Trigonometry - Problems

1. Are the functions $y=\sin \theta$ and $y=\cos \theta$ defined for all angles $\theta \in \mathbb{R}$? Or are there values of θ where they do not exist? Explain.
2. Find all angles θ between 0 and 2π for which $\tan \theta$ is not defined. Explain your answer.
3. Find the acute angle that has the same sin-, cos-, and tan-values as $380^{\circ},-705^{\circ}, 1082^{\circ}, \frac{13 \pi}{6}$ radians, and -26π radians.
4. Convert the following angles to radians: $45^{\circ},-27^{\circ}$, and 120°.
5. Convert the following angles (given in radians) to degrees: $3 \pi, \frac{\pi}{12}$, and -2π.
6. A triangle has a 90° angle. The side facing that angle has length 5 . One of the other angles is 30°. Find the third angle, the cos-value of the third angle (using special triangles), and the length of the side adjacent to the third angle (using the previous two answers).
7. Find the angle θ between 0 and 2π such that $\cot \theta=\cot \frac{\pi}{4}$ but $\theta \neq \frac{\pi}{4}$.
8. Find all values of $\theta \in[0,2 \pi]$, such that:
(a) $\sin ^{2} \theta=\frac{1}{2}$
(b) $(\cos \theta+1)(2 \cos \theta-1)=0$
(c) $\left(4 \cos ^{2} \theta-1\right)(\sin \theta-2)(\cos \theta)=0$
(d) $\sin ^{2} \theta+2 \sin \theta-2=1$
9. Prove the following:
(a) $\sin \theta \tan \theta=\sec \theta\left(1-\cos ^{2} \theta\right)$
(b) $\tan \theta+\cot \theta=\sec \theta \csc \theta$
(c) $\csc \theta \tan \theta \sec \theta=\tan ^{2} \theta+1$
(d) $\sin \theta+(\sin \theta)\left(\cot ^{2} \theta\right)=\csc \theta$
