MAT247 Algebra II

Assignment 8

Due Saturday March 23 at 11:59 pm (to be submitted on Crowdmark)

Please write your solutions neatly and clearly. Note that due to time limitations, some questions may not be graded.

- **1.** (equality cases of Cauchy-Schwarz and triangle inequalities) Let V be an inner product space and $x, y \in V$.
 - (a) Show that

$$|\langle x, y \rangle| = \|x\| \cdot \|y\|$$

if and only if one of x or y is a scalar multiple of the other. (Suggestion: Go over the proof of Cauchy-Schwarz.)

(b) Show that

$$||x + y|| = ||x|| + ||y||$$

if and only if one of x or y is equal to a non-negative real number times the other. (Suggestion: Go over the proof of triangle inequality!)

- **2.** Let V be an inner product space and $x, y \in V$.
 - (a) Prove the parallelogram law:

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2.$$

Specializing to the case of \mathbb{R}^2 with its standard inner product, what does this identity say about a parallelogram on the plane?

- (b) Show that if $\langle x, y \rangle = 0$, then $||x + y||^2 = ||x||^2 + ||y||^2$.
- **3.** Let $F = \mathbb{R}$ or \mathbb{C} and V be an inner product space over F. For each $y \in V$, we have a map

$$\langle -, y \rangle : V \to F \quad x \mapsto \langle x, y \rangle.$$

Linearity of \langle , \rangle in the first component implies that $\langle -, y \rangle$ is linear, so that it belongs to V^{\vee} .

(a) Show that the function

$$\alpha:V\to V^{\scriptscriptstyle\vee}$$

defined by $\alpha(y) = \langle -, y \rangle$ is injective, and that moreover it is linear when $F = \mathbb{R}$.

- (b) Conclude that if $F = \mathbb{R}$ and V is finite-dimensional, then α is an isomorphism. (Remark: In general, there is no natural (or distinguished) isomorphism between a finite-dimensional vector space and its dual. But we see here that if a finite-dimensional vector space over \mathbb{R} is equipped with an inner product, then the inner product gives rise to a natural isomorphism between the vector space and its dual.)
- (c) Suppose $F = \mathbb{R}$ or \mathbb{C} . Let V be finite-dimensional and $\{\nu_1, \dots, \nu_n\}$ an orthonormal basis of V. Let $f \in V^{\vee}$. Show that $f = \sum_{i=1}^{n} f(\nu_i) \langle -, \nu_i \rangle$.
- **4.** Let V be an inner product space (real or complex, possibly infinite-dimensional). Let $\{v_1, \dots, v_n\}$ be an orthonormal set of vectors.
 - (a) Show that

$$\|\sum_{i=1}^{n} c_i v_i\|^2 = \sum_{i=1}^{n} |c_i|^2.$$

(b) Show that for every $x \in V$,

$$||\mathbf{x}||^2 \ge \sum_{i=1}^n |\langle \mathbf{x}, \mathbf{v}_i \rangle|^2,$$

with equality holding if and only if $x \in \text{span}\{v_1, \dots, v_n\}$.

(c) Consider the space $C_{\mathbb{C}}[0,1]$ of continuous complex-valued functions on the interval [0,1], equipped with an inner product \langle , \rangle defined by

$$\langle f, g \rangle = \int_{0}^{1} f(t) \overline{g(t)} dt.$$

For any integer k, let $f_k:[0,1]\to\mathbb{C}$ be the function defined by $f_k(t)=e^{2k\pi it}$. Show that $\{f_k:k\in\mathbb{Z}\}$ is an orthonormal set. Conclude that for any $g\in V$ and any positive integer n,

$$\|g\|^2 \geq \sum_{|k| < n} |\langle g, f_k \rangle|^2.$$

(d) Show that

$$\frac{\pi^2}{6} \geq \sum_{k=1}^{\infty} \frac{1}{k^2}.$$

(Suggestion: Take g to be the function defined by g(t) = t and apply the inequality of (c). Note: This is an example in your textbook, but you should do it yourself.)

5. Consider the complex vector space $P_4(\mathbb{C})$ of polynomials of degree at most 4 with coefficients in \mathbb{C} , equipped with the inner product $\langle \; , \; \rangle$ defined by

$$\langle f, g \rangle = \int_{0}^{1} f(x) \overline{g(x)} dx.$$

- (a) Find an orthogonal basis of the subspace $P_1(\mathbb{C}) = \text{span}\{1, x\}$.
- (b) Find the element of $P_1(\mathbb{C})$ that is closest to x^2 .
- (c) Find an orthogonal basis for $P_1(\mathbb{C})^{\perp}$ (= the orthogonal complement of $P_1(\mathbb{C})$).

Practice Problems: The following problems are for your practice. They are not to be handed in for grading.

From the textbook: end of section 6.1 exercises, in particular, exercises # 1, 4, 8, 9, 13, 16-19, 24 (the definition of a norm is given just before the exercise), 25 (this gives an example of a norm that doesn't arise from an inner product), 26-30. (Exercises # 27 and 30 give a criterion for a norm to come from an inner product.)

Extra problems: To be added.