
MAT 257, Handout 10: November 21-25, 2011.
Assignment. We will finish what is left of chapter 3 (partitions of unity and changes of

variables) by the end of the term. So you should read that material over the next two weeks.

Solution to some exercises from homework 4. Part of Homework 4 deals with the
following

Theorem 1. Assume that g : Rn → Rk is a continuously differentiable function, and that p ∈ Rk

is such that the Jacobian matrix g′(x) has rank k at every point in g−1(p), so that M := g−1(p) is
a C1 manifold of dimension n− k.

Assume also that F : Rn → R is continuously differentiable. Let f denote the restriction of F
to M . If f has a local maximum or minimum at a point x0 ∈ M , then there exist λ1, . . . , λk such
that

DjF (x0) =
n∑

i=1

λiDjg
i(x0) for j = 1, . . . , n.

The proof contains exercises 2 and 3 from homework 4.

Proof. 1. We first consider the special case in which there exists an open set U ⊂ Rn containing
x0 such that U ∩M = {x ∈ U : xn−k+1 = · · ·xn = 0} = U ∩ (Rn−k × {0}).

Then there exists some t0 > 0 such that x0 + tei ∈ M for all t such that |t| < t0 and all
i = 1, . . . , n − k. Thus the function φi(t) = f(x0 + tei) is well-defined for i ∈ {1, . . . , n − k} and
|t| < t0, and our hypotheses imply that φi has a local minimum or maximum at t = 0. Thus
Dif(x0) = φ′i(0) = 0. So the Jacobian “matrix” f ′(x0) (here a row vector) has the form

f ′(x0) = (0, · · · , 0, Dn−k+1f(x0), · · · , Dnf).

Next, recall that g(y) = p = (p1, . . . , pk) for every y ∈ M (by definition of M). So if we define
ψi

j(t) = gi(x0 + tej) for i = 1, . . . , k and j = 1, . . . , n− k, then ψi
j(t) = pi whenever |t| < t0, and it

follows that
0 = (ψi

j)
′(0) = Djg

i(t) for i = 1, . . . , k and j = 1, . . . , n− k.
That is, the Jacobian matrix g′(x0) has the form

g′(x0) =

 0 · · · 0 Dn−k+1g
1(x0) · · · Dng

1

...
...

...
...

...
...

0 · · · 0 Dn−k+1g
k(x0) · · · Dng

k


So it is clear that the row-space of g′ (the space of linear combinations of its rows) is contained in
V := {row vectors v = (v1, . . . , vn) : v1, . . . , vn−k = 0}, which is a k-dimensional vector space. But
by assumption, the rank of g′(x0) is k, so the row-space of g′(x0) is k-dimensional, and thus it must
be the case that the row-space of g′ equals V . Since we have shown that f ′(x0) ∈ V , it follows that
f ′(x0) is a linear combination of the row vectors (g1)′(x0), . . . , (gk)′(x0), which is what we have to
show.

2. Now consider the general case. An approach that is conceptually simple is just to reduce
this to the previous case using a diffeomorphism to “flatten out” the manifold M near the point
x0. Here are some details:

Consider a point x0 where F has a local maximum or minimum, and let h be a C1 diffeomorphism
between an open set U ⊂ Rn containing x0 and another open set V in Rn, such that

h(M ∩ U) = V ∩ (Rn−k × {0}).
Let f̃ = f ◦ h−1, and let g̃ = g ◦ h−1.

We claim that f̃ and g̃ satisfy the hypotheses of the theorem in the special case already considered
above at the point z0 := h(x0). (This is a routine verification. Briefly: differentiability is clear,
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the fact that z0 is a local maximum/minimum of f̃ is a consequence of h being a diffeomorphism
between M ∩U and V ∩ (Rn−k×{0}), and the fact that g̃′(z0) = g′(x0)(h−1)′(z0) has rank k follows
from the corresponding property for g′(x0) together with the fact that, since h is a diffeomorphism,
(h−1)′(z0) is nonsingular.)

Thus it follows from the special case that there exist λ1, . . . , λk such that f̃ ′(z0) =
∑k

j=1 λj(g̃j)′(z0).
By the chain rule, and since h−1(z0) = x0,

f̃ ′(z0) = f ′(h−1(z0))(h−1)′(z0) = f ′(x0)(h−1)′(z0)

Similarly (g̃i)′(z0) = (gi)′(x0)(h−1)′(z0). Hence we deduce that

f ′(x0)(h−1)′(z0) =
k∑

j=1

λj(gj)′(x0)(h−1)′(z0).

Finally, note that since h is a diffeomorphism, (h−1)′(z0) is an invertible matrix (with inverse h′(x0)
in fact) so we can multiply both sides of the above identity on the right by h′(x0) to find that

f ′(x0) =
k∑

j=1

λj(gj)′(x0).

which is what we have to show. �

Homework 5, due Wednesday December 7.
There are two options, Option A and Option B. Please write prominently on the first page

of your assignment Option A or Option B, depending on which you choose.

Option A is:
1. Spivak, exercise 3-9. To receive full marks, you must use at most 2 sentences for part (a),

and at most one sentence for part (b). [4 marks]

2. Spivak, exercise 3-13. For part (a), try to deduce the conclusion you want from a more
general statement (that you must formulate and prove.) Toward this end, note that the collection
of rectangles being considered here can be identified with a subset of the product space Q2n. [8
marks, 4 for each half]

3. Spivak, exercise 3-22. [7 marks]

4. Spivak, exercise 3-27. [7 marks]

5. Spivak, exercise 3-32. (It is my painful duty to point out that Spivak has misspelled the
name “Leibniz”.) [7 marks]

6. Spivak, exercise 3-33. You should need 1- 2 sentences for each of parts (a) and (b). [4 marks]

7. Spivak, exercise 3-34. Up to 3 sentences are needed for this. [3 marks]

Option B is:
problems 1, 2, 3, 4, 5 above (with the same number of marks as above), together with
?. Without handing them in, solve problems 3-12 and 3-20 in Spivak. Then write up and hand

in a solution to the following problem:
Let A = [a, b]× [c, d]. We say that a function f : A→ R is nondecreasing in the x variable if for

every y ∈ [c, d], the function gy : [a, b]→ R defined by gy(x) = f(x, y) is nondecreasing.
If f is bounded and nondecreasing in the x variable, is it necessarily integrable? Give a proof

or a counterexample.
[7 marks]


