
MAT 257, Handout 4: October 3-7, 2011.

I. Remarks about homework 2.
1. One of the homework problems due this Friday asks you to prove that every continuous

function on a compact set is uniformly continuous.
The hint I provided for the problem is actually not very useful, so here is a bit more discussion.
First, the easiest way to solve the problem is probably not to start from the definition of

compactness, but rather to exploit other facts that we (now) know about compactness, such as
the fact that every sequence in a compact set K has a subsequence that converges to a limit in K.
This was discussed in last week’s tutorial, and for completeness is proved below (see Lemma 1). So
feel free to use fact in your solution of the exercise.

Other proofs I know of “continuity + compactness imply uniform continuity” all use arguments
similar to those in the proof of Lemma 1 below. For example, if you follow my earlier hint, you
may find yourself constructing a finite collection of open balls {B1, . . . , BL} in K with the property
that for each ball Bi, the set {f(x) : x ∈ Bi} has diameter less than ε. To conclude from this that
f is uniformly continuous, it would suffice to show that there exists some δ > 0 such that, for every
x ∈ K, the ball of radius δ centered at x is a subset of at least one of the Bi, i = 1, . . . , L. If you
try to prove this directly using the definition of compactness, you will probably find that you go
through arguments like those in Lemma 1 below.

2. There is a typo in the statement of Problem 3. It should say:

A subset A of a metric space X is disconnected if there exist nonempty relatively open sets A1, A2 ⊂
A such that A1 ∪A2 = A, A1 ∩A2 = ∅.

A set is connected if it is not disconnected.
(The problem as originally stated failed to mention that the sets A1 and A2 must both be

nonempty.)

II. Assignment.

Over the next week. Continue reading Chapter 2 of Spivak, through the end of page 32, and
continue to work exercises (mostly not to be handed in) from Chapter 2.

Here are some remarks about the exercises.
• 2-1 is easy but important.
• In 2-2, the last sentence should be replaced by: “If f(x, y) = g(x) for all x, y, and g is

differentiable, show that f is differentiable, and express f ′(a, b) in terms of g′.
• You should be able to do 2-3 pretty quickly, 2-4 is assigned for the homework, and 2-5

through 2-7 are all useful practice.
• 2-8 is a special case of a Theorem 2-3(3), but you should make sure that you can do it.
• 2-9 is really a question about single-variable calculus.

• It is arguably worth doing one or two parts of problems 2-10 and/or 2-11. The point here is
to compute derivatives using only basic properties of the derivative (eg chain rule, product
rule, etc, but without partial derivatives) as is done in an example on the bottom of page
22. If nothing else, it will help you appreciate the theorems relating the derivative Df and
partial derivatives. (Note that I went over problem 2-10(a) in the lecture.)
• 2-12 and 2-13 establish generalizations of Theorem 2-3(5). I particularly recommend prob-

lem 2-13, parts (a)-(c). (Part (d) is a question about single-variable calculus.)
• 2-14 and 2-15 are useful and important results (though I don’t know if we will use them in

this class.)
• 2-16 is also a good exercise, though the hint should make it quite straightforward.
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• Concerning problems 2-17 through 2-20: your goal should be to practice enough with com-
puting partial derivatives that you can do it as easily as you can compute an ordinary
derivative of a function of a single variable. So do enough of these exercises (and more like
them if necessary) to reach this level.
• Concerning problem 2-21: Part (b) could be stated more clearly as: “How should f be

redefined so that D1f(x, y) = g1(x, y)?” Parts (a) and (b) seem to give a hint for part (c),
and the hint actually works, but it is not very clear why it works......
• 2-22 is a basic result. Please write out the solution carefully. (This is may appear on the

next homework in any case.)
• 2-23 is good practice, and 2-24 is strongly recommended as illustrating a basic phemonenon

one must be aware of.
• 2-25 through 2-27 are relevant for topics we will discuss later, and if you have had enough

at this point, maybe it is best to return to them later, when they are needed.

• Problem 2-28 is useful practice.
• Problem 2-29 introduces the important concept of the directional derivative (which I will

probably also mention in class), and problems 2-30 and 2-31 illustrate some possible patholo-
gies. The phenomenon in 2-30, while one must be aware of it, does not occur of f is
differentiable, as you have shown in Problem 2-29 (c), and is rarely encountered in practice.
• Exercise 2-32 shows that the converse to Theorem 2-8 is not true, and exercise 2-33 refines

Theorem 2-8 a little. These are both worth doing, for a better understanding of a basic
result.
• Exercises 2-34 is generally useful, and exercise 2-35 is used in establishing certain basic

lemmas about differential geometry.

III. Other discussion.
Here is the proof promised above (and discussed in the tutorial last week.)

Lemma 1. Assume that K is a compact subset of a metric space X, and that (xn) is a sequence of
points in K. Then there exists some x ∈ K and a subsequence (xnl

) such that xnl
→ x as l→∞.

Proof. Suppose toward a contradiction that the conclusion fails, so that there exists a sequence
(xn) in K with no convergent subsequence.

Step 1. We first claim that for every x ∈ K, there exists some rx > 0 such that the open ball
of radius rx about x contains only finitely many points of the sequence (xn).

To prove this, suppose that some x ∈ K does not have this property, so that every ball centered
at x contains infinitely many terms of the sequence. Then we can certainly choose some n1 such that
xn1 belongs to the ball of radius 1 about x, and proceeding inductively, and using our assumption
about x, we can choose nl+1 > nl such that xnl+1

belongs to the ball of radius 2−(l+1) about x.
Then it follows (from the definition of convergence!) that the subsequence (xnl

) chosen in this way
converges to x, which contradicts our assumption that (xn) has no convergent subsequences. This
proves our claim

Step 2. Now consider the collection of open sets O = {Ux}x∈K , where for every x ∈ K, we
define Ux to be the open ball with center x and radius rx. That is, we define

Ux := {y ∈ X : d(y, x) < rx}.
Every Ux is open and every x ∈ K is contained in at least one ball (the ball Ux whose center is
x itself) so O is an open cover of K. Thus there exists a finite subcover Uy1 , . . . , UyM , for certain
points y1, . . . , yM ∈ K.

Step 3. Since there are infinitely many terms in the sequence (xn) and only finitely many sets
Uyi , at least one of these sets must contain infinitely many points. But this is impossible, in view
of the construction of Uyi . Hence we have arrived at the desired contradiction. �


