MAT247 Algebra II

Assignment 9

Solutions

1. Let $n \geq 1$ and consider $P_{n}(\mathbb{R})(=$ space of polynomial functions of degree at most n with real coefficients). Let $T: P_{n}(\mathbb{R}) \rightarrow P_{n}(\mathbb{R})$ be the differentiation map, defined by $T(f)=f^{\prime}$.
(a) Show that T is not normal with respect to any inner product on $P_{n}(\mathbb{R})$.
(b) Let $\mathrm{n}=1$ and consider $\mathrm{P}_{1}(\mathbb{R})$ with the inner product

$$
\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x
$$

Find the adjoint map T^{*}.

Solution: (a) Suppose T is normal with respect to some inner product on $P_{n}(\mathbb{R})$. Since the characteristic polynomial of T splits over \mathbb{R} (since T is nilpotent), it follows that T is self-adjoint, and hence in particular, diagonalizable. But this is absurd because T is nonzero and nilpotent.
(b) First find an orthonomal basis β of $\mathrm{P}_{1}(\mathbb{R})$. Then use the formula $\left[\mathrm{T}^{*}\right]_{\beta}=[\mathrm{T}]_{\beta}^{*}$. The computations are left to the reader.
2. Let F be \mathbb{R} or \mathbb{C}. Let V be the space of everywhere infinitely differentiable functions $f: \mathbb{R} \rightarrow$ F which satisfy $f(x+1)=f(x)$ for all x. Define \langle,$\rangle on V$ by

$$
\langle f, g\rangle=\int_{0}^{1} f(x) \overline{g(x)} d x
$$

(Because of 1-periodicity this is indeed an inner product.) Define $T: V \rightarrow V$ by $T(f)=f^{\prime}$. Find T^{*}. Is T normal? Is it self-adjoint?

Solution: We claim that $\mathrm{T}^{*}=-\mathrm{T}$ (so that T is normal, but not self-adjoint). Indeed,

$$
\langle T(f), g\rangle=\int_{0}^{1} f^{\prime}(x) \overline{g(x)} d x
$$

Integrating by parts,

$$
\int_{0}^{1} f^{\prime}(x) \overline{g(x)} d x=\left.f(x) \overline{g(x)}\right|_{x=0} ^{x=1}-\int_{0}^{1} f(x) \overline{g(x)}^{\prime} d x \stackrel{\text { periodicity }}{=}-\int_{0}^{1} f(x) \overline{g(x)}^{\prime} d x=\left\langle f,-g^{\prime}\right\rangle=\langle f,-T(g)\rangle
$$

Thus - T satisfies the defining property of the adjoint of T .
3. Let F be \mathbb{R} or \mathbb{C}, and V a (possibly infinite-dimensional) inner product space over F. Let T be a normal operator on V.
(a) Show that $\|T(x)\|=\left\|T^{*}(x)\right\|$ for any $x \in V$.
(b) Show that if x is an eigenvector of T with eigenvalue λ, then x is an eigenvector of T^{*} with eigenvalue $\bar{\lambda}$.
(c) Show that if $\lambda, \lambda^{\prime}$ are distinct eigenvalues of $T, x \in E_{\lambda}$ and $x^{\prime} \in E_{\lambda^{\prime}}$, then $\left\langle x, x^{\prime}\right\rangle=0$.

Solution: See Theorem 6.15 of the textbook.
4. Let F be \mathbb{R} or \mathbb{C}, and V a finite-dimensional inner product space over F. Let $T: V \rightarrow V$ be a linear operator. Show that T is normal if and only if there exists a polynomial $f(t) \in F[t]$ such that $\mathrm{T}^{*}=\mathrm{f}(\mathrm{T})$.

Solution: The implication \Leftarrow is clear, since T commutes with any polynomial in T. Below we prove \Rightarrow.

First, let $F=\mathbb{C}$. Then by the spectral theorem, there exists an orthonormal basis $\beta=$ $\left\{v_{1}, \ldots, v_{n}\right\}$ of V consisting of eigenvectors of T . Let $\mathrm{T}\left(v_{i}\right)=\lambda_{i} v_{i}$. Then $[\mathrm{T}]_{\beta}$ is the diagonal matrix with entries $\lambda_{1}, \ldots, \lambda_{n}$, and $\left[T^{*}\right]_{\beta}=[T]_{\beta}^{*}$ is the diagonal matrix with entries $\overline{\lambda_{1}}, \ldots, \overline{\lambda_{n}}$. Let $f(t) \in \mathbb{C}[t]$ be such that $f\left(\lambda_{i}\right)=\overline{\lambda_{i}}$ for all i. (Such $f(t)$ can be constructed using Lagrange interpolation.) Then

$$
[\mathrm{f}(\mathrm{~T})]_{\beta}=\mathrm{f}\left([\mathrm{~T}]_{\beta}\right)=[\mathrm{T}]_{\beta}^{*}=\left[\mathrm{T}^{*}\right]_{\beta}
$$

