MAT 257, Handout 5: October 10-14, 2011.

I. Assignment.

Over the next week. Continue reading Chapter 2 of Spivak, reviewing as necessary and continuing through the end of page 39. Continue to work exercises from Chapter 2. Exercise 3-27 is a sort of warm-up for the Implicit Function Theorem, so you will get the most out of it if you look at it before we get to the Implicit function Theorem.

II. About second derivatives.

Preliminaries. Let $\mathcal{L}(\mathbb{R}^n; \mathbb{R}^m)$ denote the space of linear maps from \mathbb{R}^n to \mathbb{R}^m . This is clearly a vector space, and it is easy to see that it has dimension mn, since there is a one-to-one linear mapping between $\mathcal{L}(\mathbb{R}^n; \mathbb{R}^m)$ and the space of $m \times n$ matrices, which in turn can be naturally identified with $\mathbb{R}^{m \times n}$. We will write λ to denote a generic element of $\mathcal{L}(\mathbb{R}^n; \mathbb{R}^m)$, and we will use the notation

(1)
$$\|\lambda\| := \sup\{|\lambda(x)| : x \in \mathbb{R}^n, |x| = 1\}$$
 and

(2)
$$|\lambda| := \Big(\sum_{i=1}^{n} |\lambda(e_i)|^2\Big)^{1/2}.$$

It is straightforward to verify that these are both norms on $\mathcal{L}(\mathbb{R}^n; \mathbb{R}^m)$. Also, note that if A is the $m \times n$ matrix that represents λ , with entries (a_{ij}) , then $\lambda(e_i)$ is the *i*th column of A., so that $|\lambda| = (\sum_{i,j} a_{ij}^2)^{1/2}$. In other words, $|\lambda|$ is the euclidean norm of the point in $\mathbb{R}^{m \times n}$ whose components are the entries (a_{ij}) of A listed in some fixed order. For this reason we will call $|\lambda|$ the Euclidean norm of λ , whereas $||\lambda||$ is called the operator norm of λ .

It follows from exercises (3) and (4) on handout 2 (which were discussed at length in the lecture) that there exist constants k < K such that

(3)
$$k|\lambda| \le \|\lambda\| \le K|\lambda|$$

for all $\lambda \in \mathcal{L}(\mathbb{R}^n; \mathbb{R}^m)$. (In particular, feel free to use this fact in the homework problems.) In fact one can also check directly that $n^{-1/2}|\lambda| \leq ||\lambda|| \leq |\lambda|$. for all $\lambda \in \mathcal{L}(\mathbb{R}^n; \mathbb{R}^m)$.

Definition of second derivative: Suppose that $f : \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at every point x of an open set $U \subset \mathbb{R}^n$. Then for every $x \in U$, Df(x) is an element of $\mathcal{L}(\mathbb{R}^n; \mathbb{R}^m)$, so we can view Df as a function from U to $\mathcal{L}(\mathbb{R}^n; \mathbb{R}^m)$. In this situation, we say that Df is *continuous* at a point $a \in U$ if $\forall \varepsilon > 0 \exists \delta > 0$ such that $|Df(x) - Df(a)| < \varepsilon$ whenever $x \in U$ and $|x - a| < \delta$.

We emphasize the distinction between Df(x), an element of $\mathcal{L}(\mathbb{R}^n; \mathbb{R}^m)$, and Df, a function $U \to \mathcal{L}(\mathbb{R}^n; \mathbb{R}^m)$.

We say that f is *twice differentiable* at a point $a \in \mathbb{R}^n$ if Df exists at every point in a neighbourhood U of a, and if there exists a linear map $\Lambda : \mathbb{R}^n \to \mathcal{L}(\mathbb{R}^n; \mathbb{R}^m)$ such that

(4)
$$\lim_{h \to 0} \frac{|Df(a+h) - Df(a) - \Lambda(h)|}{|h|} = 0$$

When this holds we write D(Df)(a) to denote Λ , and we call it the second derivative of f.

We have used the Euclidean norm (2) on $\mathcal{L}(\mathbb{R}^n; \mathbb{R}^m)$ to define continuity and differentiability of $Df: U \to \mathcal{L}(\mathbb{R}^n; \mathbb{R}^m)$. But in view of (3), we could have used the operator norm, and the resulting definitions would have been completely equivalent to the definitions we have given above.

Remark. In Spivak, $f : \mathbb{R}^n \to \mathbb{R}^m$ is said to be continuously differentiable in an open set U is all partial derivatives of all components of f exist everywhere in U and are continuous functions from U to \mathbb{R} . One can check, using Theorems 2-7 and 2-8 in Spivak, that f is continuously differentiable

in U if and only if f is differentiable at every point of U, and in addition Df is a continuous function from U to $\mathcal{L}(\mathbb{R}^n;\mathbb{R}^m)$.

