \rangle|^{2}.$$

This proves the desired inequality. Moreover, we have

$$\|x\|^2 = \sum_{i=1}^n |\langle x, \nu_i \rangle|^2$$

if and only if z = 0, which is equivalent to $x \in U$.

For (c) and (d) See Example 9 of 6.1 and Example 7 of 6.2.

5. Consider the complex vector space $P_4(\mathbb{C})$ of polynomials of degree at most 4 with coefficients in \mathbb{C} , equipped with the inner product \langle , \rangle defined by

$$\langle \mathbf{f}, \mathbf{g} \rangle = \int_{0}^{1} \mathbf{f}(\mathbf{x}) \overline{\mathbf{g}(\mathbf{x})} d\mathbf{x}.$$

(a) Find an orthogonal basis of the subspace $P_1(\mathbb{C}) = span\{1, x\}$.

- (b) Find the element of $P_1(\mathbb{C})$ that is closest to x^2 .
- (c) Find an orthogonal basis for $P_1(\mathbb{C})^{\perp}$ (= the orthogonal complement of $P_1(\mathbb{C})$).

Solution: (a) We apply the Gram-Schmidt process to the basis $\{1, x\}$ of $P_1(\mathbb{C})$:

$$\mathbf{x} - \frac{\langle \mathbf{x}, \mathbf{1} \rangle}{\langle \mathbf{1}, \mathbf{1} \rangle} \cdot \mathbf{1} = \mathbf{x} - \frac{1}{2}.$$

 $\{1, x - \frac{1}{2}\}$ is an orthogonal basis of $P_1(\mathbb{C})$.

(b) The closest vector to x^2 in $P_1(\mathbb{C})$ is the orthogonal projection of x^2 to $P_1(\mathbb{C})$, which is

$$\frac{\langle \mathbf{x}^2, \mathbf{1} \rangle}{\langle \mathbf{1}, \mathbf{1} \rangle} \cdot \mathbf{1} + \frac{\langle \mathbf{x}^2, \mathbf{x} - \mathbf{1}/2 \rangle}{\langle \mathbf{x} - \mathbf{1}/2, \mathbf{x} - \mathbf{1}/2 \rangle} (\mathbf{x} - \mathbf{1}/2) = \mathbf{x} - \mathbf{1}/6.$$

(c) Extend the basis $\{1, x - 1/2\}$ of $P_1(\mathbb{C})$ to a basis, say, $\beta = \{1, x - 1/2, x^2, x^3, x^4\}$ of $P_4(\mathbb{C})$. Applying Gram-Schmidt to β we get a basis $\gamma = \{1, x - 1/2, x^2 - x + 1/6, \nu, \nu'\}$ (we leave it to the reader to find ν, ν'). Then $\{x^2 - x + 1/6, \nu, \nu'\}$ is an orthogonal basis of $P_1(\mathbb{C})^{\perp}$.