MAT247 Algebra II

Assignment 9

Due Friday April 5 at 11:59 pm (to be submitted on Crowdmark)

Please write your solutions neatly and clearly. Note that due to time limitations, some questions may not be graded.

1. Let $n \ge 1$ and consider $P_n(\mathbb{R})$ (= space of polynomial functions of degree at most n with real coefficients). Let $T : P_n(\mathbb{R}) \to P_n(\mathbb{R})$ be the differentiation map, defined by T(f) = f'.

- (a) Show that T is not normal with respect to any inner product on $P_n(\mathbb{R})$.
- (b) Let n = 1 and consider $P_1(\mathbb{R})$ with the inner product

$$\langle \mathbf{f}, \mathbf{g} \rangle = \int_{0}^{1} \mathbf{f}(\mathbf{x}) \mathbf{g}(\mathbf{x}) d\mathbf{x}.$$

Find the adjoint map T*.

2. Let F be \mathbb{R} or \mathbb{C} . Let V be the space of everywhere infinitely differentiable functions $f : \mathbb{R} \to F$ which satisfy f(x + 1) = f(x) for all x. Define \langle , \rangle on V by

$$\langle \mathbf{f}, \mathbf{g} \rangle = \int_{0}^{1} \mathbf{f}(\mathbf{x}) \overline{\mathbf{g}(\mathbf{x})} d\mathbf{x}.$$

(Because of 1-periodicity this is indeed an inner product.) Define $T : V \to V$ by T(f) = f'. Find T^* . Is T normal? Is it self-adjoint?

3. Let F be \mathbb{R} or \mathbb{C} , and V a (possibly infinite-dimensional) inner product space over F. Let T be a normal operator on V.

- (a) Show that $||T(x)|| = ||T^*(x)||$ for any $x \in V$.
- (b) Show that if x is an eigenvector of T with eigenvalue λ , then x is an eigenvector of T^{*} with eigenvalue $\overline{\lambda}$.
- (c) Show that if λ, λ' are distinct eigenvalues of T, $x \in E_{\lambda}$ and $x' \in E_{\lambda'}$, then $\langle x, x' \rangle = 0$.

Note: This is Theorem 6.15 of the textbook, but you should prove the statements yourself.

4. Let F be \mathbb{R} or \mathbb{C} , and V a finite-dimensional inner product space over F. Let $T : V \to V$ be a linear operator. Show that T is normal if and only if there exists a polynomial $f(t) \in F[t]$ such that $T^* = f(T)$.

5. Let
$$F$$
 be \mathbb{R} or \mathbb{C} .

(a) Let $A \in M_{n \times n}(F)$. Define

$$\langle \mathbf{x},\mathbf{y}\rangle_{A} = \mathbf{x}^{t}A\overline{\mathbf{y}}.$$

Show that \langle , \rangle_A is an inner product on F^n if and only if A is a self-adjoint matrix all whose eigenvalues are positive. (Such A is called positive-definite.)

(b) Show that every inner product on F^n is of the form \langle , \rangle_A for a unique self-adjoint $A \in M_{n \times n}(F)$ with positive eigenvalues.

6. Let F be \mathbb{R} or \mathbb{C} . Let V and W be inner product spaces over F. With abuse of notation, we denote both inner products (resp. norms) by \langle , \rangle (resp. || ||). Let $T : V \to W$ be linear.

(a) Show that the following statements are equivalent:

- 2
- (i) T is norm-preserving, i.e. for every $x \in V$, we have ||x|| = ||T(x)||.
- (ii) T is distance-preserving, i.e. for every $x, y \in V$, we have ||x y|| = ||T(x) T(y)||.
- (iii) T preserves the inner product, i.e. for every $x, y \in V$, we have $\langle x, y \rangle = \langle T(x), T(y) \rangle$.
- (b) A linear map $T : V \to W$ that satisfies the equivalent conditions of Part (a) is called a linear isometry. Show that a linear isometry is injective. Also show that the inverse of a bijective linear isometry is also a linear isometry. (A bijective linear isometry between inner product spaces is called an isomorphism of inner product spaces. The terms unitary when $F = \mathbb{C}$ and orthogonal when $F = \mathbb{R}$ are also used for such map. The latter two terms are especially used in the case where V and W are the same inner product space.)
- (c) Suppose V and W are finite-dimensional and dim(V) ≤ dim(W). Construct a linear isometry V → W. (In particular, if V is any n-dimensional inner product space over F, V is isomorphic as an inner product space to Fⁿ with the standard inner product.) Hint: Start by taking orthonormal bases of V and W.

Practice Problems: The following problems are for your practice. They are not to be handed in for grading.

From the textbook: from 6.3: # 1, 2, 3, 6, 8, 9, 10, 13, 14, 15, 18, 19; from 6.4: # 1, 2, 4, 6, 7, 8, 9, 10, 13, 18, 21, 23; from 6.6: # 1, 4, 5, 6 (a linear operator T is called a projection if $T^2 = T$), 10

Extra problems:

1. Let T be a linear operator on a finite-dimensional inner product space. Show that the characteristic polynomial of T^{*} is the complex conjugate of the characteristic polynomial of T. (If $f(t) = \sum a_i t^i$, by definition, $\overline{f}(t) = \sum \overline{a_i} t^i$.)

2. Let $F = \mathbb{R}$ or \mathbb{C} and V be an inner product space over F. Let T be a linear operator on V. Show that if T is normal (resp. self-adjoint), then so is f(T) for any polynomial in $f(t) \in F[t]$ (resp. $f(t) \in \mathbb{R}[t]$).

- **3.** Let $A \in M_{m \times n}(\mathbb{C})$.
 - (a) Let $x \in \mathbb{C}^n$. Show that if $A^*Ax = 0$, then Ax = 0. (Hint: Consider $\langle A^*Ax, x \rangle$, where \langle , \rangle is the standard inner product on \mathbb{C}^n .)
 - (b) Show that $rank(A^*A) = rank(A)$.

4. Let V be an n-dimensional complex vector space. Let $\beta = \{v_1, \dots, v_n\}$ be a basis of V. Define V' be the \mathbb{R} -span of β , i.e.

$$V' = \{ \sum a_i v_i : a_i \in \mathbb{R} \}.$$

Show that any real inner product on V' extends uniquely to a complex inner product on V. Conclude that there is a one-to-one correspondence between the real inner products on V' and the complex inner products on V which are real-valued on V'.

5. Let V be a real or complex vector space. Let $V = U \oplus W$. Suppose \langle , \rangle_U and \langle , \rangle_W are inner products on U and W. Show that there exists a unique inner product on V whose restriction to U (resp. *W*) is \langle , \rangle_U (resp. \langle , \rangle_W), and with respect to which U and W are orthogonal complements of one another.