MAT247 Algebra II Assignment 9

Solutions

1. Let $n \ge 1$ and consider $P_n(\mathbb{R})$ (= space of polynomial functions of degree at most n with real coefficients). Let $T : P_n(\mathbb{R}) \to P_n(\mathbb{R})$ be the differentiation map, defined by T(f) = f'.

(a) Show that T is not normal with respect to any inner product on $P_n(\mathbb{R})$.

(b) Let n = 1 and consider $P_1(\mathbb{R})$ with the inner product

$$\langle \mathbf{f}, \mathbf{g} \rangle = \int_{0}^{1} \mathbf{f}(\mathbf{x}) \mathbf{g}(\mathbf{x}) d\mathbf{x}.$$

Find the adjoint map T^{*}.

Solution: (a) Suppose T is normal with respect to some inner product on $P_n(\mathbb{R})$. Since the characteristic polynomial of T splits over \mathbb{R} (since T is nilpotent), it follows that T is self-adjoint, and hence in particular, diagonalizable. But this is absurd because T is nonzero and nilpotent.

(b) First find an orthonomal basis β of $P_1(\mathbb{R})$. Then use the formula $[T^*]_{\beta} = [T]^*_{\beta}$. The computations are left to the reader.

2. Let F be \mathbb{R} or \mathbb{C} . Let V be the space of everywhere infinitely differentiable functions $f : \mathbb{R} \to F$ which satisfy f(x + 1) = f(x) for all x. Define \langle , \rangle on V by

$$\langle \mathbf{f}, \mathbf{g} \rangle = \int_{0}^{1} \mathbf{f}(\mathbf{x}) \overline{\mathbf{g}(\mathbf{x})} d\mathbf{x}.$$

(Because of 1-periodicity this is indeed an inner product.) Define $T : V \to V$ by T(f) = f'. Find T^* . Is T normal? Is it self-adjoint?

Solution: We claim that $T^* = -T$ (so that T is normal, but not self-adjoint). Indeed,

$$\langle \mathsf{T}(\mathsf{f}),\mathsf{g}\rangle = \int_0^\mathsf{f}\mathsf{f}'(\mathsf{x})\overline{\mathsf{g}(\mathsf{x})}\mathsf{d}\mathsf{x}.$$

Integrating by parts,

$$\int_{0}^{1} f'(x)\overline{g(x)}dx = f(x)\overline{g(x)} \Big|_{x=0}^{x=1} - \int_{0}^{1} f(x)\overline{g(x)}'dx \stackrel{\text{periodicity}}{=} - \int_{0}^{1} f(x)\overline{g(x)}'dx = \langle f, -g' \rangle = \langle f, -T(g) \rangle.$$

Thus –T satisfies the defining property of the adjoint of T.

3. Let F be \mathbb{R} or \mathbb{C} , and V a (possibly infinite-dimensional) inner product space over F. Let T be a normal operator on V.

- (a) Show that $||T(x)|| = ||T^*(x)||$ for any $x \in V$.
- (b) Show that if x is an eigenvector of T with eigenvalue λ , then x is an eigenvector of T^{*} with eigenvalue $\overline{\lambda}$.

(c) Show that if λ, λ' are distinct eigenvalues of T, $x \in E_{\lambda}$ and $x' \in E_{\lambda'}$, then $\langle x, x' \rangle = 0$.

Solution: See Theorem 6.15 of the textbook.

4. Let F be \mathbb{R} or \mathbb{C} , and V a finite-dimensional inner product space over F. Let $T : V \to V$ be a linear operator. Show that T is normal if and only if there exists a polynomial $f(t) \in F[t]$ such that $T^* = f(T)$.

Solution: The implication \leftarrow is clear, since T commutes with any polynomial in T. Below we prove \Rightarrow .

First, let $F = \mathbb{C}$. Then by the spectral theorem, there exists an orthonormal basis $\beta = \{v_1, \ldots, v_n\}$ of V consisting of eigenvectors of T. Let $T(v_i) = \lambda_i v_i$. Then $[T]_{\beta}$ is the diagonal matrix with entries $\lambda_1, \ldots, \lambda_n$, and $[T^*]_{\beta} = [T]_{\beta}^*$ is the diagonal matrix with entries $\overline{\lambda_1}, \ldots, \overline{\lambda_n}$. Let $f(t) \in \mathbb{C}[t]$ be such that $f(\lambda_i) = \overline{\lambda_i}$ for all i. (Such f(t) can be constructed using Lagrange interpolation.) Then

$$[f(T)]_{\beta} = f([T]_{\beta}) = [T]_{\beta}^{*} = [T^{*}]_{\beta},$$

so that $f(T) = T^*$.