so that $f(T)=T^{*}$.
Now let us consider the case $F=\mathbb{R}$. Let γ be an orthonormal basis of V and $A=[T]_{\alpha}$. Let $L_{A}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be left multiplication by A. Since T is normal, the matrix A is normal, and hence so is L_{A} (where \mathbb{C}^{n} is considered with its standard inner product). By the complex case of the spectral theorem, there exist an orthonormal basis β of \mathbb{C}^{n} consisting of eigenvectors of L_{A} (or of A). Let μ_{1}, \ldots, μ_{k} be the distinct eigenvalues of L_{A}. If $f(t) \in \mathbb{C}[t]$ is a polynomial such that $f\left(\mu_{i}\right)=\overline{\mu_{i}}$ for all i, then $f\left(\left[L_{A}\right]_{\beta}\right)=\left[L_{A}\right]_{\beta}^{*}$, so that

$$
\left[\mathrm{L}_{\mathrm{f}(\mathrm{~A})}\right]_{\beta}=\left[\mathrm{f}\left(\mathrm{~L}_{\mathcal{A}}\right)\right]_{\beta}=\mathrm{f}\left(\left[\mathrm{~L}_{\mathcal{A}}\right]_{\beta}\right)=\left[\mathrm{L}_{\mathcal{A}}\right]_{\beta}^{*}=\left[\mathrm{L}_{\mathrm{A}}^{*}\right]_{\beta}=\left[\mathrm{L}_{\mathcal{A}^{*}}\right]_{\beta},
$$

and thus $f(A)=A^{*}$, i.e. $f\left([T]_{\alpha}\right)=\left[T^{*}\right]_{\alpha}$. If $f(t) \in \mathbb{R}[t]$, then this gives $[f(T)]_{\alpha}=\left[T^{*}\right]_{\alpha}$, and hence $f(T)=T^{*}$, as desired. Thus we will be done if we prove that there exists $f(t) \in \mathbb{R}[t]$ such that $f\left(\mu_{i}\right)=\overline{\mu_{i}}$ for all $1 \leq i \leq k$. By Lagrange interpolation, there exists a polynomial $f(t) \in \mathbb{C}[t]$ of degree $\leq k-1$ which satisfies $f\left(\mu_{i}\right)=\overline{\mu_{i}}$ for all i. We claim that this $f(t)$ actually has real coefficients. Indeed, we shall show that $\bar{f}(t)=f(t)$, where $\bar{f}(t)$ is the polynomial whose coefficients are the complex conjugates of those of $f(t)$. Since $f(t)$ and $\bar{f}(t)$ have degree at most $k-1$, it is enough to show that $f(t)$ and $\bar{f}(t)$ agree at the k points μ_{1}, \ldots, μ_{k}. Since A is a matrix with real coefficients, the complex conjugate of each eigenvalue of A (or each root of the characteristic polynomial of A) is also an eigenvalue of A. Thus $\overline{\mu_{i}}$ is μ_{j} for some j, and hence $f\left(\overline{\mu_{i}}\right)=\mu_{i}$. We have

$$
\overline{\mathrm{f}}\left(\mu_{\mathrm{i}}\right)=\overline{\mathrm{f}\left(\overline{\mu_{\mathrm{i}}}\right)}=\overline{\mu_{\mathrm{i}}}=\mathrm{f}\left(\mu_{\mathrm{i}}\right)
$$

5. Let F be \mathbb{R} or \mathbb{C}.
(a) Let $A \in M_{n \times n}(F)$. Define

$$
\langle x, y\rangle_{A}=x^{t} A \bar{y} .
$$

Show that \langle,\rangle_{A} is an inner product on F^{n} if and only if A is a self-adjoint matrix all whose eigenvalues are positive. (Such A is called positive-definite.)
(b) Show that every inner product on F^{n} is of the form $\langle\text {, }\rangle_{\mathrm{A}}$ for a unique self-adjoint $A \in M_{n \times n}(F)$ with positive eigenvalues.

Solution: (a) It is clear that \langle,\rangle_{A} is linear in the first factor and antilinear in the second. We now show that A is self-adjoint if and only if \langle,\rangle_{A} is conjugate-symmetric. Indeed, $\langle x, y\rangle_{A}=$
$x^{t} A \bar{y}$ and

$$
\overline{\langle y, x\rangle_{A}}=\overline{y^{t} \mathcal{A} \bar{x}}=y^{*} \overline{\mathcal{A}} x=\left(y^{*} \bar{A} x\right)^{t}=x^{t} \mathcal{A}^{*} \bar{y} .
$$

