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Abstract. Supersolids are quantum crystals having superfluid properties.
This state of matter, predicted by Leggett, was achieved experimentally
only recently in solid 4He. In the present paper, we study a model of
supersolids introduced in [14, 15]. This model is based on a Gross-Pitaevskii
energy with a nonlocal interaction term. We give a description of the ground
state in the limit of strong interaction, and relate it to a sphere packing
problem. We prove that, in dimension one, this ground state is periodic.

1. Introduction

Superfluidity is a state of matter at the origin of different properties: the
disappearance of viscosity and hence flow without friction, or nonclassical be-
haviour when the sample is placed in a rotating container. When specific fluids
such as Helium 3 or 4, are cooled below a critical temperature, they undergo
a superfluid transition [16, 23]. Leggett predicted that a superfluid behaviour
can also occur in a crystal, and this is called supersolidity. In particular, he
gave arguments indicating that nonclassical effects under rotation could oc-
cur in such crystals [21]. Several authors [2, 27, 6] pointed out microscopic
mechanisms that could explain supersolidity. This was only theoretical predic-
tions until 2004 when Kim and Chan [17, 18, 19] achieved a very controversial
experiment in which they produced a solid state with superfluid properties.
This was the discovery of a new quantum phase of matter, then confirmed
by several groups (see [20, 25, 28] and also [29] for frictionless flow in solid
helium).

On the theoretical side, several approaches were proposed to account for
supersolidity. One of them relies on many-body quantum mechanics and the
design of an adapted ansatz for the many-body wave function. In these ap-
proaches, one usually allows for vacancies or defects in the crystal, and in-
terpret them as quantum particles which undergo condensation [3, 28]. We
refer for instance to [26] for a review on this subject. Many issues are still
debated in the physics community concerning the link between these theories
and experiments.

Another approach is based on the Gross-Pitaevskii (GP) equation, as pro-
posed by Josserand, Pomeau and Rica in [14, 15]. They use the GP energy with
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a nonlocal interaction potential, so that the (numerically computed) ground
state has a crystalline structure. Then they use it to derive properties under
rotation, giving numerical evidence of nonclassical effects. They check that
this model also provides mechanical behaviours typical of solids under small
stress.

The aim of the present article is to set the GP approach of [14, 15] on
a sound mathematical ground. In particular, the question of the crystalline
symmetry of the ground state will be addressed. Then considerations of the
effect of small rotation will be discussed. Some results of this paper have been
announced in a note for physicists [1].

1.1. The nonlocal Gross-Pitaevskii energy. We will call D ⊂ Rd the set
occupied by the supersolid, with d = 3 being the most physically relevant
choice. The wave function u is complex-valued, and |u|2 provides the density
of atoms. In [14, 15], in order to model a supersolid, the following Gross-
Pitaevskii energy is introduced for u:

(1.1) Eε(u) =

∫
D

1

2
|∇u|2 dx+

1

4ε2
F (|u|2),

where the function F is defined on the space of measures on D̄, by

(1.2) F (ρ) =

∫
D̄

(V ∗ ρ)(x) ρ(dx) =

∫
D̄

∫
D̄
V (x− y)ρ(dy) ρ(dx).

The nondimensional parameter ε accounts for the strength of the interaction
and the interacting potential V is chosen to be

(1.3) V (x) =

{
1 if |x| < 1

0 if not.

This specific choice of V corresponds to putting a hard core for each atom and
provides a dispersion relation with a roton minimum [14]. If instead, V is taken
to be the delta function, the energy Eε is simply the usual Gross Pitaevskii
energy with an L4 term describing interactions. This model bears an important
difference with classical solids, in the sense that in classical solids, there is an
integer number of atoms per unit cell, while in this quantum solid model, the
average density is a free number, independent of the crystal parameters, which
provides an L2 constraint on the wave function.

We assume that D is a bounded, open subset of Rd with Lipschitz bound-
ary. The space H1

0 (D; C) is, as usual, the space of H1 functions satisfying
homogeneous Dirichlet boundary conditions. The functional is minimized in
the space

A0(D) :=

{
u ∈ H1

0 (D; C) : −
∫
D
|u|2 dx = 1

}
,
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where −
∫
D · · · dx denotes the average 1

|D|

∫
D · · · dx.

