MAT?247 Algebra 11
Assignment 8

Solutions

1. (equality cases of Cauchy-Schwarz and triangle inequalities) Let V be an inner product
space and x,y € V.

(a) Show that
[0yl = Il - [yl
if and only if one of x or y is a scalar multiple of the other. (Suggestion: Go over the
proof of Cauchy-Schwarz.)
(b) Show that
P +yll =[xl + [yl
if and only if one of x or y is equal to a non-negative real number times the other. (Sug-
gestion: Go over the proof of triangle inequality!)

Solution: (a) The “if” implication is clear and we leave it to the reader. Suppose [(x,y)| =
x|l - [ly]]. If y is zero, then it is a scalar multiple of x and we are done. Suppose y # 0. For any
c € F, we have

e —cyl* = (x — ey, x — cy) = [Ix[|* + [eFllyll* — ey, x) —(x,y).

— U this simplifies to

llyll?

Taking ¢

Xyl = 1o w)P
Iyl

I — eyll* =

Thus x = cy.
(b) =: We may assume y # 0. We have

Iyl = oty x4+ ) I+ 2+ (o y) + (y,).
We also have
(el + Ty ID® = Il + Iyl + 20 Tyl
Suppose [|x +ylI*> = (|[x]| + [y[)*. Then

1) 06 y) + (Y, x) = 2l lyll = 21(x, y)l,

by Cauchy-Schwarz. Since (y, x) = (x,y), we get
Re((x,y)) = [{x,y)l,

where Re stands for the real part. It follows that (x,y) is real and nonnegative. Eq. (1) now
gives
206 y)l = 2[x[ Iyl = 2{x,y),
so that
X[ TylE = (y)-
Thus by (a), there is ¢ € C such that x = cy. We have

0 < (x,y) =c(y,y)-

It follows that c is real and nonnegative, as desired.
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&: Suppose without loss that x = cy for some ¢ > 0. Then
Ix +yll = [l(c + Dyl = [(c + Dl[[y[| = (c + D]yl
On the other hand,

XN+ lyll = lleyll + [yl = (el + Dyl = (¢ + Dlyll.
2. Let V be an inner product space and x,y € V.
(a) Prove the parallelogram law:

I +yll2 + lIx = ylI* = 2[Ix]I* + 2[lylI*.

Specializing to the case of R* with its standard inner product, what does this identity
say about a parallelogram on the plane?
(b) Show that if (x,y) = 0, then ||x + y||* = ||x]|* + [Jy|*-

Solution: We leave this to the reader.

3. LetF=RorCandV be an inner product space over F. For eachy € V, we have a map
(—y):V—=oF x—= (xy).
Linearity of (, ) in the first component implies that (—, y) is linear, so that it belongs to V.

(a) Show that the function
oa: V-V
defined by x(y) = (—,y) is injective, and that moreover it is linear when F = R.

(b) Conclude that if F = R and V is finite-dimensional, then « is an isomorphism. (Re-
mark: In general, there is no natural (or distinguished) isomorphism between a finite-
dimensional vector space and its dual. But we see here that if a finite-dimensional
vector space over R is equipped with an inner product, then the inner product gives
rise to a natural isomorphism between the vector space and its dual.)

(c) Suppose F = R or C. Let V be finite-dimensional and {vy, ..., Vv,} an orthonormal basis
of V. Let f € VY. Show that f = ) f(v;)(—,v).

i=1
Solution: (a) By antilinearily of an inner product in the second factor, « is an R-linear map
(even when F = C). For injectivity, suppose y € ker(a). Then (x,y) = 0 for all x, and in
particular, (y,y) = 0. Thus y = 0 and ker(x) = 0.
(b) The map « is an injective linear map and V and V" are finite dimensional vector spaces
of the same dimension, so « is an isomorphism. (Note that even if F = C, by the same reasoning,
o is an isomorphism between the underlying real vector spaces of V and V".)

(c) Both f and g = } f(vi)(—, Vi) are linear maps V — F. To prove they are equal, it is
i=1

enough to check that they agree on a basis of V, say on {vi,...,v,}. For each vj,
g(vj) = Z f(vi) (vj, vi) = fvj),
i=1
where the last equality is by orthonormality of {vi,...,v,}.

4. Let V be an inner product space (real or complex, possibly infinite-dimensional). Let
{v1,...,vn} be an orthonormal set of vectors.



(a) Show that

n n
1) el =D leil
i=1 i=1

(b) Show that for every x € V,

n
IxI* =D 1 vi)
i=1

with equality holding if and only if x € span{v;,...,v.}.
(c) Consider the space C¢l0,1] of continuous complex-valued functions on the interval
[0, 1], equipped with an inner product (, ) defined by

1

(f,g) = Jf(t)ﬁdt.
0

For any integer k, let fy : [0, 1] — C be the function defined by fi(t) = e?*™*. Show that
{fx : k € Z}is an orthonormal set. Conclude that for any g € V and any positive integer

n,
lgll* > > g, fi)l.

[kI<n

(d) Show that
2 0 1

s

> —.

silie
(Suggestion: Take g to be the function defined by g(t) = t and apply the inequality of
(c). Note: This is an example in your textbook, but you should do it yourself.)

Solution: (a) We have

n n n
1Y covillP= (D cvi, ) covi) =D ecilviyvy) =) el
i—1 iz i—1 i i

by orthonormality of the v;.

b) Let U = span{vi,...,v,}. Since U is finite-dimensional, we have V = U @& U*. Given
( p Yoo

x € V, writing x =y + z with y € Uand z € U+, the vector y is given by the formula

Y= Z(x, Vi)Vi.
i=1

By the Pythagorean theorem (problem 2b),

part (a)
Pl = 1zl + Iyl ="zl + D 10 vl

1

This proves the desired inequality. Moreover, we have

n
Il = > I(x, vi)P?
i=1

if and only if z = 0, which is equivalent to x € U.

For (c) and (d) See Example 9 of 6.1 and Example 7 of 6.2.
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5. Consider the complex vector space P4(C) of polynomials of degree at most 4 with coeffi-
cients in C, equipped with the inner product (, ) defined by

|
<ﬂ®=Jﬂmaﬁm.
0

(a) Find an orthogonal basis of the subspace P;(C) = span{1, x}.
(b) Find the element of P;(C) that is closest to x°.
(c) Find an orthogonal basis for P;(C)* ( = the orthogonal complement of P;(C)).

Solution: (a) We apply the Gram-Schmidt process to the basis {1, x} of P;(C):

%) B
a,1) 2

{T,x — %} is an orthogonal basis of P;(C).
(b) The closest vector to x* in P;(C) is the orthogonal projection of x* to P;(C), which is

<X2)]>.1+ <X2>X_1/2>
a1 k—1/24x—1/2)
(c) Extend the basis {1,x — 1/2} of P;(C) to a basis, say, p = {1,x — 1/2,x* x>, x*} of P4(C).
Applying Gram-Schmidt to § we get a basis y = {1,x — 1/2,x* —x + 1/6,v,V'} (we leave it to
the reader to find v,V’). Then {x* — x + 1/6,v,V'} is an orthogonal basis of P;(C)*.

(x—1/2)=x—1/6.




