
MAT247 Algebra II
Assignment 9

Solutions

1. Let n ≥ 1 and consider Pn(R) ( = space of polynomial functions of degree at most n with
real coefficients). Let T : Pn(R) → Pn(R) be the differentiation map, defined by T(f) = f ′.

(a) Show that T is not normal with respect to any inner product on Pn(R).
(b) Let n = 1 and consider P1(R) with the inner product

〈f, g〉 =
1∫
0

f(x)g(x)dx.

Find the adjoint map T ∗.

Solution: (a) Suppose T is normal with respect to some inner product on Pn(R). Since the
characteristic polynomial of T splits over R (since T is nilpotent), it follows that T is self-adjoint,
and hence in particular, diagonalizable. But this is absurd because T is nonzero and nilpotent.

(b) First find an orthonomal basis β of P1(R). Then use the formula [T ∗]β = [T ]∗β. The com-
putations are left to the reader.

2. Let F be R or C. Let V be the space of everywhere infinitely differentiable functions f : R →
Fwhich satisfy f(x+ 1) = f(x) for all x. Define 〈 , 〉 on V by

〈f, g〉 =
1∫
0

f(x)g(x)dx.

(Because of 1-periodicity this is indeed an inner product.) Define T : V → V by T(f) = f ′. Find
T ∗. Is T normal? Is it self-adjoint?

Solution: We claim that T ∗ = −T (so that T is normal, but not self-adjoint). Indeed,

〈T(f), g〉 =
1∫
0

f ′(x)g(x)dx.

Integrating by parts,
1∫
0

f ′(x)g(x)dx = f(x)g(x)
∣∣x=1
x=0

−

1∫
0

f(x)g(x)
′
dx

periodicity
= −

1∫
0

f(x)g(x)
′
dx = 〈f,−g ′〉 = 〈f,−T(g)〉.

Thus −T satisfies the defining property of the adjoint of T .

3. Let F be R or C, and V a (possibly infinite-dimensional) inner product space over F. Let T
be a normal operator on V .

(a) Show that ‖T(x)‖ = ‖T ∗(x)‖ for any x ∈ V .
(b) Show that if x is an eigenvector of T with eigenvalue λ, then x is an eigenvector of T ∗

with eigenvalue λ.
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(c) Show that if λ, λ ′ are distinct eigenvalues of T , x ∈ Eλ and x ′ ∈ Eλ ′ , then 〈x, x ′〉 = 0.

Solution: See Theorem 6.15 of the textbook.

4. Let F be R or C, and V a finite-dimensional inner product space over F. Let T : V → V be
a linear operator. Show that T is normal if and only if there exists a polynomial f(t) ∈ F[t] such
that T ∗ = f(T).

Solution: The implication ⇐ is clear, since T commutes with any polynomial in T . Below
we prove ⇒.

First, let F = C. Then by the spectral theorem, there exists an orthonormal basis β =
{v1, . . . , vn} of V consisting of eigenvectors of T . Let T(vi) = λivi. Then [T ]β is the diagonal
matrix with entries λ1, . . . , λn, and [T ∗]β = [T ]∗β is the diagonal matrix with entries λ1, . . . , λn.
Let f(t) ∈ C[t] be such that f(λi) = λi for all i. (Such f(t) can be constructed using Lagrange
interpolation.) Then

[f(T)]β = f([T ]β) = [T ]∗β = [T ∗]β,

so that f(T) = T ∗.
Now let us consider the case F = R. Let γ be an orthonormal basis of V and A = [T ]α. Let

LA : Cn → Cn be left multiplication by A. Since T is normal, the matrix A is normal, and hence
so is LA (where Cn is considered with its standard inner product). By the complex case of the
spectral theorem, there exist an orthonormal basis β of Cn consisting of eigenvectors of LA (or
of A). Let µ1, . . . , µk be the distinct eigenvalues of LA. If f(t) ∈ C[t] is a polynomial such that
f(µi) = µi for all i, then f([LA]β) = [LA]

∗
β, so that

[Lf(A)]β = [f(LA)]β = f([LA]β) = [LA]
∗
β = [L∗A]β = [LA∗ ]β,

and thus f(A) = A∗, i.e. f([T ]α) = [T ∗]α. If f(t) ∈ R[t], then this gives [f(T)]α = [T ∗]α , and
hence f(T) = T ∗, as desired. Thus we will be done if we prove that there exists f(t) ∈ R[t]
such that f(µi) = µi for all 1 ≤ i ≤ k. By Lagrange interpolation, there exists a polynomial
f(t) ∈ C[t] of degree ≤ k − 1 which satisfies f(µi) = µi for all i. We claim that this f(t) actually
has real coefficients. Indeed, we shall show that f(t) = f(t), where f(t) is the polynomial whose
coefficients are the complex conjugates of those of f(t). Since f(t) and f(t) have degree at most
k − 1, it is enough to show that f(t) and f(t) agree at the k points µ1, . . . , µk. Since A is a
matrix with real coefficients, the complex conjugate of each eigenvalue of A (or each root of the
characteristic polynomial of A) is also an eigenvalue of A. Thus µi is µj for some j, and hence
f(µi) = µi. We have

f(µi) = f(µi) = µi = f(µi).

5. Let F be R or C.
(a) Let A ∈Mn×n(F). Define

〈x, y〉
A
= xtAy.

Show that 〈 , 〉
A

is an inner product on Fn if and only if A is a self-adjoint matrix all
whose eigenvalues are positive. (Such A is called positive-definite.)

(b) Show that every inner product on Fn is of the form 〈 , 〉
A

for a unique self-adjoint
A ∈Mn×n(F) with positive eigenvalues.

Solution: (a) It is clear that 〈 , 〉A is linear in the first factor and antilinear in the second. We
now show that A is self-adjoint if and only if 〈 , 〉A is conjugate-symmetric. Indeed, 〈x, y〉A =
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xtAy and
〈y, x〉A = ytAx = y∗Ax = (y∗Ax)t = xtA∗y.

Thus 〈 , 〉A is conjugate-symmetric if and only if for every x and y,

xtAy = xtA∗y.

This is equivalent to A = A∗. (Taking x = ei and y = ej, the equation above reads Aij = (A∗)ij.)
Now suppose that A is self-adjoint. Then the characteristic polynomial of A splits over R.

We show that 〈 , 〉A is positive-definite if and only if all the eigenvalues ofA are positive. By the
spectral theorem, A is diagonalizable over F, and moreover there exists an orthonormal basis
{v1, . . . , vn} of Fn consisting of eigenvectors of A (orthonormality with respect to the standard
product). Let Avi = λivi. Then the λi are real (since A is self-adjoint), and our goal is to show
that 〈 , 〉A is positive-definite if and only if all the λi are positive. Let x ∈ Fn. Write x =

∑
i

aivi

for ai ∈ F (1 ≤ i ≤ n). Then x =
∑
i

ai vi, and

〈x, x〉A = xtAx = (
∑
i

aiv
∗
i )A(

∑
i

aivi)

=
∑
i,j

aiajv
∗
iAvj

=
∑
i,j

aiajλjv
∗
i vj

=
∑
i

aiaiλi,

by orthonormality of the vi. Thus

〈x, x〉A =
∑
i

|ai|
2λi.

If all the λi are positive, then for every nonzero x,∑
i

|ai|
2λi > 0.

On the other hand, if one of the λi, say λj , is ≤ 0, then 〈vj, vj〉A = λj ≤ 0.

(b) Let 〈 , 〉 be an inner product on Fn. Let A ∈ Mn×n(F) be the matrix with Aij = 〈ei, ej〉,
where the {e1, . . . , en} is the standard basis of Fn. Then we can easily see that 〈 , 〉 = 〈 , 〉A.
Indeed, since both 〈 , 〉 and 〈 , 〉A are linear in the first factor and antilinear in the second, it
is enough to have 〈ei, ej〉 = 〈ei, ej〉A for all i, j. This property holds thanks to the definition
of A. (Note that 〈ei, ej〉A is just the ij-entry of A.) Since 〈 , 〉 is an inner product, by (a), A is
positive-definite. This proves the existence assertion. For the uniqueness assertion, suppose
〈x, y〉A = 〈x, y〉B for all x and y. Taking x = ei and y = ej, we get Aij = Bij, so that A = B.

6. Let F be R or C. Let V and W be inner product spaces over F. With abuse of notation, we
denote both inner products (resp. norms) by 〈 , 〉 (resp. ‖ ‖). Let T : V →W be linear.

(a) Show that the following statements are equivalent:
(i) T is norm-preserving, i.e. for every x ∈ V , we have ‖x‖ = ‖T(x)‖.

(ii) T is distance-preserving, i.e. for every x, y ∈ V , we have ‖x− y‖ = ‖T(x) − T(y)‖.
(iii) T preserves the inner product, i.e. for every x, y ∈ V , we have 〈x, y〉 = 〈T(x), T(y)〉.
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(b) A linear map T : V → W that satisfies the equivalent conditions of Part (a) is called a
linear isometry. Show that a linear isometry is injective. Also show that the inverse of a
bijective linear isometry is also a linear isometry. (A bijective linear isometry between
inner product spaces is called an isomorphism of inner product spaces. The terms
unitary when F = C and orthogonal when F = R are also used for such map. The latter
two terms are especially used in the case where V and W are the same inner product
space.)

(c) Suppose V and W are finite-dimensional and dim(V) ≤ dim(W). Construct a linear
isometry V → W. (In particular, if V is any n-dimensional inner product space over F,
V is isomorphic as an inner product space to Fn with the standard inner product.) Hint:
Start by taking orthonormal bases of V andW.

Solution: We did (a) and (b) in class. As for (c), let {v1, . . . , vm} (resp. {w1, . . . , wn}) be an
orthonormal basis of V (resp. W). Since m ≤ n, we can define a linear map T by setting
T(vi) = wi for 1 ≤ i ≤ m. Since T maps an orthonormal basis of V to an orthonormal set in W,
it respects the inner products.


