Functions and Inverses – Problems

- 1. (a) If f(x) is an invertible function and f(2) = -5, what is $f^{-1}(-5)$?
 - (b) If f(x) is an invertible function and f(0) = 2, what is $f\left(f^{-1}(0)\right)$?
 - (c) Let $f(x) = x^3$. At how many points do the graphs of y = f(x) and $y = f^{-1}(x)$ intersect?
- 2. Find the domain of the following functions:

(a)
$$f(x) = \frac{\sqrt{2x+7}}{x-|x|}$$

(b) $f(x) = \frac{3}{3x-x^2} + \frac{\sqrt{9-x^2}}{3}$

- **3.** (a) Let $f(x) = \frac{7x+1}{9-2x}$. Find $f^{-1}(x)$.
 - (b) Does the relation described by xy = 7y + 8 define a function in the variable y? What about a function in the variable x?
 - (c) Under which circumstances does the function f(n) = n! (*n* factorial) have an inverse function? Where doesn't the inverse exist? Explain.
 - (d) Let $h(x) = x^2 2x + 8$ and $g(x) = \sqrt{x}$. Write an expression for $(g \circ h \circ g)(x)$ in terms of x.
 - (e) Let f(x) = x + 1 and $g(x) = \frac{1}{x}$. Compute $(f \circ g)^{-1}(2)$.
- 4. (a) Which of the following relations are functions of q:

$$w = q + 1$$
 , $q = \frac{2w01}{w}$, $wq = -27$.

(b) Find the inverse function f^{-1} for each of the following.

$$f(x) = 3x + 2$$
 , $x^2 + 6x + 3$ for $x \le -3$, $f(x) = \frac{x+3}{5x-1}$.

- (c) Let $f(x) = \frac{2x}{1-x}$. Find all real numbers x, if any, for which f(-x) = 2f(x).
- (d) Let $f(x) = \sqrt{x} + 1$, $g(x) = x^2 x$, and $h(x) = \frac{1}{x 2}$. Evaluate and simplify the following

$$f(g(x))$$
 , $(h \circ g)(x)$, $f(g(h(x)))$, $(g \circ h \circ g)(x)$.

- 5. Give a different function for each of the following questions so that the function has exactly the given domain and range.
 - (a) Domain = \mathbb{R} , Range = \mathbb{R} .
 - (b) Domain = $(-\infty, 0) \cup (0, \infty)$, Range = $(-\infty, 0) \cup (0, \infty)$.
 - (c) Domain = \mathbb{R} , Range = {4}.
 - (d) Domain = $(0, 1) \cup (1, 2) \cup (2, \infty)$, Range = $(3, \infty)$.

Exponentials and Logarithms

- 1. (a) If $f(x) = 2^x$, then what is $f^{-1}(1024)$?
 - (b) Find the inverse function $f^{-1}(x)$ of $f(x) = e^{4x-2}$.
- **2.** $\frac{e^{7x-1}}{e^{x-1}} = (e^6)^7$. Find *x*.
- **3.** For how many values does $e^x = 0$? What does that tell us about the value of $\ln(0)$?
- 4. Evaluate the following

$$\log_3\left(\frac{1}{27}\right)$$
 , $\log_{\frac{1}{2}}\left(\frac{1}{4}\right)$, $\log_{25}\left(\sqrt{5}\right)$, $\ln(1)$.

5. Are there any solutions to the equation

$$\ln(x^3 - 2x^2 - x + 2) - \ln(x + 1) - \ln(x - 2) = -\ln(2)?$$

Why or why not?

6. Evaluate the following.

(a)
$$\frac{e^{1+2\ln 7)^2}}{(7^{1+\ln\sqrt{7}})^2(7^3)^{1+\ln 7}}$$

(b)
$$\frac{\log_5 25 - \log \frac{1}{10}}{3^{\log_3 2} - e^{\ln 8}}$$

(c)
$$\frac{\log_6 4 - 2\log 25(5) + \log_6 9}{\log_5(3^{-1} - 3^{-2} - 27^{-1})}$$

7. Solve the following equation:

$$e^{\ln x + \ln(x+4)} = 5.$$

8. Do the graphs of $y = e^x$ and $y = \ln x$ intersect? If so, where? If not, how do you know?

9. Which of the following are equal to $\frac{1}{2}$:

$$e^{\ln(0.5)}$$
 , $e^{-\ln(2)}$, $\ln(1) - \ln(2)$, $\frac{3e^0}{6}$?

Write the equation of the horizontal asymptote to the graph $y = e^x$ and the equation of the vertical asymptote to the graph of $y = \ln x$. Use the definition of "inverse functions" to explain how the equations of the two asymptotes are related.

10. Solve the following equation:

$$2^x = 5^{9x-2}$$
.

11. If the population of rabbits on a particular island is given by the equation $P = 10 \cdot 2^t$, where t is the time (in year), find the initial population of rabbits on the island.

Then find how many years it will take for the population to reach 1000.