Thus \langle,\rangle_{A} is conjugate-symmetric if and only if for every x and y,

$$
x^{t} A \bar{y}=x^{t} A^{*} \bar{y}
$$

This is equivalent to $A=A^{*}$. (Taking $x=e_{i}$ and $y=e_{j}$, the equation above reads $A_{i j}=\left(A^{*}\right)_{i j}$.)
Now suppose that A is self-adjoint. Then the characteristic polynomial of A splits over \mathbb{R}. We show that \langle,\rangle_{A} is positive-definite if and only if all the eigenvalues of A are positive. By the spectral theorem, A is diagonalizable over F, and moreover there exists an orthonormal basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of F^{n} consisting of eigenvectors of A (orthonormality with respect to the standard product). Let $A \nu_{i}=\lambda_{i} \nu_{i}$. Then the λ_{i} are real (since A is self-adjoint), and our goal is to show that \langle,\rangle_{A} is positive-definite if and only if all the λ_{i} are positive. Let $x \in F^{n}$. Write $\bar{x}=\sum_{i} a_{i} v_{i}$ for $a_{i} \in F(1 \leq i \leq n)$. Then $x=\sum_{i} \overline{a_{i}} \overline{v_{i}}$, and

$$
\begin{aligned}
\langle x, x\rangle_{A}=x^{t} A \bar{x} & =\left(\sum_{i} \overline{a_{i}} v_{i}^{*}\right) A\left(\sum_{i} a_{i} v_{i}\right) \\
& =\sum_{i, j} \overline{a_{i}} a_{j} v_{i}^{*} A v_{j} \\
& =\sum_{i, j} \overline{a_{i}} a_{j} \lambda_{j} v_{i}^{*} v_{j} \\
& =\sum_{i} \overline{a_{i}} a_{i} \lambda_{i}
\end{aligned}
$$

by orthonormality of the v_{i}. Thus

$$
\langle x, x\rangle_{A}=\sum_{i}\left|a_{i}\right|^{2} \lambda_{i} .
$$

If all the λ_{i} are positive, then for every nonzero x,

$$
\sum_{i}\left|a_{i}\right|^{2} \lambda_{i}>0 .
$$

On the other hand, if one of the λ_{i}, say λ_{j}, is ≤ 0, then $\left\langle\overline{v_{j}}, \overline{v_{j}}\right\rangle_{A}=\lambda_{j} \leq 0$.
(b) Let \langle,$\rangle be an inner product on F^{n}$. Let $A \in M_{n \times n}(F)$ be the matrix with $A_{i j}=\left\langle e_{i}, e_{j}\right\rangle$, where the $\left\{e_{1}, \ldots, e_{n}\right\}$ is the standard basis of F^{n}. Then we can easily see that $\langle\rangle=,\langle,\rangle_{A}$. Indeed, since both \langle,$\rangle and \langle,\rangle_{A}$ are linear in the first factor and antilinear in the second, it is enough to have $\left\langle e_{i}, e_{j}\right\rangle=\left\langle e_{i}, e_{j}\right\rangle_{A}$ for all i, j. This property holds thanks to the definition of A. (Note that $\left\langle e_{i}, e_{j}\right\rangle_{A}$ is just the $i j$-entry of A.) Since \langle,$\rangle is an inner product, by (a), A$ is positive-definite. This proves the existence assertion. For the uniqueness assertion, suppose $\langle x, y\rangle_{A}=\langle x, y\rangle_{B}$ for all x and y. Taking $x=e_{i}$ and $y=e_{j}$, we get $A_{i j}=B_{i j}$, so that $A=B$.
6. Let F be \mathbb{R} or \mathbb{C}. Let V and W be inner product spaces over F. With abuse of notation, we denote both inner products (resp. norms) by $\langle\rangle,($ resp. $\|\|)$. Let T : V \rightarrow We linear.
(a) Show that the following statements are equivalent:
(i) T is norm-preserving, i.e. for every $x \in V$, we have $\|x\|=\|T(x)\|$.
(ii) T is distance-preserving, i.e. for every $x, y \in V$, we have $\|x-y\|=\|T(x)-T(y)\|$.
(iii) T preserves the inner product, i.e. for every $x, y \in V$, we have $\langle x, y\rangle=\langle T(x), T(y)\rangle$.
(b) A linear map T:V $\rightarrow \mathrm{W}$ that satisfies the equivalent conditions of Part (a) is called a linear isometry. Show that a linear isometry is injective. Also show that the inverse of a bijective linear isometry is also a linear isometry. (A bijective linear isometry between inner product spaces is called an isomorphism of inner product spaces. The terms unitary when $F=\mathbb{C}$ and orthogonal when $F=\mathbb{R}$ are also used for such map. The latter two terms are especially used in the case where V and W are the same inner product space.)
(c) Suppose V and W are finite-dimensional and $\operatorname{dim}(V) \leq \operatorname{dim}(W)$. Construct a linear isometry $V \rightarrow W$. (In particular, if V is any n-dimensional inner product space over F, V is isomorphic as an inner product space to F^{n} with the standard inner product.) Hint: Start by taking orthonormal bases of V and W.

Solution: We did (a) and (b) in class. As for (c), let $\left\{v_{1}, \ldots, v_{m}\right\}$ (resp. $\left\{w_{1}, \ldots, w_{n}\right\}$) be an orthonormal basis of V (resp. W). Since $m \leq n$, we can define a linear map T by setting $\mathrm{T}\left(v_{i}\right)=\mathcal{w}_{i}$ for $1 \leq i \leq m$. Since T maps an orthonormal basis of V to an orthonormal set in W , it respects the inner products.

