
MAT 257, Handout 6: October 17-21, 2011.

I. Assignment.

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. Also, read this
handout and fill in some missing details!

II. Higher derivatives.

a. (multi)-linear algebra preliminaries. Let L(Rn; Rm) denote the space of linear maps from
Rn to Rm, and more generally, let Lk(Rn; Rm) denote the space of k-linear maps from (Rn)k → Rm.
Thus, an element of Lk(Rn; Rm) is a function Λ(Rn)k → Rm such that

Λ(v1, . . . , vi−1, avi + bwi, . . . , vi+1, . . . , vk) = aΛ(v1, . . . , vi−1, vi, . . . , vi+1, . . . , vk)

+ bΛ(v1, . . . , vi−1, wi, . . . , vi+1, . . . , vk)

for all vectors v1, . . . , vk, wi ∈ Rn, scalars a, b ∈ R, and i ∈ {1, . . . , k}.
We have seen that there is a natural isomorphism between the space of linear maps Rn →

L(Rn; Rm) and the space L2(Rn; Rm) of bilinear maps Rn × Rn → Rm. This is an instance of a
more general fact:

Lemma 1. For k ≥ 2, is a natural isomorphism between the space of linear maps Rn → Lk−1(Rn; Rm)
and Lk(Rn; Rm).

Proof. Given a linear map Λ : Rn → Lk−1(Rn; Rm), define Λ ∈ Lk(Rn; Rm) by

(1) Λ(v1, . . . , vk) = Λ(v1)(v2, . . . , , vk).

The right-hand side denotes the element of Rm obtained as before in the case k = 2, that is: Λ(v1)
is by definition an element of Lk−1(Rn; Rm) and so we can let it act on the k− 1 vectors v2, . . . , vk
to get an element of Rm. One can then verify that the function Λ : (Rn)k → Rm defined in this
way is a k-linear map Rn → Rm.

Conversely, given Λ ∈ Lk(Rn; Rm), we can use (1) to define Λ : Rn → Lk−1(Rn; Rm) (where now
the left-hand side is given and we are defining the right-hand side). It is then routine to verify that
Λ is indeed a linear map Rn → Lk−1(Rn; Rm). �

In what follows, we will abuse notation somewhat by identifying Λ ∈ Lk(Rn; Rm) with the space
of linear maps Rn → Lk−1(Rn; Rm). So for example, if Λ ∈ Lk(Rn; Rn−1) and v1 is a vector, we
will write Λ(v1) (instead of Λ(v1), as above, which would be more correct) to denote the element
of Lk−1(Rn; Rm) defined by (1).

Some norms on Lk(Rn; Rm) include the Euclidean norm

|Λ| =

 n∑
i1,...,ik=1

|Λ(ei1 , . . . , eik)|2


and the operator norm

‖Λ‖ = sup{Λ(v1, . . . , vk) : |vi| ≤ 1 for all i ∈ {1, . . . , k}}.

(You can check that these are norms. exercise!) General considerations tell us that there exist
constants 0 < c ≤ C (depending on k) such that

(2) c|Λ| ≤ ‖Λ‖ ≤ C|Λ|

for all Λ ∈ Lk(Rn; Rm).

b. definition of the kth derivative. We now define the kth derivative inductively.
1
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Definition 1. A function f : Rn → Rm is said to be k times differentiable at a point a ∈ Rn if there
exists an open neighbourhood U of a such that the (k − 1)st derivative Dk−1f(x) ∈ Lk−1(Rn; Rm)
exists at every x ∈ U , and if there exists Λ ∈ Lk(Rn; Rm) such that

lim
h→0

|Dk−1f(a+ h)−Dk−1f(a)− Λ(v)|
|h|

= 0.

When this holds, Λ is said to be the kth derivative of f at a, and is written Dkf(a).

We have used the Euclidean norm in the definition of the derivative, but as in the case k = 2,
in view of (2) we could just as well have used the operator norm. (Indeed any other norm on
Lk(Rn; Rm) would be fine as well and would lead to a completely equivalent definition.)

c. facts about higher derivatives.
The proofs of some of these facts are very smiler to the k = 2 cases, which we have already seen.

Proofs of others appear at the end of this handout.
An informal summary is:
1. when a function f is k times differentiable at a point a, all kth order partial derivatives exist,

and we can essentially identify Dkf with the collection of all kth order partial derivatives (made
into a k-linear operator in a particular way, see formula (6) below.)

2. It can however happen that all kth-order partial derivatives of a function f exist at a point
a, but that the function is not k times differentiable at that point. In this situation, all bets are
off. However, we will almost never encounter this situation. And if all kth order partial derivatives
exist and are continuous in an open set U , then f is k times differentiable everywhere in U .