Now let us consider the case $F = \mathbb{R}$. Let γ be an orthonormal basis of V and $A = [T]_{\alpha}$. Let $L_A : \mathbb{C}^n \to \mathbb{C}^n$ be left multiplication by A. Since T is normal, the matrix A is normal, and hence so is L_A (where \mathbb{C}^n is considered with its standard inner product). By the complex case of the spectral theorem, there exist an orthonormal basis β of \mathbb{C}^n consisting of eigenvectors of L_A (or of A). Let μ_1, \ldots, μ_k be the distinct eigenvalues of L_A . If $f(t) \in \mathbb{C}[t]$ is a polynomial such that $f(\mu_i) = \overline{\mu_i}$ for all i, then $f([L_A]_{\beta}) = [L_A]^*_{\beta}$, so that

$$[L_{f(A)}]_{\beta} = [f(L_A)]_{\beta} = f([L_A]_{\beta}) = [L_A]_{\beta}^* = [L_A^*]_{\beta} = [L_{A^*}]_{\beta},$$

and thus $f(A) = A^*$, i.e. $f([T]_{\alpha}) = [T^*]_{\alpha}$. If $f(t) \in \mathbb{R}[t]$, then this gives $[f(T)]_{\alpha} = [T^*]_{\alpha}$, and hence $f(T) = T^*$, as desired. Thus we will be done if we prove that there exists $f(t) \in \mathbb{R}[t]$ such that $f(\mu_i) = \overline{\mu_i}$ for all $1 \le i \le k$. By Lagrange interpolation, there exists a polynomial $f(t) \in \mathbb{C}[t]$ of degree $\le k - 1$ which satisfies $f(\mu_i) = \overline{\mu_i}$ for all i. We claim that this f(t) actually has real coefficients. Indeed, we shall show that $\overline{f}(t) = f(t)$, where $\overline{f}(t)$ is the polynomial whose coefficients are the complex conjugates of those of f(t). Since f(t) and $\overline{f}(t)$ have degree at most k - 1, it is enough to show that f(t) and $\overline{f}(t)$ agree at the k points μ_1, \ldots, μ_k . Since A is a matrix with real coefficients, the complex conjugate of each eigenvalue of A (or each root of the characteristic polynomial of A) is also an eigenvalue of A. Thus $\overline{\mu_i}$ is μ_j for some j, and hence $f(\overline{\mu_i}) = \mu_i$. We have

$$\overline{f}(\mu_i) = \overline{f(\overline{\mu_i})} = \overline{\mu_i} = f(\mu_i).$$

5. Let F be \mathbb{R} or \mathbb{C} .

(a) Let $A \in M_{n \times n}(F)$. Define

$$\langle \mathbf{x},\mathbf{y}\rangle_{A} = \mathbf{x}^{\mathrm{t}}A\overline{\mathbf{y}}.$$

Show that \langle , \rangle_A is an inner product on F^n if and only if A is a self-adjoint matrix all whose eigenvalues are positive. (Such A is called positive-definite.)

(b) Show that every inner product on F^n is of the form \langle , \rangle_A for a unique self-adjoint $A \in M_{n \times n}(F)$ with positive eigenvalues.

Solution: (a) It is clear that \langle , \rangle_A is linear in the first factor and antilinear in the second. We now show that A is self-adjoint if and only if \langle , \rangle_A is conjugate-symmetric. Indeed, $\langle x, y \rangle_A =$

 $x^{t}A\overline{y}$ and

$$\overline{\langle \mathbf{y}, \mathbf{x} \rangle_A} = \overline{\mathbf{y}^{\mathrm{t}} A \overline{\mathbf{x}}} = \mathbf{y}^* \overline{A} \mathbf{x} = (\mathbf{y}^* \overline{A} \mathbf{x})^{\mathrm{t}} = \mathbf{x}^{\mathrm{t}} A^* \overline{\mathbf{y}}.$$

