Functions and Inverses - Problems

1. (a) If $f(x)$ is an invertible function and $f(2)=-5$, what is $f^{-1}(-5)$?
(b) If $f(x)$ is an invertible function and $f(0)=2$, what is $f\left(f^{-1}(0)\right)$?
(c) Let $f(x)=x^{3}$. At how many points do the graphs of $y=f(x)$ and $y=f^{-1}(x)$ intersect?
2. Find the domain of the following functions:
(a) $f(x)=\frac{\sqrt{2 x+7}}{x-|x|}$
(b) $f(x)=\frac{3}{3 x-x^{2}}+\frac{\sqrt{9-x^{2}}}{3}$
3. (a) Let $f(x)=\frac{7 x+1}{9-2 x}$. Find $f^{-1}(x)$.
(b) Does the relation described by $x y=7 y+8$ define a function in the variable y ? What about a function in the variable x ?
(c) Under which circumstances does the function $f(n)=n$! (n factorial) have an inverse function? Where doesn't the inverse exist? Explain.
(d) Let $h(x)=x^{2}-2 x+8$ and $g(x)=\sqrt{x}$. Write an expression for $(g \circ h \circ g)(x)$ in terms of x.
(e) Let $f(x)=x+1$ and $g(x)=\frac{1}{x}$. Compute $(f \circ g)^{-1}(2)$.
4. (a) Which of the following relations are functions of q :

$$
w=q+1 \quad, \quad q=\frac{2 w 01}{w} \quad, \quad w q=-27
$$

(b) Find the inverse function f^{-1} for each of the following.

$$
f(x)=3 x+2 \quad, \quad x^{2}+6 x+3 \text { for } x \leq-3 \quad, \quad f(x)=\frac{x+3}{5 x-1}
$$

(c) Let $f(x)=\frac{2 x}{1-x}$. Find all real numbers x, if any, for which $f(-x)=2 f(x)$.
(d) Let $f(x)=\sqrt{x}+1, g(x)=x^{2}-x$, and $h(x)=\frac{1}{x-2}$. Evaluate and simplify the following

$$
f(g(x)) \quad, \quad(h \circ g)(x) \quad, \quad f(g(h(x))) \quad, \quad(g \circ h \circ g)(x)
$$

5. Give a different function for each of the following questions so that the function has exactly the given domain and range.
(a) Domain $=\mathbb{R}$, Range $=\mathbb{R}$.
(b) Domain $=(-\infty, 0) \cup(0, \infty)$, Range $=(-\infty, 0) \cup(0, \infty)$.
(c) Domain $=\mathbb{R}$, Range $=\{4\}$.
(d) Domain $=(0,1) \cup(1,2) \cup(2, \infty)$, Range $=(3, \infty)$.

Exponentials and Logarithms

1. (a) If $f(x)=2^{x}$, then what is $f^{-1}(1024)$?
(b) Find the inverse function $f^{-1}(x)$ of $f(x)=e^{4 x-2}$.
2. $\frac{e^{7 x-1}}{e^{x-1}}=\left(e^{6}\right)^{7}$. Find x.
3. For how many values does $e^{x}=0$? What does that tell us about the value of $\ln (0)$?
4. Evaluate the following

$$
\log _{3}\left(\frac{1}{27}\right) \quad, \quad \log _{\frac{1}{2}}\left(\frac{1}{4}\right) \quad, \quad \log _{25}(\sqrt{5}) \quad, \quad \ln (1)
$$

5. Are there any solutions to the equation

$$
\ln \left(x^{3}-2 x^{2}-x+2\right)-\ln (x+1)-\ln (x-2)=-\ln (2) ?
$$

Why or why not?
6. Evaluate the following.
(a) $\frac{e^{1+2 \ln 7)^{2}}}{\left(7^{1+\ln \sqrt{7}}\right)^{2}\left(7^{3}\right)^{1+\ln 7}}$
(b) $\frac{\log _{5} 25-\log \frac{1}{10}}{3^{\log _{3} 2}-e^{\ln 8}}$
(c) $\frac{\log _{6} 4-2 \log 25(5)+\log _{6} 9}{\log _{5}\left(3^{-1}-3^{-2}-27^{-1}\right)}$
7. Solve the following equation:

$$
e^{\ln x+\ln (x+4)}=5
$$

8. Do the graphs of $y=e^{x}$ and $y=\ln x$ intersect? If so, where? If not, how do you know?
9. Which of the following are equal to $\frac{1}{2}$:

$$
e^{\ln (0.5)} \quad, \quad e^{-\ln (2)} \quad, \quad \ln (1)-\ln (2) \quad, \quad \frac{3 e^{0}}{6} \quad ?
$$

Write the equation of the horizontal asymptote to the graph $y=e^{x}$ and the equation of the vertical asymptote to the graph of $y=\ln x$. Use the definition of "inverse functions" to explain how the equations of the two asymptotes are related.
10. Solve the following equation:

$$
2^{x}=5^{9 x-2}
$$

11. If the population of rabbits on a particular island is given by the equation $P=10 \cdot 2^{t}$, where t is the time (in year), find the initial population of rabbits on the island.

Then find how many years it will take for the population to reach 1000.