Theorem 1. Assume that f ; Rn → Rm is k times differentiable at a. Then for every i1, . . . , ik ∈
{1, . . . , n}

(3) Dkf(a)(ei1 , . . . , eik) = Di1(Di2 · · · (Dikf) · · · )) = Dik,...,i1f(a).

In particular, the derivative on the right-hand side (called a kth order partial derivative) exists.
More generally,

(4) Dkf(v1, . . . , vk) = Dv1(Dv2(· · · (Dvkf) · · · )),

where the right-hand side denotes the result of iterated direction differentiation of f in the directions
vk, . . . , v1. Moreover, partial derivatives are independent of the order of differentiation, so that if
σ is any permutation of {1, . . . , k}, then

(5) Dik,··· ,i1f(a) = Diσ(k),··· ,iσ(1)
f(a).

Finally, for any vectors v1, . . . , vk, where vj = (v1
i , . . . , v

n
j )

(6) Dkf(a)(v1, . . . , vk) =
n∑

i1,...,ik=1

vi11 · · · v
ik
k Dik,...,i1f(a).

Note that both sides of equations (3) - (6) are vectors with m components.
The second equality in (3) is true by our notation, so the point is the first equality. Equation

(5) is a special case of the more general fact that Dkf(a)(v1, . . . , vk) = Dkf(a)(vπ(1), . . . , vπ(k)) for
all v1, . . . , vk. In other words, Dkf is a symmetric k-linear map (Rn)k → Rm,

If kth order partial and/or directional derivatives exist but f is not k times differentiable at a,
then various pathologies can occur, e.g. partial derivatives depending on the order of differentation.
However, we will rarely encounter such situations in this class. And none of these unpleasant
situations occur if the kth order partial derivatives are continuous, as follows from the next theorem.
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Theorem 2. Assume that f : Rn → Rm and that every partial derivative of order k of every
component of f exists and is continuous in an open set U ⊂ Rn. Then f is k-times differentiable
at every point of U .

It is worth pointing out the following result, which we will need later. (The proof follows easily
from (4).)

Lemma 2. Suppose that f : Rn → R is k − 1 times differentiable at every point in an open
set U ⊂ Rn, and continuously differentiable at a point a ∈ U . For any v ∈ Rn if we define
g(t) = f(a+ tv), then the kth derivative of g exists at t = 0, and

(7) (
d

dt
)kg(0) = Dkf(a)(v, . . . , v)

The left-hand side of (7) denotes the kth derivative of g, evaluated at t = 0. (I am not sure
what notation you are used to. Below I will also use the notation ( ddt)

kg(t)|t=0 for the same thing.)
The same result holds for functions Rn → Rm, where (7) is then understood to hold for each

component.
Finally, we also state the following result, which expresses Dkf(v1, . . . , vk) as a t→ 0 limit of a

certain linear combination of values of f at the vertices of a parallelepiped generated by the vectors
tv1, . . . , tvk. This is a generalization of problem 3 on homework 3. Before reading the statement,
think about what you expect it to be, based on the k = 2 case. (And after reading the statement,
which is a little opaque, think about what it says.....)

Lemma 3. If f : Rn → Rm is k times differentiable at a, for every v1, . . . , vk ∈ Rn

(8) Dkf(a)(v1, . . . , vk) = lim
t→0

1
tk

∑
σ∈{0,1}k

(−1)k−
Pk
k=1 σ

i
f(a+ t

k∑
i=1

σivi)

d. Some proofs.

Proof of (parts of) Theorem 1. Step 1. First, we prove (4). We will argue by induction on k. The
case k = 1 is Exercise 2-29(c) in Spivak. We may assume that v1, . . . , vk are all nonzero, as otherwise
both sides of (4) vanish and it obviously holds.

The assumption that f is k-times differentiable, and the equivalence of the euclidean norm and
the operator norm, implies that for any vector v1,

lim
t→0

‖Dk−1f(a+ tv1)−Dk−1f(a)−Dkf(a)(tv1)‖
t

= 0.

Note also that for any T ∈ Lk−1(Rn,R), and any nonzero vectors v2, . . . , vk,

|T (v2, . . . , vk)| = |v2| · · · |vk| T (
v2
|v2|

, . . . ,
vk
|vk|

) ≤ |v2| · · · |vk| ‖T‖

using the definition of the operator norm ‖T‖. Applying this to T = Dk−1f(a+ tv1)−Dk−1f(a)−
Dkf(a)(v1), which is an element of Lk−1(Rn; Rm), we find that

0 = |v1| · · · |vk| lim
t→0

‖Dk−1f(a+ tv1)−Dk−1f(a)−Dkf(a)(tv1)‖
t|v1|

≥ lim
t→0

∣∣Dk−1f(a+ tv1)(v2, . . . , vk)−Dk−1f(a)(v2, . . . vk)−Dkf(a)(tv1, v2, . . . , vk)
∣∣

t
= 0,
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We rewrite the last term, using the linearity of Dkf(a), to obtain

lim
t→0

Dk−1f(a+ tv1)(v2, . . . , vk)−Dk−1f(a)(v2, . . . vk)
t

−Dkf(a)(v1, v2, . . . , vk) = 0.

This says that the directional derivative Dv1h(a) exists, for h(x) = Dk−1f(x)(v2, . . . , vk). Identity
(4) now follows by invoking the induction hypothesis.

Step 2. Conclusion (3) is a special case of (4), as noted above.
Step 3. Next, (5) can be proved by using the k = 2 case to switch the order of differentiation, a

pair of (adjacent) derivatives at a time. We omit the details. As an exercise, think about how to
write up this argument correctly.

Step 4. Finally, to prove (6), we can write each vj as vj =
∑n

ik=1 v
ii
j eij , where eij denotes the

standard basis vector in the ij direction. Then multi-linearity of Dkf ,

Dkf(a)(v1, . . . , vk) = Dkf(a)(
n∑

i1=1

vi1i eii , . . . ,
n∑

ik=1

vikk eik) =
n∑

i1,...,ik=1

vi11 · · · v
ik
k D

kf(a)(ei1 , . . . , eik).

Thus the conclusion follows from (3). �

Next we give the

Proof of Theorem 2. We will give the proof for m = 1, As in the case of first derivatives, this implies
the general case.

The idea is as follows: We have in (6) a formula for Dkf(a) in terms of partial derivatives of
f , a formula that must hold if, as we hope to prove, f is k times differentiable. So we will use
this formula and the existence of partial derivatives to define a candidate for Dkf , and then verify
(using the k = 1 case of the result we are trying to prove, i.e. Theorem 2-8 in Spivak, which we
already know) that our candidate for Dkf in fact has the properties it is supposed to have.

The main difficulty is notation.
Fix a point a ∈ U . By assumption, the following definition makes sense, since all kth order

partial derivatives exist everywhere in U :

Λ(v1, . . . , vk) =
n∑

i1,...,ik=1

vi11 · · · v
ik
k Dik,...,i1f(a).

(Compare (6).) We will show that Λ = Dkf(a). In view of the definition of the Euclidean norm on
Lk(Rn; R), it suffices to prove that for every i1, . . . , ik ∈ {1, . . . , n},

(9) lim
h→0

1
|h|
∣∣Df(a+ h)(ei1 , . . . , , eik−1

)−Df(a)(ei1 , . . . , , eik−1
)− Λ(h, ei1 , . . . , , eik−1

)
∣∣ = 0.

(Proving this in detail is an exercise.) So we fix some such i1, . . . , ik−1 for the duration of the proof.
By Theorem 1, we know that Dk−1f(ei1 , . . . , eik−1

) = Dik−1,...,i1f(a). Let us simplify notation by
writing Dαf(a) to denote Dik−1,...,i1f for most of the rest of this proof. Now since f is assumed to
be k − 1-times differentiable in a neighbourhood of a, we can use Lemma 1 to rewrite

left-hand side of (9) = lim
h→0

1
|h|
|Dαf(a+ h)−Dαf(a)− Λ(h, e1, . . . , ek−1)|

Also, our hypotheses implies that Dαf is continuously differentiable in U , hence Theorem 2-8 in
Spivak implies that Dαf is a differentiable function, and that the Jacobian “matrix” (Dαf)′(a)
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(here a row vector) is given by (Dαf)′(a) = (D1Dαf(a), . . . , DnDαf(a)). In particular,

D(Dαf)(a)(h) = (Dαf)′(a) =
n∑
j=1

DjDαf(a)hj

=
n∑
j=1

hjDi1···ik−1jf(a).

If we scrutinize the definition of Λ, we see that the right-hand side is exactly Λ(h, ei1 , . . . , eik−1
).

Thus
left-hand side of (9) = lim

h→0

1
|h|
|Dαf(a+ h)−Dαf(a)−D(Dαf)(a)(h)|

And the above limit clearly equals 0, by definition of what it means for Dαf to be differentiable.
Thus we have proved (9), and this completes the proof of the theorem (up to details left as exercises
for the reader.) �

Proof of Lemma 2. According to (4), if f is k times differentiable at a, then

Dkf(v, . . . , v) = Dv(Dv(· · ·Dvf) · · · ),
and an easy induction argument shows that the right-hand side can be rewritten as ( ddt)

kg(0) for
g(t) = f(a+ tv). �

We omit the proof of Lemma 3. The idea is to use induction on k, and to argue in a way similar
to the proof of Problem 3 in Homework 3. The notation is more complicated, but otherwise the
proof is rather similar.


