Trigonometry – Problems

- 1. Are the functions $y = \sin \theta$ and $y = \cos \theta$ defined for all angles $\theta \in \mathbb{R}$? Or are there values of θ where they do not exist? Explain.
- 2. Find all angles θ between 0 and 2π for which $\tan \theta$ is not defined. Explain your answer.
- 3. Find the acute angle that has the same sin-, cos-, and tan-values as 380° , -705° , 1082° , $\frac{13\pi}{6}$ radians, and -26π radians.
- 4. Convert the following angles to radians: 45° , -27° , and 120° .
- **5.** Convert the following angles (given in radians) to degrees: 3π , $\frac{\pi}{12}$, and -2π .
- 6. A triangle has a 90° angle. The side facing that angle has length 5. One of the other angles is 30°. Find the third angle, the cos-value of the third angle (using special triangles), and the length of the side adjacent to the third angle (using the previous two answers).
- 7. Find the angle θ between 0 and 2π such that $\cot \theta = \cot \frac{\pi}{4}$ but $\theta \neq \frac{\pi}{4}$.
- 8. Find all values of $\theta \in [0, 2\pi]$, such that:
 - (a) $\sin^2 \theta = \frac{1}{2}$
 - **(b)** $(\cos \theta + 1)(2\cos \theta 1) = 0$
 - (c) $(4\cos^2\theta 1)(\sin\theta 2)(\cos\theta) = 0$
 - (d) $\sin^2\theta + 2\sin\theta 2 = 1$
- **9.** Prove the following:
 - (a) $\sin\theta\tan\theta = \sec\theta(1-\cos^2\theta)$
 - **(b)** $\tan \theta + \cot \theta = \sec \theta \csc \theta$
 - (c) $\csc\theta\tan\theta\sec\theta = \tan^2\theta + 1$
 - (d) $\sin\theta + (\sin\theta)(\cot^2\theta) = \csc\theta$