Graphing - Problems

1. (a) Which of the following equations can be graphed:

$$
x^{2}+y^{2}=-4, x+y=-4, x^{2}+x y=1
$$

(b) Which of the following functions have graphs that intersect the x-axis:

$$
y=-2(x+1)^{2}-10, y=\frac{-3}{x-1}, y=|x+7|-3
$$

(c) Which of the following functions have graphs that intersect the y-axis:

$$
y=-2(x+1)^{2}-10, y=\frac{-3}{x-1}, y=|x+7|-3
$$

(d) At how many distinct points do the circle given by equation $x^{2}+y^{2}=5$ and the line with equation $y=2 x+3$ intersect $?$
2. Find the center and radius of the following circles:

$$
x^{2}+y^{2}=25,(x-1)^{2}+(y+2)^{2}=7,3 x^{2}-12 x-18 y+3 y^{2}=0
$$

3. Find the vertex, roots, and graph each of the following:
(a) $y=3(x-1)^{2}+9$
(b) $y=x^{2}+2 x-48$
(c) $y=x(x-10)$
(d) $y=x^{2}-2 x-35$
(e) $y=3 x^{2}+6 x-22$
(f) $y=-x^{2}+12 x+1$
(g) $y=(x+3)^{2}$
4. Graph the following functions:
(a) $y=2 \sqrt{x}$
(b) $y=2^{-x}$
(c) $y=\frac{1}{x-2}$
(d) $y=x^{3}+2$
5. The graph of $y=f(x)$ can be obtained from the graph of $y=g(x)$ by shifting, stretching and/or reflecting. Describe the specific transformation required to turn the graph of $y=g(x)$ into the graph of $y=f(x)$ for each pair of functions.
(a) $f(x)=5(7)^{3-x}+8, \quad g(x)=7^{x}$
(b) $f(x)=\frac{2}{x+3}+4, \quad g(x)=\frac{1}{x}$
(c) $f(x)=5(x-4)^{2}, \quad g(x)=x^{2}$
(d) $f(x)=-\sqrt{-2 x}, \quad g(x)=\sqrt{x}$
6. Identify the graphs of the following equations as parabolas, circles, ellipses, hyperbolas, or none of the above. For parabolas, find the vertex; for circles, find the center and radius; for ellipses find the length of the major and minor axis; and for hyperbolas, find the equation of the asymptotes.
(a) $y+x^{2}=1$
(b) $2 y^{2}+x^{2}=1$
(c) $y^{2}-x^{2}=1$
(d) $y^{2}-x^{2}=-1$
(e) $2 y^{2}+x^{2}=-1$
(f) $(x-3)^{2}=5-(y-2)^{2}$
(g) $\frac{x^{2}}{5}+\frac{y^{2}}{16}=1$
(h) $x^{2}+2 x+y^{2}-4 y=10$
(i) $9 x^{2}+4 y^{2}=36$
(j) $9 x^{2}-16 y^{2}=144$
