
MAT 257, Handout 9: November 7-11, 2011.

Assignment. Read pages 46-52 of Spivak and work the exercises on pages 49 and 52. In
particular, we went over pages 46-49 quite lightly in the lecture, so make sure that you read this
carefully.

Also, go back and read the discussion of oscillation on pages 12-13; this will be needed shortly,
to prove Theorem 3-8, which characterizes integrable functions on a rectangle in Rn.

About the exercises:
3-3 and 3-5 are important exercises that establishes basic properties (linearity and monotonicity)

of the integral. They are both straightforward. Should you ever study Lebesgue integration, you
will find that the identity

∫
(f+g) =

∫
f+

∫
g is considerable harder to prove for Lebesgue integrals

than for Riemann integrals.
3-6 is a basic fact that is used all the time, and it is also part of the homework assignment.
3-2 is closely related to Theorem 3-8, to be proved shortly, so doing this exercise will probably

help you digest that basic result.
3-7 is also an interesting exercise, and also related to Theorem 3-8.
3-1 and 3-5 are both good practice with the definition of the integral.

I strongly recommend that you solve all the exercises on page 52.

Some topics from the lectures

We noted that a second-order Taylor series of function f : Rn → R is particularly useful at a
critical point of a function f . If a is a critical point of f and f is twice differentiable at a, then

f(a+ x) = f(a) +
1
2

n∑
i,j=1

Di,jf(a)xixj +R2(x)

where R2(x)
|x|2 → 0 as x→ 0. (Note the matrix Di,jf is sometimes called the “Hessian matrix.”)

In particular, under the above conditions,
• if the matrix Di,jf(a) is positive definite (i.e. all eigenvalues are positive), then a is a local

minimum of f .
• if the matrix Di,jf(a) is negative definite, then a is a local maximum of f .
• if Di,jf(a) has k negative eigenvalues and n − k positive eigenvalues, for 1 ≤ k ≤ n − 1,

then f has a sort of saddle point at a.
• Note that it 0 is an eigenvalue of Di,jf(a), then we can say much less. For example if all

eigenvalues of Di,jf(a) are nonnegative (but some vanish), then we cannot conclude that f
has a local minimum at a.

The above facts lead to an algorithm for trying to find maxima or minima of a function f on an
open set U (bearing in mind that f may not attain its extreme values on an open set):

(1) first find all critical points of f on U . This amounts to looking for solutions of the system
∇f = 0, which is a system of n nonlinear equations in n unknowns.

(2) Then compute the matrix Di,jf at each critical point. If 0 is not an eigenvalue, then you
can determine the “character” of the critical point from the above discussion.

(3) If 0 is an eigenvalue of the Hessian matrix at a critical point a, then you will have to use
other means to determine the character of the critical point.

Also, the exercises below refer to the geometric version of the implicit function theorem. This
was discussed at length in the lectures but has not yet explicitly appeared on any of the handouts,
so we state it here:
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Theorem 1. Assume that Assume that g : Rn → Rk is a continuously differentiable function, and
that p ∈ Rk is such that the Jacobian matrix g′(x) has rank k at every point in g−1(p).

Then M := g−1(p) is a C1 manifold of dimension n−k, which means that for every x ∈M , there
exist open sets U, V ⊂ Rn and a C1 diffeomorphism h : U → V (that is, a continuously differentiable
bijection with continuously differentiable inverse) such that x ∈ U and h(U∩M) = V ∩(Rn−k×{0}).

In the exercises below, you will prove

Theorem 2. Assume that g and M are as in the above theorem, and assume also that F : Rn → R
is continuously differentiable. Let f denote the restriction of F to M . If f has a local maximum
or minimum at a point x ∈M , then there exist λ1, . . . , λk such that

DjF (x) =
n∑

i=1

λiDjg
i(x) for j = 1, . . . , n.

The assumption that f has a local maximum (say) at a point x ∈ M means, of course, that
there exists an open set U ⊂ Rn such that x ∈ U and f(x) ≥ f(y) for all y ∈ U ∩M . Equivalently,
there exists a relatively open subset W of M such that x ∈W and f(x) ≥ f(y) for all y ∈W .

The numbers λ1, . . . , λk are called Lagrange multipliers. The conclusion of the theorem can be
written in a number of different, equivalent ways, including for example ∇F (x) =

∑k
i=1 λi∇gi(x).

If we write it in terms of gradients, then we can interpret the theorem as stating that at a local
maximum or minimum of f , “the gradient of F is orthogonal to M”.

Homework 4, due November 18

1. Find an example of a function f : R2 → R with the following three properties:
• f is everywhere differentiable.
• The restriction of f to any line through the origin has a strict local minimum at 0.
• But f does not have a local minimum at the origin.

hints: In fact there exist polynomials of rather low degree with all the above properties.
You might as well construct f so that f(0) = 0. Then the third requirement is satisfied if every

neighbourhood of 0 contains points at which f is negative, and for the second requirement to be
satisfied, it suffices to arrange that for any line through the origin, there is an interval about the
origin in which f is positive (except at the origin itself).

This may remind us of a function from the exercises in Spivak, Chapter 2, which is not constant
in any neighbourhood of the origin, but on any line through the origin is constant on a interval
about the origin.

2. Prove Theorem 2 in the following special case: assume that f has a local maximum at
a point x ∈ M , and moreover that there exists an open set U ⊂ Rn containing x such that
U ∩M = {x ∈ U : xn−k+1 = · · ·xn = 0} = U ∩ (Rn−k × {0}).

remark: Although M has a very simple explicit form near x, you will still need to use the
assumption, imported from Theorem 1, that g′(x) has rank k.

3. Prove Theorem 2. You may use Problem 2 above if you like.

4. (based on Problem 3-6 of Spivak.) Let A be a rectangle in Rn, and let f be a real-valued
function on A.

(a) If f is integrable, show that also |f | is integrable.
(b) Is the converse also true? why/why not? Please give a proof or a counterexample.


