
MAT 257, Handout 3: week of September 26-30, 2011.

I. Assignment.

Note that this is not to be handed in. The homework that will be collected appears in Section
III below, on page 2.

Over the next week. Read pages 15-25 of Spivak, and work a large sample of the problems
on pages 17-19 and 22-25.

As usual, make sure to solve in detail all of the starred exercises, which in this week is just
exercise 2-1 on page 17.

II. Summary.

1. Let X be a metric space with metric d : X ×X → [0,∞). We noted that a subset U of X is
open if and only if

(1) for every x ∈ U , there exists r > 0 such that {y ∈ X : d(y, x) < r} ⊂ U.
(Compare (1) to the slightly different definition we gave earlier, which you can find in Handout 2.
If the equivalence between that definition and (1) is not clear to you, then write out the proof in
detail.) In practice, it is often more convenient to work with (1) than with the earlier definition.

2. Given a metric space X with a metric denoted dX : X ×X → [0,∞), and a subset A ⊂ X, we
can make A into a metric space, with metric denoted dA : A×A→ [0,∞), defined by

dA(x, y) = dX(x, y) for x and y ∈ A.
Thus, dA is just the restriction to A × A of dX . (We sometimes call dA the induced metric. It is
easy to check that it is in fact a metric.) Having made A into a metric space by defining dA, we
can define open sets in A, just as we would do in any other metric space, using (1) (with d replaced
by dA), or an equivalent definition of “open” if we prefer,

We checked that a set U ⊂ A is open in A if and only if we can write U = A ∩ V for some
V ⊂ X such that V is open in X.

Note that in this situation, a subset U of A can be open in A and not open in X. This is the
case for example if U = A = [0, 1] ⊂ X = R (with the standard metric).

We sometimes say “relatively open in A” to mean the same thing as “open in A”. We also
sometimes say simply “relatively open” to mean “open in A”, when it is clear from the context
which set A ⊂ X we have in mind.

Later on, we will normally consider X = Rn and A a subset of Rn. In this situation, we will
never use the notation dA and dX . Rather, we will always write simply |x − y| to denote the
Euclidean distance between two points (whether we regard them as points in A or in X.)

3. Suppose that X and Y are metric spaces, with metrics dX and dY respectively. We say that a
function f : X → Y is continuous at a point x ∈ X if

(2) ∀ ε > 0, ∃ δ > 0 such that dY (f(x), f(x′)) < ε for every x′ ∈ X such that dX(x′, x) < δ.

If f is continuous at every point in X, then we simply say that f is continuous.
We checked that

(3) f : X → Y is continuous ⇐⇒ for every open U ⊂ Y , f−1(U) is open in X.

An advantage of defining the induced metric as we did above is that, having done so, (3) remains
true with only the obvious modifications (replacing X by A throughout) for a function f : A→ Y ,
when A is a subset of a metric space X. (Compare the different approach in Spivak, in particular
Theorem 1-8 and the discussion that precedes it, where the “inverse image” characterization of
continuity looks different depending on whether the domain is Rn or a proper subset of Rn.)
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4. Compact sets in metric spaces enjoy the following good properties:
• if X and Y are metric spaces, K is a compact subset of X, and f : K → Y is continuous,

then f(K) is a compact subset of Y . (Essentially Theorem 1-9 in Spivak.)

• if K is a compact subset of a metric space X, and if f : K → R is a real-valued function,
then f attains its supremum and infimum. That is, there exist points x∗ and x∗ in K such
that

f(x∗) = sup
x∈K

f(x), f(x∗) = inf
x∈K

f(x).

(Essentially exercise 1-29 in Spivak, which was discussed in class.)

• if X and Y are metric spaces, K is a compact subset of a metric space X, and f : K → Y
is continuous, then f is uniformly continuous, which means that for every ε > 0, there
exists δ > 0 such that for any x and y in K satisfying dX(x, y) < δ, we have the inequality
dY (f(x), f(y)) < ε. (As we well recall from MAT157, the point is that “the same δ works for every x and y”.)

See exercise (2) below.

• Every sequence in a compact set has a convergent subsequence. (One approach to this, using
the notion of “totally bounded”, is hinted at in Handout 2.) Incidentally, this property of
compact sets can be used to provide an alternate proof of the fact that a continuous function
on a compact set attains its infimum and supremum.

5. We did not discuss material about the concept of oscillation and its relation to continuity
(from page 13 of Spivak.) We will return to this when we need it, which will be later in the fall.

III. Hand in on October 7.
(1) Exercise 1-21 in Spivak.

(2) Prove that if X and Y are metric spaces, K is a compact subset of X, and f : K → Y is
continuous, then f is uniformly continuous.

Hint: You may as well start by fixing ε > 0; then your goal is to prove the existence
of a suitable δ > 0, as in the definition of uniform continuity. As usual, to exploit the
compactness of K, you can construct a specific open covering of K that somehow encodes
some useful information. In this case, this might be information about which points are
close enough together that their images are within distance ε of each other.

(3) A subset A of a metric space X is disconnected if there exist relatively open sets A1, A2 ⊂ A
such that A1 ∪A2 = A, A1 ∩A2 = ∅.

A set is connected if it is not disconnected.

(a) Prove that {x ∈ Q : 0 ≤ x ≤ 1} is disconnected, where Q denotes the rational numbers.

(b) Prove that a closed interval [a, b] ⊂ R is connected.

Discussion: if we knew the result from part (b) above, we could use it to prove the
Heine-Borel theorem (compactness of a closed interval) as follows:
• Start as before: given an open cover O of [a, b], we define

A := {x ∈ [a, b] : [a, x] [a, x] can be covered by finitely many sets from O}.
• Then verify that A is both open and closed in [a, b].
• Finally, use the connectedness of [a, b] to conclude that A = [a, b].

This proof, once the details are filled in, would probably be a little harder than the one we
gave, though the underlying idea is very similar.

(4) Exercise 2-4 in Spivak.