Physicists have identified two regimes for the ground state: for large ε, the
minimizer is constant, corresponding to a uniform density. On the other hand,
for small ε, it is localized on periodic sets which are almost on a triangular
lattice for large domains [14, 15], corresponding to a crystalline state. This is
what we want to characterize mathematically, and this is why we also introduce
periodic boundary conditions.

In the periodic setting, the domain D is a parallelogram, so that there
exist n linearly independent vectors v1, . . . , vn such that

D =
{∑

xivi : 0 ≤ xi < 1 for all i
}
,

and V is understood to be the D-periodic extension of the potential V defined
in (1.3). Or equivalently, V is exactly as in (1.3), and |x − y| is taken to be
the distance in the periodic sense, so that
(1.4)

|x−y| = inf
{∣∣∣x− y +

∑
nivi

∣∣∣ : ni ∈ Z for all i
}

in the periodic setting.

The space H1
per(D; C) denotes D-periodic functions in H1

loc(Rd; C) and the
energy is then minimized in

Aper(D) :=

{
u ∈ H1

per(D; C) : −
∫
D
|u|2 dx = 1

}
.

Under rotation along the vertical axis, the energy in the rotating frame
becomes

(1.5) Eε,Ω(u) = Eε(u)− Ω

∫
D
A · Im(ū∇u) dx,

where Ω is the rotational velocity, and A(x, y) = (−y, x) when d = 2 and
A(x, y, z) = (−y, x, 0) when d = 3.

When Ω is small, inf Eε,Ω can be expanded as inf Eε − (1/2)IΩ2, where
I is the effective moment of inertia of the solid. Leggett [21] suggested as
a criterion for supersolidity the existence of a nonclassical rotational inertia
fraction defined as (I0 − I)/I0, where I0 is the classical moment of inertia of
the crystal phase. Thus, we need to understand and estimate the ground state
for Ω = 0 and for small Ω.

Our aim is to characterize the minimizers of Eε,Ω. When ε is small, mini-
mizers of Eε,Ω are expected to be almost minimizers of

GΩ(u) =

∫
D

1

2
|∇u|2dx− Ω

∫
D
A · Im(ū∇u) dx
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in the set of minimizers of F since the energy (1.5) reads

Eε,Ω(u) = GΩ(u) +
1

4ε2
F
(
|u|2
)

and thus the two terms are of different order.

1.2. Ground state of F and sphere packing problem. If S is any mea-
surable subset of any Euclidean space, we will use the notation

M(S) := {nonnegative measures ρ on S : ρ(S) = |S|},
Mac(S) := {ρ ∈M(S) : ρ� Ld},

where Ld is the Lebesgue measure of Rd and |S| := Ld(S).
Our first result is a complete description of the minimizers of F in Mac,

which is related to a sphere packing problem:

Theorem 1.1. Suppose that D is a bounded, open subset of Rd with Lipschitz
boundary, and that diamD > 1. Define

(1.6) n(D) := max{k : ∃x1, . . . , xk ∈ D such that |xi − xj| > 1 ∀i 6= j}.
Then

min
Mac(D)

F = |D|2/n(D),

and a measure ρ in Mac(D) minimizes F if and only if there exist n(D) pair-
wise disjoint closed sets A1, . . . , An(D) ⊂ D̄, such that

(1.7) dist(Ai, Aj) ≥ 1 if i 6= j,

and

(1.8)

∫
Ai

ρ dx =
|D|
n(D)

for all i.

An important point due to the choice of the interaction potential is that
the self interaction of an Ai is a constant on each set, which eventually gets
added to the energy.

When the number n(D) is large, the optimal location of the points xi in
(1.6) is proved [8] to be close to a hexagonal lattice in 2D. In 3D, 2 configura-
tions are optimal: body centered cubic close packing and face centered cubic
close packing.

Remark 1. A description of minimizers of F in M, rather than Mac is some-
what easier and will be obtained as a byproduct of the proof.

Remark 2. In fact the boundary of D can be quite irregular. The proof we
give works as long as Ld(∂D) = 0.
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We will denote by M∗
ac(D) the set of minimizers of F in Mac:

(1.9) M∗
ac(D) := {ρ ∈Mac(D) : ∃A1, . . . , An ⊂ D satisfying (1.7), (1.8)} .