Reformulation of the second derivative. By definition, if f is twice differentiable at a, then D(Df)(a) is a linear map $\mathbb{R}^n \to \mathcal{L}(\mathbb{R}^n; \mathbb{R}^m)$.

Thus, for any $v \in \mathbb{R}^n$, D(Df)(a)(v) is a linear map $\mathbb{R}^n \to \mathbb{R}^m$. So for any $w \in \mathbb{R}^n$, D(Df)(a)(v)(w) is an element of \mathbb{R}^m .

So we can identify the second derivative of f at a with the function, which we will write $D^2 f(a)$: $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^m$, defined by

$$D^2 f(a)(v,w) = D(Df)(a)(v)(w).$$

It is straightforward to check from the definitions that $D^2 f(a)$ is bilinear. The following lemma clarifies the "meaning" of $D^2 f(a)$.

Lemma 1. Suppose that $f : \mathbb{R}^n \to \mathbb{R}^m$ is twice differentiable at $a \in \mathbb{R}^n$. Then for any v and w in \mathbb{R}^n ,

(5)
$$D^{2}f(a)(v,w) = \lim_{h \to 0} \frac{f(a+hv+hw) - f(a+hv) - f(a+hw) + f(a)}{h^{2}}.$$

(In particular, the limit on the right-hand side exists.)

The proof is an exercise (with hints) that is part of the third homework assignment, see below. Lemma 1 should be compared with Exercise 2-29(c) in Spivak, which establishes a parallel relationship between the first derivative and directional derivatives.

Note in particular that it follows from (5) and the bilinearity of $D^2 f$ that

$$D^{2}f(v,v) = -D^{2}f(v,-v) = \lim_{h \to 0} \frac{f(a+hv) - 2f(a) + f(a-hv)}{h^{2}}$$

The expression on the right-hand side in naturally interpreted as the "second directional derivative of f in the v direction", in view of its similarity to the familiar formula for the second derivative from single-variable calculus.

Another consequence of (5) is

Corollary 1. If $f : \mathbb{R}^n \to \mathbb{R}^m$ is twice differentiable at a point $a \in \mathbb{R}^n$, then $D^2 f(a)(v, w) = D^2 f(a)(w, v)$.

Proof. Since the right-hand side of (5) is symmetric with respect to v and w, the left-hand side must be as well.

Note that problems 1 and 2 below together establish that $D_i(D_jf)(x) = D_j(D_if)(x)$ at points x where f is twice differentiable. (The same conclusion is stated, under somewhat different hypotheses, in Spivak's Theorem 2-5, although the proof in Spivak is deferred to the exercises in Chapter 3.)

III. Homework, due October 21.

1. Spivak, exercise 2-14.

Although it is not part of the assignment, please also take a look at Spivak, exercise 2-15 (a), which is an easy consequence of exercise 2-14.

2. Suppose that $f : \mathbb{R}^n \to \mathbb{R}$ is twice differentiable at $a \in \mathbb{R}^n$. Prove that $D(Df)(a)(e_i)(e_j) = D_i(D_j f)(a)$

Hint: For every pair of vectors v and w,

$$\frac{Df(a+hv) - Df(a) - D(Df)(a)(hv)}{h}(w) \to 0$$

as $h \to 0$. Give the very short proof that this follows from the definitions, and use it to prove the desired identity.

3. Prove Lemma 1 above by filling in the steps below. Part of the exercise is deciphering the notation. (The same is true for problem 1 above.)

a. Fix f, a, v, w as in the statement of the lemma, and introduce the notation

$$\Delta(h) = \frac{f(a + hv + hw) - f(a + hv) - f(a + hw) + f(a)}{h^2}.$$

By applying the 1-dimensional mean-value theorem to the function $g(s) = \frac{f(a+hv+shw)-f(a+shw)}{h^2}$ and using Spivak's exercise 2-29(c) (which you can take to be known), or otherwise, show that there exists some $\theta \in (0, 1)$ such that

$$\Delta(h) = \frac{Df(a+hv+\theta hw) - Df(a+\theta hw)}{h}(w)$$

whenever h is small enough.

b. Let $\Lambda = D^2 f(a)$. By adding and subtracting and using the definition (4) of Λ , rewrite $\frac{Df(a+hv+\theta hw)-Df(a+\theta hw)}{h}$ as expressions involving Λ and terms that tend to zero as $h \to 0$, and use the resulting identity to complete the proof of the Lemma.

4. Spivak, exercise 2-38.

marking: 10 marks each. In problems with two parts, the marks will be split equally between the two halves, except in problem 3, where part (a) is worth 3 marks and part (b) is worth 7 marks.

In this class, marks are not in general strongly correlated with the difficulty of a problem.