
MAT247 Algebra II
Assignment 9

Due Friday April 5 at 11:59 pm
(to be submitted on Crowdmark)

Please write your solutions neatly and clearly. Note that due to time limitations, some
questions may not be graded.

1. Let n ≥ 1 and consider Pn(R) ( = space of polynomial functions of degree at most n with
real coefficients). Let T : Pn(R) → Pn(R) be the differentiation map, defined by T(f) = f ′.

(a) Show that T is not normal with respect to any inner product on Pn(R).
(b) Let n = 1 and consider P1(R) with the inner product

〈f, g〉 =
1∫
0

f(x)g(x)dx.

Find the adjoint map T ∗.
2. Let F be R or C. Let V be the space of everywhere infinitely differentiable functions f : R →
Fwhich satisfy f(x+ 1) = f(x) for all x. Define 〈 , 〉 on V by

〈f, g〉 =
1∫
0

f(x)g(x)dx.

(Because of 1-periodicity this is indeed an inner product.) Define T : V → V by T(f) = f ′. Find
T ∗. Is T normal? Is it self-adjoint?
3. Let F be R or C, and V a (possibly infinite-dimensional) inner product space over F. Let T
be a normal operator on V .

(a) Show that ‖T(x)‖ = ‖T ∗(x)‖ for any x ∈ V .
(b) Show that if x is an eigenvector of T with eigenvalue λ, then x is an eigenvector of T ∗

with eigenvalue λ.
(c) Show that if λ, λ ′ are distinct eigenvalues of T , x ∈ Eλ and x ′ ∈ Eλ ′ , then 〈x, x ′〉 = 0.
Note: This is Theorem 6.15 of the textbook, but you should prove the statements yourself.

4. Let F be R or C, and V a finite-dimensional inner product space over F. Let T : V → V be
a linear operator. Show that T is normal if and only if there exists a polynomial f(t) ∈ F[t] such
that T ∗ = f(T).
5. Let F be R or C.

(a) Let A ∈Mn×n(F). Define
〈x, y〉

A
= xtAy.

Show that 〈 , 〉
A

is an inner product on Fn if and only if A is a self-adjoint matrix all
whose eigenvalues are positive. (Such A is called positive-definite.)

(b) Show that every inner product on Fn is of the form 〈 , 〉
A

for a unique self-adjoint
A ∈Mn×n(F) with positive eigenvalues.

6. Let F be R or C. Let V and W be inner product spaces over F. With abuse of notation, we
denote both inner products (resp. norms) by 〈 , 〉 (resp. ‖ ‖). Let T : V →W be linear.

(a) Show that the following statements are equivalent:
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(i) T is norm-preserving, i.e. for every x ∈ V , we have ‖x‖ = ‖T(x)‖.
(ii) T is distance-preserving, i.e. for every x, y ∈ V , we have ‖x− y‖ = ‖T(x) − T(y)‖.

(iii) T preserves the inner product, i.e. for every x, y ∈ V , we have 〈x, y〉 = 〈T(x), T(y)〉.
(b) A linear map T : V → W that satisfies the equivalent conditions of Part (a) is called a

linear isometry. Show that a linear isometry is injective. Also show that the inverse of a
bijective linear isometry is also a linear isometry. (A bijective linear isometry between
inner product spaces is called an isomorphism of inner product spaces. The terms
unitary when F = C and orthogonal when F = R are also used for such map. The latter
two terms are especially used in the case where V and W are the same inner product
space.)

(c) Suppose V and W are finite-dimensional and dim(V) ≤ dim(W). Construct a linear
isometry V → W. (In particular, if V is any n-dimensional inner product space over F,
V is isomorphic as an inner product space to Fn with the standard inner product.) Hint:
Start by taking orthonormal bases of V andW.
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Practice Problems: The following problems are for your practice. They are not to be handed in
for grading.

From the textbook: from 6.3: # 1, 2, 3, 6, 8, 9, 10, 13, 14, 15, 18, 19; from 6.4: # 1, 2, 4, 6, 7, 8, 9, 10,
13, 18, 21, 23; from 6.6: # 1, 4, 5, 6 (a linear operator T is called a projection if T 2 = T ), 10

Extra problems:

1. Let T be a linear operator on a finite-dimensional inner product space. Show that the
characteristic polynomial of T ∗ is the complex conjugate of the characteristic polynomial of T .
(If f(t) =

∑
ait

i, by definition, f(t) =
∑
ait

i.)
2. Let F = R or C and V be an inner product space over F. Let T be a linear operator on V .
Show that if T is normal (resp. self-adjoint), then so is f(T) for any polynomial in f(t) ∈ F[t]
(resp. f(t) ∈ R[t]).
3. Let A ∈Mm×n(C).

(a) Let x ∈ Cn. Show that if A∗Ax = 0, then Ax = 0. (Hint: Consider 〈A∗Ax, x〉, where 〈 , 〉
is the standard inner product on Cn.)

(b) Show that rank(A∗A) = rank(A).
4. Let V be an n-dimensional complex vector space. Let β = {v1, . . . , vn} be a basis of V . Define
V ′ be the R-span of β, i.e.

V ′ = {
∑

aivi : ai ∈ R}.
Show that any real inner product on V ′ extends uniquely to a complex inner product on V .
Conclude that there is a one-to-one correspondence between the real inner products on V ′ and
the complex inner products on V which are real-valued on V ′.
5. Let V be a real or complex vector space. Let V = U⊕W. Suppose 〈 , 〉U and 〈 , 〉W are inner
products on U and W. Show that there exists a unique inner product on V whose restriction
to U (resp. W) is 〈 , 〉U (resp. 〈 , 〉W), and with respect to which U and W are orthogonal
complements of one another.


