MAT247 Algebra II

Assignment 9

Due Friday April 5 at 11:59 pm (to be submitted on Crowdmark)

Please write your solutions neatly and clearly. Note that due to time limitations, some questions may not be graded.

1. Let $n \geq 1$ and consider $P_{n}(\mathbb{R})$ (= space of polynomial functions of degree at most n with real coefficients). Let $T: P_{n}(\mathbb{R}) \rightarrow P_{n}(\mathbb{R})$ be the differentiation map, defined by $T(f)=f^{\prime}$.
(a) Show that T is not normal with respect to any inner product on $P_{n}(\mathbb{R})$.
(b) Let $\mathrm{n}=1$ and consider $\mathrm{P}_{1}(\mathbb{R})$ with the inner product

$$
\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x
$$

Find the adjoint map T^{*}.
2. Let F be \mathbb{R} or \mathbb{C}. Let V be the space of everywhere infinitely differentiable functions $f: \mathbb{R} \rightarrow$ F which satisfy $f(x+1)=f(x)$ for all x. Define \langle,$\rangle on V$ by

$$
\langle f, g\rangle=\int_{0}^{1} f(x) \overline{g(x)} d x
$$

(Because of 1-periodicity this is indeed an inner product.) Define $T: V \rightarrow V$ by $T(f)=f^{\prime}$. Find T^{*}. Is T normal? Is it self-adjoint?
3. Let F be \mathbb{R} or \mathbb{C}, and V a (possibly infinite-dimensional) inner product space over F. Let T be a normal operator on V.
(a) Show that $\|T(x)\|=\left\|T^{*}(x)\right\|$ for any $x \in V$.
(b) Show that if x is an eigenvector of T with eigenvalue λ, then x is an eigenvector of T^{*} with eigenvalue $\bar{\lambda}$.
(c) Show that if $\lambda, \lambda^{\prime}$ are distinct eigenvalues of $T, x \in E_{\lambda}$ and $x^{\prime} \in E_{\lambda^{\prime}}$, then $\left\langle x, x^{\prime}\right\rangle=0$.

Note: This is Theorem 6.15 of the textbook, but you should prove the statements yourself. 4. Let F be \mathbb{R} or \mathbb{C}, and V a finite-dimensional inner product space over F. Let $T: V \rightarrow V$ be a linear operator. Show that T is normal if and only if there exists a polynomial $f(t) \in F[t]$ such that $\mathrm{T}^{*}=\mathrm{f}(\mathrm{T})$.
5. Let F be \mathbb{R} or \mathbb{C}.
(a) Let $A \in M_{n \times n}(F)$. Define

$$
\langle x, y\rangle_{A}=x^{t} A \bar{y} .
$$

Show that \langle,\rangle_{A} is an inner product on F^{n} if and only if A is a self-adjoint matrix all whose eigenvalues are positive. (Such A is called positive-definite.)
(b) Show that every inner product on F^{n} is of the form \langle,\rangle_{A} for a unique self-adjoint $A \in M_{n \times n}(F)$ with positive eigenvalues.
6. Let F be \mathbb{R} or \mathbb{C}. Let V and W be inner product spaces over F. With abuse of notation, we denote both inner products (resp. norms) by \langle,$\rangle (resp. \|\|$). Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be linear.
(a) Show that the following statements are equivalent:
(i) T is norm-preserving, i.e. for every $x \in V$, we have $\|x\|=\|T(x)\|$.
(ii) T is distance-preserving, i.e. for every $x, y \in V$, we have $\|x-y\|=\|T(x)-T(y)\|$.
(iii) T preserves the inner product, i.e. for every $x, y \in V$, we have $\langle x, y\rangle=\langle T(x), T(y)\rangle$.
(b) A linear map $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ that satisfies the equivalent conditions of Part (a) is called a linear isometry. Show that a linear isometry is injective. Also show that the inverse of a bijective linear isometry is also a linear isometry. (A bijective linear isometry between inner product spaces is called an isomorphism of inner product spaces. The terms unitary when $F=\mathbb{C}$ and orthogonal when $F=\mathbb{R}$ are also used for such map. The latter two terms are especially used in the case where V and W are the same inner product space.)
(c) Suppose V and W are finite-dimensional and $\operatorname{dim}(V) \leq \operatorname{dim}(W)$. Construct a linear isometry $\mathrm{V} \rightarrow \mathrm{W}$. (In particular, if V is any n-dimensional inner product space over F , V is isomorphic as an inner product space to F^{n} with the standard inner product.) Hint: Start by taking orthonormal bases of V and W.

Practice Problems: The following problems are for your practice. They are not to be handed in for grading.

From the textbook: from 6.3: \# 1, 2, 3, 6, 8, 9, 10, 13, 14, 15, 18, 19; from 6.4: \# 1, 2, 4, 6, 7, 8, 9, 10, $13,18,21,23$; from 6.6 : \# 1, $4,5,6$ (a linear operator T is called a projection if $\mathrm{T}^{2}=\mathrm{T}$), 10

Extra problems:

1. Let T be a linear operator on a finite-dimensional inner product space. Show that the characteristic polynomial of T^{*} is the complex conjugate of the characteristic polynomial of T . (If $f(t)=\sum a_{i} t^{i}$, by definition, $\bar{f}(t)=\sum \overline{a_{i}} t^{i}$.)
2. Let $F=\mathbb{R}$ or \mathbb{C} and V be an inner product space over F. Let T be a linear operator on V. Show that if T is normal (resp. self-adjoint), then so is $f(T)$ for any polynomial in $f(t) \in F[t]$ (resp. $f(t) \in \mathbb{R}[t]$).
3. Let $A \in M_{m \times n}(\mathbb{C})$.
(a) Let $x \in \mathbb{C}^{n}$. Show that if $A^{*} A x=0$, then $A x=0$. (Hint: Consider $\left\langle A^{*} A x, x\right\rangle$, where \langle, is the standard inner product on \mathbb{C}^{n}.)
(b) Show that $\operatorname{rank}\left(A^{*} A\right)=\operatorname{rank}(A)$.
4. Let V be an n -dimensional complex vector space. Let $\beta=\left\{\nu_{1}, \ldots, \nu_{n}\right\}$ be a basis of V . Define V^{\prime} be the \mathbb{R}-span of β, i.e.

$$
\mathrm{V}^{\prime}=\left\{\sum \mathrm{a}_{\mathrm{i}} v_{i}: \mathrm{a}_{\mathrm{i}} \in \mathbb{R}\right\} .
$$

Show that any real inner product on V^{\prime} extends uniquely to a complex inner product on V . Conclude that there is a one-to-one correspondence between the real inner products on V^{\prime} and the complex inner products on V which are real-valued on V^{\prime}.
5. Let V be a real or complex vector space. Let $V=U \oplus W$. Suppose \langle,\rangle_{u} and \langle,\rangle_{w} are inner products on U and W . Show that there exists a unique inner product on V whose restriction to $U\left(\right.$ resp. W) is $\langle,\rangle_{\mathrm{u}}\left(\right.$ resp. $\left.\langle,\rangle_{W}\right)$, and with respect to which U and W are orthogonal complements of one another.

