
MAT 257, Handout 5: October 10-14, 2011.

I. Assignment.

Over the next week. Continue reading Chapter 2 of Spivak, reviewing as necessary and
continuing through the end of page 39. Continue to work exercises from Chapter 2. Exercise 3-27
is a sort of warm-up for the Implicit Function Theorem, so you will get the most out of it if you
look at it before we get to the Implicit function Theorem.

II. About second derivatives.

Preliminaries. Let L(Rn; Rm) denote the space of linear maps from Rn to Rm. This is clearly
a vector space, and it is easy to see that it has dimension mn, since there is a one-to-one linear
mapping between L(Rn; Rm) and the space of m × n matrices, which in turn can be naturally
identified with Rm×n. We will write λ to denote a generic element of L(Rn; Rm), and we will use
the notation

(1) ‖λ‖ := sup{|λ(x)| : x ∈ Rn, |x| = 1} and

(2) |λ| :=
( n∑

i=1

|λ(ei)|2
)1/2

.

It is straightforward to verify that these are both norms on L(Rn; Rm). Also, note that if A is
the m × n matrix that represents λ, with entries (aij), then λ(ei) is the ith column of A., so
that |λ| = (

∑
i,j a

2
ij)

1/2. In other words, |λ| is the euclidean norm of the point in Rm×n whose
components are the entries (aij) of A listed in some fixed order. For this reason we will call |λ| the
Euclidean norm of λ, whereas ‖λ‖ is called the operator norm of λ.

It follows from exercises (3) and (4) on handout 2 (which were discussed at length in the lecture)
that there exist constants k < K such that

(3) k|λ| ≤ ‖λ‖ ≤ K|λ|

for all λ ∈ L(Rn; Rm). (In particular, feel free to use this fact in the homework problems.) In fact
one can also check directly that n−1/2|λ| ≤ ‖λ‖ ≤ |λ|. for all λ ∈ L(Rn; Rm).

Definition of second derivative: Suppose that f : Rn → Rm is differentiable at every point
x of an open set U ⊂ Rn. Then for every x ∈ U , Df(x) is an element of L(Rn; Rm), so we can view
Df as a function from U to L(Rn; Rm). In this situation, we say that Df is continuous at a point
a ∈ U if ∀ε > 0∃δ > 0 such that |Df(x)−Df(a)| < ε whenever x ∈ U and |x− a| < δ.

We emphasize the distinction between Df(x), an element of L(Rn; Rm), and Df , a function
U → L(Rn; Rm).

We say that f is twice differentiable at a point a ∈ Rn if Df exists at every point in a neigh-
bourhood U of a, and if there exists a linear map Λ : Rn → L(Rn; Rm) such that

(4) lim
h→0

|Df(a+ h)−Df(a)− Λ(h)|
|h|

= 0

When this holds we write D(Df)(a) to denote Λ, and we call it the second derivative of f .
We have used the Euclidean norm (2) on L(Rn; Rm) to define continuity and differentiability of

Df : U → L(Rn; Rm). But in view of (3), we could have used the operator norm, and the resulting
definitions would have been completely equivalent to the definitions we have given above.

Remark. In Spivak, f : Rn → Rm is said to be continuously differentiable in an open set U is all
partial derivatives of all components of f exist everywhere in U and are continuous functions from
U to R. One can check, using Theorems 2-7 and 2-8 in Spivak, that f is continuously differentiable
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in U if and only if f is differentiable at every point of U , and in addition Df is a continuous function
from U to L(Rn; Rm).

Reformulation of the second derivative. By definition, if f is twice differentiable at a, then
D(Df)(a) is a linear map Rn → L(Rn; Rm).

Thus, for any v ∈ Rn, D(Df)(a)(v) is a linear map Rn → Rm. So for any w ∈ Rn, D(Df)(a)(v)(w)
is an element of Rm.

So we can identify the second derivative of f at a with the function, which we will write D2f(a) :
Rn × Rn → Rm, defined by

D2f(a)(v, w) = D(Df)(a)(v)(w).

It is straightforward to check from the definitions that D2f(a) is bilinear. The following lemma
clarifies the “meaning” of D2f(a).

Lemma 1. Suppose that f : Rn → Rm is twice differentiable at a ∈ Rn. Then for any v and w in
Rn,

(5) D2f(a)(v, w) = lim
h→0

f(a+ hv + hw)− f(a+ hv)− f(a+ hw) + f(a)
h2

.

(In particular, the limit on the right-hand side exists.)

The proof is an exercise (with hints) that is part of the third homework assignment, see below.
Lemma 1 should be compared with Exercise 2-29(c) in Spivak, which establishes a parallel

relationship between the first derivative and directional derivatives.
Note in particular that it follows from (5) and the bilinearity of D2f that

D2f(v, v) = −D2f(v,−v) = lim
h→0

f(a+ hv)− 2f(a) + f(a− hv)
h2

The expression on the right-hand side in naturally interpreted as the “second directional derivative
of f in the v direction”, in view of its similarity to the familiar formula for the second derivative
from single-variable calculus.

Another consequence of (5) is

Corollary 1. If f : Rn → Rm is twice differentiable at a point a ∈ Rn, then D2f(a)(v, w) =
D2f(a)(w, v).

Proof. Since the right-hand side of (5) is symmetric with respect to v and w, the left-hand side
must be as well. �

Note that problems 1 and 2 below together establish that Di(Djf)(x) = Dj(Dif)(x) at points x
where f is twice differentiable. (The same conclusion is stated, under somewhat different hypothe-
ses, in Spivak’s Theorem 2-5, although the proof in Spivak is deferred to the exercises in Chapter
3.)

III. Homework, due October 21.

1. Spivak, exercise 2-14.
Although it is not part of the assignment, please also take a look at Spivak, exercise 2-15 (a),

which is an easy consequence of exercise 2-14.

2. Suppose that f : Rn → R is twice differentiable at a ∈ Rn. Prove that D(Df)(a)(ei)(ej) =
Di(Djf)(a)

Hint: For every pair of vectors v and w,

Df(a+ hv)−Df(a)−D(Df)(a)(hv)
h

(w)→ 0
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as h→ 0. Give the very short proof that this follows from the definitions, and use it to prove the
desired identity.

3. Prove Lemma 1 above by filling in the steps below. Part of the exercise is deciphering the
notation. (The same is true for problem 1 above.)

a. Fix f, a, v, w as in the statement of the lemma, and introduce the notation

∆(h) =
f(a+ hv + hw)− f(a+ hv)− f(a+ hw) + f(a)

h2
.

By applying the 1-dimensional mean-value theorem to the function g(s) = f(a+hv+shw)−f(a+shw)
h2

and using Spivak’s exercise 2-29(c) (which you can take to be known), or otherwise, show that
there exists some θ ∈ (0, 1) such that

∆(h) =
Df(a+ hv + θhw)−Df(a+ θhw)

h
(w)

whenever h is small enough.
b. Let Λ = D2f(a). By adding and subtracting and using the definition (4) of Λ, rewrite

Df(a+hv+θhw)−Df(a+θhw)
h as expressions involving Λ and terms that tend to zero as h→ 0, and use

the resulting identity to complete the proof of the Lemma.

4. Spivak, exercise 2-38.

marking: 10 marks each. In problems with two parts, the marks will be split equally between
the two halves, except in problem 3, where part (a) is worth 3 marks and part (b) is worth 7 marks.

In this class, marks are not in general strongly correlated with the difficulty of a problem.


