
MAT247 Midterm Solution

1. [10 points] Determine if each statement below is true or false. No explanation is necessary.

(a) If V is a finite-dimensional vector space over C, then the dimension of V as a vector space over

R is even.

true

(b) Any two matrices inM3×3(Q) with characteristic polynomials t(1− t)(t+ 1) are similar.

true

(c) If T is a linear operator on a finite-dimensional vector space V , then for every T -invariant sub-

space U of V , there exists a T -invariant subspaceW of V such that V = U⊕W.

false

(d) If T is an invertible linear operator on a finite-dimensional vector space V over a field F, then

there exists a polynomial f(t) ∈ F[t] such that T−1 = f(T).

true

(e) Suppose T is a linear operator on a finite-dimensional vector space V . If there exists a basis β

of T such that [T ]β is upper triangular, then there exists a basis γ of V such that [T ]γ is a Jordan

matrix.

true
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2. [8 points] Let V be a vector space over Q of dimension 5 and T a linear operator on V with character-

istic polynomial f(t) = −t(t− 1)4.

(a) Give all possible dot diagrams for eigenvalue λ = 1 of T .

(b) Suppose dim(Im(T − I)3) = 2. Find the Jordan canonical form of T .

(a) The dimension of the generalized eigenspace K1 equals the multiplicity of eigenvalue λ = 1,

which is 4. The possible dot diagrams are:

•

•

•

•

,

• •

•

•
,

• •

• •
,

• • •

•
,

• • • •

.

(b) By rank-nullity,

dim ker(T − I)3 = 5− dim(Im(T − I)3) = 3.

Thus dim ker(T − I)3 < dimK1, so that (T − I)3K1
6= 0. Thus the in any basis of K1 consists of a

union of disjoint cycles of generalized eigenvectors, there much be a cycle of length at least

4. Thus the dot diagram for K1 must be the first one above (with a cycle of length 4). The

Jordan canonical form is 

1 1

1 1

1 1

1

0


.

(Note that since the multiplicity of eigenvalue λ = 0 is 1, we have dim(K0) = dim(E0) = 1, so

there is only one 1× 1 Jordan block corresponding to eigenvalue zero.)
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3. [10 points] Let V be the real vector space spanned by the polynomials 1, x, y, and xy. Let Dx : V → V

(resp. Dy : V → V) be differentiation with respect to x (resp. y). Let T = Dx − Dy. Find the Jordan

canonical form J of T and a basis β of V such that [T ]β = J.

Since the total degree of T(f) is less than that of f for every nonzero f ∈ V , the map T is nilpotent.

It follows that the only eigenvalue is zero and the characteristic polynomial is (−t)dim(V) = t4. Let us

find the Jordan canonical form first.

Im(T) = span{T(1), T(x), T(y), T(xy)} = span{1, y− x},

Im(T 2) = span{T(y− x)} = span{1},

and T 3 = 0. Thus the longest cycle (for eigenvalue 0) in a Jordan basis has length 3. Since dim(V) = 4,

this determines the Jordan canonical form:

J =


0 1

0 1

0

0


(with a 3× 3 Jordan block and a 1× 1).

As for finding a corresponding Jordan basis, we have

T 2(xy) = T(y− x) = −2.

Let us take {−2, y − x, xy} as the cycle of length 3 in our Jordan basis. Since ker(T) = span{1, x + y},

we take {x+ y} as the cycle of length 1. Setting

β = {−2, y− x, xy} ∪ {x+ y} = {−2, y− x, xy, x+ y}

we have [T ]β = J.
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Extra space for Question 3

Question 4 is on the next page.
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4. [10 points] LetA ∈M2×2(C) be invertible. Show that for every positive integer n, there exists a matrix

B ∈M2×2(C) such that Bn = A.

Since C is algebraically closed, A has a Jordan canonical form over C. The possibilities for the

Jordan canonical form are

(i)

λ1
λ2

 (λ1 6= λ2), (ii)

λ
λ

 , (iii)

λ 1

λ

 .
(Case (i) corresponds to the case when A has two distinct eigenvalues, while (ii) and (iii) corresponds

to the case where A has an eigenvalue of multiplicity 2.) Combining the case (i) and (ii) above, thus

there exists a matrix P ∈M2×2(C) and a matrix J ∈M2×2(C) of the form

(1)

λ
λ ′

 or of the form (2)

λ 1

λ

 .
such that PJP−1 = A. To show that A has an n-th root, it is enough to show that J has an n-th root, as

if Xn = J, then (PXP−1)n = PXnP−1 = A. If J is of the form (1), then

X =

λ1/n
λ ′1/n


(where for z ∈ C, z1/n means an n-th root of z) satisfies Xn = J. Suppose J is of the form (2). Since A is

invertible, zero is not an eigenvalue of A and hence λ 6= 0. Thus we can write J as

J = λ

1 1/λ

1

 .
If we take

X = λ1/n

1 1/(nλ)

1

 ,
then in view of 1 a

1

1 b

1

 =

1 a+ b

1

 ,
we easily see that Xn = J.
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5. [10 points] Let F be a field and n a positive integer.

(a) Let V be an n-dimensional vector space over F and T a linear operator on V whose characteristic

polynomial pT (t) is irreducible in F[t]. Show that there exists a basis β of V such that [T ]β is the

companion matrix for the polynomial pT (t). That is, if pT (t) = (−1)n(tn +
n−1∑
i=0

ait
i), then

[T ]β =



0 . . . 0 −a0

1 0 . . . 0 −a1

0 1 0 . . . 0 −a2

...
...

...

1 0 −an−2

0 0 0 1 −an−1


.

(Hint: Let v be a nonzero element of V . Consider the T -cyclic subspace generated by v.)

(b) Let A and B be n× nmatrices with entries in Fwhose characteristic polynomials are equal and

irreducible in F[t]. Use Part (a) to deduce that A and B are similar (over F).

(a) Let v be a nonzero element of V . Let W be the T -cycle subspace generated by v. Then W

is a nonzero T -invariant subspace of V . Since pT (t) is irreducible, then the only T -invariant

subspaces of V are zero and V . Thus W = V . Now it follows from dim(W) = n that β =

{v, T(v), . . . , Tn−1(v)} is a basis ofW (and hence V). If Tn(v) +
n−1∑
i=0

biT
i(v) = 0, then we have

[T ]β =



0 . . . 0 −b0

1 0 . . . 0 −b1

0 1 0 . . . 0 −b2

...
...

...

1 0 −bn−2

0 0 0 1 −bn−1


,
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Extra space for Question 5

Question 6 is on the next page.

and pT (t) = (−1)n(tn +
n−1∑
i=0

bit
i). Thus we must have ai = bi for all i and the basis β =

{v, T(v), . . . , Tn−1(v)} is the desired basis of V .

(b) If the characteristic polynomial of A and B is equal to (−1)n(tn +
n−1∑
i=0

ait
i), applying part (a)

to the maps LA, LB : Fn → Fn, we see that both A and B are similar to the matrix given in the

statement of part (a). Thus A and B are similar to each other.
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6. [7 points] Let T be a diagonalizable linear operator on a finite-dimensional vector space V . Let S be a

linear operator on V such that every eigenspace Eλ(T) of T is S-invariant. Show that TS = ST . (Hint: Let

λ1, . . . , λk be the distinct eigenvalues of T . Use the decomposition V =
k⊕
i=1

Eλi(T).)

Let λ1, . . . , λk be the distinct eigenvalues of T . Since T is diagonalizable, we have V =
k⊕
i=1

Eλi(T).

Given v ∈ V , thus there exist unique v1, . . . , vk, with vi ∈ Eλi(T), so that v =
k∑
i=1

vi. By linearity of T

and S,

ST(v) = S(T(v)) =

k∑
i=1

S(T(vi)).

Since vi ∈ Eλi(T), we have T(vi) = λivi. Thus

ST(v) =

k∑
i=1

S(λivi)) =

k∑
i=1

λiS(vi)).

Since each Eλi(T) is S-invariant, S(vi) ∈ Eλi(T), so that λiS(vi) = T(S(vi)). Thus

ST(v) =

k∑
i=1

T(S(vi))) = TS(v),

by linearity of T and S.
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7. [bonus, 7 points] Let T be a diagonalizable linear operator on a finite-dimensional vector space V over

a field F. Let S be the set of eigenvalues of T and λ ∈ S a fixed eigenvalue. Let π : V → V be the projection

map onto Eλ , relative to the decomposition V =
⊕
µ∈S

Eµ . Show that there exists a polynomial f(t) ∈ F[t]

such that π = f(T).

Let

g(t) =
∏

µ∈S−{λ}

(t− µ).

Then g(λ) 6= 0. Set

f(t) =
1

g(λ)
g(t).

We claim that f(T) = π. Indeed, in view of the decomposition V =
⊕
µ∈S

Eµ , it is enough to check that

f(T)(v) = 0 if v ∈ Eµ for µ ∈ S − {λ}, and f(T)(v) = v if v ∈ Eλ. Note that if p(t) =
∑
ait

i is any

polynomial and v ∈ Eµ with µ any scalar, then p(T)(v) =
∑
aiT

i(v) =
∑
aiµ

iv = p(µ)v. If µ ∈ S − {λ},

then it is clear from the definition of f(t) that f(µ) = 0, so that f(T)(v) = f(µ)v = 0 for any v ∈ Eµ. On

the other hand, since f(λ) = 1, for any v ∈ Eλ, we have f(T)(v) = f(λ)v = v, as desired.

Page 9 of 15



Extra space to use for rough work or to continue your solution to a problem. What you write here will

not be graded unless you write next to the relevant question(s) “Continued on page 11”.
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The end.


