
MAT247 Algebra II
Assignment 8

Solutions

1. (equality cases of Cauchy-Schwarz and triangle inequalities) Let V be an inner product
space and x, y ∈ V .

(a) Show that
|〈x, y〉| = ‖x‖ · ‖y‖

if and only if one of x or y is a scalar multiple of the other. (Suggestion: Go over the
proof of Cauchy-Schwarz.)

(b) Show that
‖x+ y‖ = ‖x‖+ ‖y‖

if and only if one of x or y is equal to a non-negative real number times the other. (Sug-
gestion: Go over the proof of triangle inequality!)

Solution: (a) The “if” implication is clear and we leave it to the reader. Suppose |〈x, y〉| =
‖x‖ · ‖y‖. If y is zero, then it is a scalar multiple of x and we are done. Suppose y 6= 0. For any
c ∈ F, we have

‖x− cy‖2 = 〈x− cy, x− cy〉 = ‖x‖2 + |c|2‖y‖2 − c〈y, x〉− c〈x, y〉.

Taking c = 〈x,y〉
‖y‖2 , this simplifies to

‖x− cy‖2 = ‖x‖
2‖y‖2 − |〈x, y〉|2

‖y‖2
= 0.

Thus x = cy.
(b) ⇒: We may assume y 6= 0. We have

‖x+ y‖2 = 〈x+ y, x+ y〉2 why
= ‖x‖2 + ‖y‖2 + 〈x, y〉+ 〈y, x〉.

We also have
(‖x‖+ ‖y‖)2 = ‖x‖2 + ‖y‖2 + 2‖x‖ ‖y‖.

Suppose ‖x+ y‖2 = (‖x‖+ ‖y‖)2. Then

(1) 〈x, y〉+ 〈y, x〉 = 2‖x‖ ‖y‖ ≥ 2|〈x, y〉|,

by Cauchy-Schwarz. Since 〈y, x〉 = 〈x, y〉, we get

Re(〈x, y〉) ≥ |〈x, y〉|,
where Re stands for the real part. It follows that 〈x, y〉 is real and nonnegative. Eq. (1) now
gives

2〈x, y〉| = 2‖x‖ ‖y‖ ≥ 2〈x, y〉,
so that

‖x‖ ‖y‖ = 〈x, y〉.
Thus by (a), there is c ∈ C such that x = cy. We have

0 ≤ 〈x, y〉 = c〈y, y〉.
It follows that c is real and nonnegative, as desired.
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⇐: Suppose without loss that x = cy for some c ≥ 0. Then

‖x+ y‖ = ‖(c+ 1)y‖ = |(c+ 1)|‖y‖ = (c+ 1)‖y‖.
On the other hand,

‖x‖+ ‖y‖ = ‖cy‖+ ‖y‖ = (|c|+ 1)‖y‖ = (c+ 1)‖y‖.
2. Let V be an inner product space and x, y ∈ V .

(a) Prove the parallelogram law:

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.
Specializing to the case of R2 with its standard inner product, what does this identity
say about a parallelogram on the plane?

(b) Show that if 〈x, y〉 = 0, then ‖x+ y‖2 = ‖x‖2 + ‖y‖2.

Solution: We leave this to the reader.

3. Let F = R or C and V be an inner product space over F. For each y ∈ V , we have a map

〈−, y〉 : V → F x 7→ 〈x, y〉.
Linearity of 〈 , 〉 in the first component implies that 〈−, y〉 is linear, so that it belongs to V∨.

(a) Show that the function
α : V → V∨

defined by α(y) = 〈−, y〉 is injective, and that moreover it is linear when F = R.
(b) Conclude that if F = R and V is finite-dimensional, then α is an isomorphism. (Re-

mark: In general, there is no natural (or distinguished) isomorphism between a finite-
dimensional vector space and its dual. But we see here that if a finite-dimensional
vector space over R is equipped with an inner product, then the inner product gives
rise to a natural isomorphism between the vector space and its dual.)

(c) Suppose F = R or C. Let V be finite-dimensional and {v1, . . . , vn} an orthonormal basis

of V . Let f ∈ V∨. Show that f =
n∑
i=1

f(vi)〈−, vi〉.

Solution: (a) By antilinearily of an inner product in the second factor, α is an R-linear map
(even when F = C). For injectivity, suppose y ∈ ker(α). Then 〈x, y〉 = 0 for all x, and in
particular, 〈y, y〉 = 0. Thus y = 0 and ker(α) = 0.

