MAT?247 Algebra 11
Assignment 9

Solutions

1. Letn > 1and consider P,(R) ( = space of polynomial functions of degree at most n with
real coefficients). Let T : P,(R) — P,(R) be the differentiation map, defined by T(f) = f'.

(a) Show that T is not normal with respect to any inner product on P, (R).
(b) Let n =1 and consider P;(R) with the inner product

1
(f,9) = | fxgix)ax
0
Find the adjoint map T*.

Solution: (a) Suppose T is normal with respect to some inner product on P, (R). Since the
characteristic polynomial of T splits over R (since T is nilpotent), it follows that T is self-adjoint,
and hence in particular, diagonalizable. But this is absurd because T is nonzero and nilpotent.

(b) First find an orthonomal basis 3 of P;(R). Then use the formula [T*]s = [T];. The com-
putations are left to the reader.

2. LetFbeRorC. Let V be the space of everywhere infinitely differentiable functions f : R —
F which satisfy f(x + 1) = f(x) for all x. Define (, ) on V by

1

(t,g) = jf(x)max.
0

(Because of 1-periodicity this is indeed an inner product.) Define T : V — V by T(f) = f'. Find
T*. Is T normal? Is it self-adjoint?

Solution: We claim that T* = —T (so that T is normal, but not self-adjoint). Indeed,

1
(T(f), g) = Jff(x)mdx.
0

Integrating by parts,

/ periodicity

1 1
Jf’(x)ﬁdx — (900 [ — Jf(x)g(x) dx —jf(xm’dx — (f,—g') = (f,~T(g))-
0 0

Thus —T satisfies the defining property of the adjoint of T.

3. LetFbeRorC, and V a (possibly infinite-dimensional) inner product space over F. Let T
be a normal operator on V.

(@) Show that ||T(x)|| = ||T*(x)|| for any x € V.

(b) Show that if x is an eigenvector of T with eigenvalue A, then x is an eigenvector of T*

with eigenvalue A.
1



(c) Show that if A, A" are distinct eigenvalues of T, x € E, and x’ € E,/, then (x,x’) =0.

Solution: See Theorem 6.15 of the textbook.

4. LetFbeRR orC, and V a finite-dimensional inner product space over F. Let T : V — V be

a linear operator. Show that T is normal if and only if there exists a polynomial f(t) € F[t] such
that T* = f(T).

Solution: The implication « is clear, since T commutes with any polynomial in T. Below
we prove =.

First, let F = C. Then by the spectral theorem, there exists an orthonormal basis 3 =
{vi,...,vn} of V consisting of eigenvectors of T. Let T(vi) = Av;. Then [T]g is the diagonal
matrix with entries Ay,...,A,, and [T*]; = [T]f5 is the diagonal matrix with entries Ayeeey A
Let f(t) € C[t] be such that f(A;) = A; for all i. (Such f(t) can be constructed using Lagrange
interpolation.) Then

[f(T)]p = f([Tlg) = [Tlz = [T"]g,
so that f(T) = T*.

Now let us consider the case F = R. Let y be an orthonormal basis of V and A = [T],. Let
La : C* — C" be left multiplication by A. Since T is normal, the matrix A is normal, and hence
so is Lo (where C" is considered with its standard inner product). By the complex case of the
spectral theorem, there exist an orthonormal basis 3 of C™ consisting of eigenvectors of L (or
of A). Let w,..., u be the distinct eigenvalues of L. If f(t) € C[t] is a polynomial such that
(1) = Wi for all i, then f([Lalg) = [Lalj, so that

[Leaylp = [f(La)lp = f([Lalp) = [Lalf = [LAlp = [La<lp,

and thus f(A) = A*, ie. f([Tly) = [T]a. If f(t) € Rt], then this gives [f(T)ly = [T*]x , and
hence f(T) = T*, as desired. Thus we will be done if we prove that there exists f(t) € RIt]
such that f(p;) = @i for all T < i < k. By Lagrange interpolation, there exists a polynomial
f(t) € Clt] of degree < k — 1 which satisfies f(1;) = 1 for all i. We claim that this f(t) actually
has real coefficients. Indeed, we shall show that f(t) = f(t), where f(t) is the polynomial whose
coefficients are the complex conjugates of those of f(t). Since f(t) and f(t) have degree at most
k — 1, it is enough to show that f(t) and f(t) agree at the k points ..., . Since A is a
matrix with real coefficients, the complex conjugate of each eigenvalue of A (or each root of the
characteristic polynomial of A) is also an eigenvalue of A. Thus 11 is p; for some j, and hence
f(1;) = wi. We have

5. LetFbeR orC.
(a) Let A € M, «n(F). Define
(x,Y), = x'ATL.
Show that (, ), is an inner product on F" if and only if A is a self-adjoint matrix all
whose eigenvalues are positive. (Such A is called positive-definite.)