Thus \langle , \rangle_A is conjugate-symmetric if and only if for every x and y,

$$x^{t}A\overline{y} = x^{t}A^{*}\overline{y}.$$

This is equivalent to $A = A^*$. (Taking $x = e_i$ and $y = e_j$, the equation above reads $A_{ij} = (A^*)_{ij}$.)

for $a_i \in F$ ($1 \le i \le n$). Then $x = \sum_i \overline{a_i} \overline{v_i}$, and

$$\begin{split} \langle x, x \rangle_A &= x^t A \overline{x} = (\sum_i \overline{a_i} v_i^*) A(\sum_i a_i v_i) \\ &= \sum_{i,j} \overline{a_i} a_j v_i^* A v_j \\ &= \sum_{i,j} \overline{a_i} a_j \lambda_j v_i^* v_j \\ &= \sum_i \overline{a_i} a_i \lambda_i, \end{split}$$

by orthonormality of the v_i . Thus

$$\langle \mathbf{x}, \mathbf{x} \rangle_A = \sum_i |\mathbf{a}_i|^2 \lambda_i.$$

If all the λ_i are positive, then for every nonzero x,

$$\sum_{i} |\mathfrak{a}_{i}|^{2} \lambda_{i} > 0.$$

On the other hand, if one of the λ_i , say λ_j , is ≤ 0 , then $\langle \overline{\nu_j}, \overline{\nu_j} \rangle_A = \lambda_j \leq 0$.

(b) Let \langle , \rangle be an inner product on F^n . Let $A \in M_{n \times n}(F)$ be the matrix with $A_{ij} = \langle e_i, e_j \rangle$, where the $\{e_1, \ldots, e_n\}$ is the standard basis of F^n . Then we can easily see that $\langle , \rangle = \langle , \rangle_A$. Indeed, since both \langle , \rangle and \langle , \rangle_A are linear in the first factor and antilinear in the second, it is enough to have $\langle e_i, e_j \rangle = \langle e_i, e_j \rangle_A$ for all i, j. This property holds thanks to the definition of A. (Note that $\langle e_i, e_j \rangle_A$ is just the ij-entry of A.) Since \langle , \rangle is an inner product, by (a), A is positive-definite. This proves the existence assertion. For the uniqueness assertion, suppose $\langle x, y \rangle_A = \langle x, y \rangle_B$ for all x and y. Taking $x = e_i$ and $y = e_j$, we get $A_{ij} = B_{ij}$, so that A = B.

6. Let F be \mathbb{R} or \mathbb{C} . Let V and W be inner product spaces over F. With abuse of notation, we denote both inner products (resp. norms) by \langle , \rangle (resp. || ||). Let $T : V \to W$ be linear.

- (a) Show that the following statements are equivalent:
 - (i) T is norm-preserving, i.e. for every $x \in V$, we have ||x|| = ||T(x)||.
 - (ii) T is distance-preserving, i.e. for every $x, y \in V$, we have ||x y|| = ||T(x) T(y)||.
 - (iii) T preserves the inner product, i.e. for every $x, y \in V$, we have $\langle x, y \rangle = \langle T(x), T(y) \rangle$.

- (b) A linear map $T : V \to W$ that satisfies the equivalent conditions of Part (a) is called a linear isometry. Show that a linear isometry is injective. Also show that the inverse of a bijective linear isometry is also a linear isometry. (A bijective linear isometry between inner product spaces is called an isomorphism of inner product spaces. The terms unitary when $F = \mathbb{C}$ and orthogonal when $F = \mathbb{R}$ are also used for such map. The latter two terms are especially used in the case where V and W are the same inner product space.)
- (c) Suppose V and W are finite-dimensional and dim(V) ≤ dim(W). Construct a linear isometry V → W. (In particular, if V is any n-dimensional inner product space over F, V is isomorphic as an inner product space to Fⁿ with the standard inner product.) Hint: Start by taking orthonormal bases of V and W.

Solution: We did (a) and (b) in class. As for (c), let $\{v_1, \ldots, v_m\}$ (resp. $\{w_1, \ldots, w_n\}$) be an orthonormal basis of V (resp. W). Since $m \le n$, we can define a linear map T by setting $T(v_i) = w_i$ for $1 \le i \le m$. Since T maps an orthonormal basis of V to an orthonormal set in W, it respects the inner products.

4