(b) The map α is an injective linear map and V and V∨ are finite dimensional vector spaces
of the same dimension, so α is an isomorphism. (Note that even if F = C, by the same reasoning,
α is an isomorphism between the underlying real vector spaces of V and V∨.)

(c) Both f and g =
n∑
i=1

f(vi)〈−, vi〉 are linear maps V → F. To prove they are equal, it is

enough to check that they agree on a basis of V , say on {v1, . . . , vn}. For each vj,

g(vj) =

n∑
i=1

f(vi)〈vj, vi〉 = f(vj),

where the last equality is by orthonormality of {v1, . . . , vn}.

4. Let V be an inner product space (real or complex, possibly infinite-dimensional). Let
{v1, . . . , vn} be an orthonormal set of vectors.
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(a) Show that

‖
n∑
i=1

civi‖2 =
n∑
i=1

|ci|
2.

(b) Show that for every x ∈ V ,

‖x‖2 ≥
n∑
i=1

|〈x, vi〉|2,

with equality holding if and only if x ∈ span{v1, . . . , vn}.
(c) Consider the space CC[0, 1] of continuous complex-valued functions on the interval

[0, 1], equipped with an inner product 〈 , 〉 defined by

〈f, g〉 =
1∫
0

f(t)g(t)dt.

For any integer k, let fk : [0, 1] → C be the function defined by fk(t) = e2kπit. Show that
{fk : k ∈ Z} is an orthonormal set. Conclude that for any g ∈ V and any positive integer
n,

‖g‖2 ≥
∑
|k|≤n

|〈g, fk〉|2.

(d) Show that
π2

6
≥

∞∑
k=1

1

k2
.

(Suggestion: Take g to be the function defined by g(t) = t and apply the inequality of
(c). Note: This is an example in your textbook, but you should do it yourself.)

Solution: (a) We have

‖
n∑
i=1

civi‖2 = 〈
n∑
i=1

civi,

n∑
i=1

civi〉 =
∑
i,j

cicj〈vi, vj〉 =
∑
i

|ci|
2,

by orthonormality of the vi.
(b) Let U = span{v1, . . . , vn}. Since U is finite-dimensional, we have V = U ⊕ U⊥. Given

x ∈ V , writing x = y+ zwith y ∈ U and z ∈ U⊥, the vector y is given by the formula

y =

n∑
i=1

〈x, vi〉vi.

By the Pythagorean theorem (problem 2b),

‖x‖2 = ‖z‖2 + ‖y‖2 part (a)
= ‖z‖2 +

∑
i

|〈x, vi〉|2.

This proves the desired inequality. Moreover, we have

‖x‖2 =
n∑
i=1

|〈x, vi〉|2

if and only if z = 0, which is equivalent to x ∈ U.
For (c) and (d) See Example 9 of 6.1 and Example 7 of 6.2.
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5. Consider the complex vector space P4(C) of polynomials of degree at most 4 with coeffi-
cients in C, equipped with the inner product 〈 , 〉 defined by

〈f, g〉 =
1∫
0

f(x)g(x)dx.

(a) Find an orthogonal basis of the subspace P1(C) = span{1, x}.
(b) Find the element of P1(C) that is closest to x2.
(c) Find an orthogonal basis for P1(C)⊥ ( = the orthogonal complement of P1(C)).

Solution: (a) We apply the Gram-Schmidt process to the basis {1, x} of P1(C):

x−
〈x, 1〉
〈1, 1〉

· 1 = x− 1

2
.

{1, x− 1
2
} is an orthogonal basis of P1(C).

(b) The closest vector to x2 in P1(C) is the orthogonal projection of x2 to P1(C), which is

〈x2, 1〉
〈1, 1〉

· 1+ 〈x2, x− 1/2〉
〈x− 1/2, x− 1/2〉

(x− 1/2) = x− 1/6.

(c) Extend the basis {1, x − 1/2} of P1(C) to a basis, say, β = {1, x − 1/2, x2, x3, x4} of P4(C).
Applying Gram-Schmidt to β we get a basis γ = {1, x − 1/2, x2 − x + 1/6, v, v ′} (we leave it to
the reader to find v, v ′). Then {x2 − x+ 1/6, v, v ′} is an orthogonal basis of P1(C)⊥.