(b) Show that every inner product on F" is of the form ( , ), for a unique self-adjoint
A € M, (F) with positive eigenvalues.

Solution: (a) It is clear that (, ) is linear in the first factor and antilinear in the second. We
now show that A is self-adjoint if and only if (, )a is conjugate-symmetric. Indeed, (x,y)a =



x'Ay and

(y,x)a = Y'AX = y*Ax = (y*Ax)" = x'A"7.
Thus (, )a is conjugate-symmetric if and only if for every x and y,
x'AY = x'A*T.

This is equivalent to A = A*. (Taking x = e; and y = e;, the equation above reads A;; = (A*);;.)

Now suppose that A is self-adjoint. Then the characteristic polynomial of A splits over R.
We show that (, )a is positive-definite if and only if all the eigenvalues of A are positive. By the
spectral theorem, A is diagonalizable over F, and moreover there exists an orthonormal basis
{v1,...,vn} of F" consisting of eigenvectors of A (orthonormality with respect to the standard

product). Let Av; = A;v;. Then the A; are real (since A is self-adjoint), and our goal is to show
that (, )a is positive-definite if and only if all the A; are positive. Let x € F*. Write X = }_a;v;

1

fora; e F(1 <i<mn). Thenx =) @V, and
() =x'Ax = ()_@v)A(D_ aw)
= Zaajvavj
L,j
L,j

= Z ajaiAs,
by orthonormality of the v;. Thus
{(x,x)a = Z |ail*As.
If all the A; are positive, then for every nonzero x,
Z Iailei > 0.
On the other hand, if one of the A;, say A; ,is < 0, then (Vj,vj)A = A; < 0.

(b) Let (, ) be an inner product on F*. Let A € M, (F) be the matrix with A;; = (e, e;),
where the {ey,...,e,} is the standard basis of F*. Then we can easily see that (, ) = (, )a.
Indeed, since both (, ) and (, )a are linear in the first factor and antilinear in the second, it
is enough to have (e, e;) = (ei,ej)a for all i,j. This property holds thanks to the definition
of A. (Note that (e, ¢;)x is just the ij-entry of A.) Since (, ) is an inner product, by (a), A is
positive-definite. This proves the existence assertion. For the uniqueness assertion, suppose
(x,y)a = (x,y)s for all x and y. Taking x = e; and y = ¢;, we get A;; = By, so that A = B.

6. LetFbeRorC. Let Vand W be inner product spaces over F. With abuse of notation, we
denote both inner products (resp. norms) by (, ) (resp. || ||). Let T: V — W be linear.

(a) Show that the following statements are equivalent:
(i) Tis norm-preserving, i.e. for every x € V, we have |x|| = |[T(x)]].
(ii) T is distance-preserving, i.e. for every x,y € V, we have ||[x —y|| = || T(x) — T(y)].
(iii) T preserves the inner product, i.e. for every x,y € V, we have (x,y) = (T(x), T(y)).



(b) A linear map T : V — W that satisfies the equivalent conditions of Part (a) is called a
linear isometry. Show that a linear isometry is injective. Also show that the inverse of a
bijective linear isometry is also a linear isometry. (A bijective linear isometry between
inner product spaces is called an isomorphism of inner product spaces. The terms
unitary when F = C and orthogonal when F = R are also used for such map. The latter
two terms are especially used in the case where V and W are the same inner product
space.)

(c) Suppose V and W are finite-dimensional and dim(V) < dim(W). Construct a linear
isometry V. — W. (In particular, if V is any n-dimensional inner product space over F,
V is isomorphic as an inner product space to F"* with the standard inner product.) Hint:
Start by taking orthonormal bases of V and W.

Solution: We did (a) and (b) in class. As for (c), let {vi,..., v} (resp. {wi,...,wy}) be an
orthonormal basis of V (resp. W). Since m < n, we can define a linear map T by setting
T(vi) =wj for 1 <i < m. Since T maps an orthonormal basis of V to an orthonormal set in W,
it respects the inner products.