It is clear that M∗
ac(D) is nonempty.

1.3. Ground state with rotation. We will prove that the ground states
of Eε,Ω are almost given by the minimizers of GΩ restricted to the space of
minimizers of F . For that purpose, we define

(1.10) E0,Ω(u) :=

{
GΩ(u) if |u|2 ∈M∗

ac(D),

+∞ if not.

This functional arises as a sort of ε→ 0 limit of Eε,Ω. The next result makes
this limit precise. We define

A∗0(D) :=
{
u ∈ H1

0 (D; C) : |u|2 ∈M∗
ac

}
,

A∗per(D) :=
{
u ∈ H1

per(D; C) : |u|2 ∈M∗
ac

}
.

Theorem 1.2. If uε minimizes Eε,Ω(·) = GΩ(·) + 1
4ε2
F (| · |2) in A0(D),

then {uε}ε∈(0,1] is strongly precompact in H1(D), and the limit of any con-
vergent subsequence minimizes GΩ in A∗0(D). Similarly, if uε minimizes Eε,Ω
in Aper(D), then {uε}ε∈(0,1] is strongly precompact in H1(D), and the limit of
any convergent subsequence minimizes GΩ in A∗per(D).

In particular Theorem 1.2 implies that the problem

(1.11) find u0 ∈ A∗0(D) such that GΩ(u0) = min
A∗0(D)

GΩ

has a solution. This is actually the first step of the proof of Theorem 1.2. The
rest of the proof is based on energy estimates, which imply that minimizers of
Eε,Ω are bounded in H1, hence converge weakly in H1. This allows to pass to
the limit in the energy and the constraint. Since the convergence of the energy
implies that

∫
|∇uε|2 converges, we have strong convergence in H1.

1.4. The one-dimensional case. In the special case of dimension one, it
is possible to compute explicitly the minimizers of F and the limit points of
minimizers of Eε. Note that in such a case no angular momentum terms are
present, so we will consider the functional

(1.12) Eε(u) =

∫
D

1

2
|u′|2 +

1

4ε2
(V ∗ |u|2)|u|2 dx.

and its ε→ 0 limit

(1.13) E0(u) :=

{∫
D

1
2
|u′|2 if |u|2 ∈M∗

ac(D),

+∞ if not.
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Figure 1. The minimizer up introduced in Proposition 1.1 The
bumps are of size hp and separated by a distance 1.

in the spaces Aper(D) and A0(D), where D ⊂ R is an open interval. We will
write G0(u) for the Dirichlet energy

∫
1
2
|u′|2 dx.

We assume that D = (0, L) for some L > 0, and consider the problem

(1.14) find u0 ∈ A∗0(D) such that E0(u0) = min
A∗0(D)

E0,

together with the corresponding periodic problem. We write dLe to denote
the smallest integer that is greater than or equal to L.

Proposition 1.1. There is a unique nonnegative minimizer for problem (1.14)
with Dirichlet boundary conditions, and it is given explicitly by

u0(x) =


√

2L
h0n̄0

sin( π
h0

(x− xi)) if x ∈ (xi, xi + h0)

for some i ∈ {0, . . . n̄0 − 1}
0 if not

where n̄0, h0 and xi are defined by

n̄0 = dLe, h0 = (L− (n̄0 − 1))/n̄0, xi = i(1 + h0).

Moreover, E0(u0) = π2L/2h2
0.

Similarly, if we consider periodic boundary conditions, then there is a
positive minimizer that is unique modulo translations, and is given by

up(x) =


√

2L
hpn̄p

sin( π
hp

(x− xi)) if x ∈ (xi, xi + hp)

for some i ∈ {0, . . . n̄p − 1}
0 if not

where n̄p, hp and xi are defined by

n̄p = dLe − 1, hp = (L− n̄p)/n̄p, xi = i(1 + hp).

And E0(u0) = π2L/2h2
p.

Note that for both the Dirichlet and the periodic problem, h0, hp are
bounded by C/L, so that the support of a minimizer is sharply concentrated
for L large. Note also that h0, hp tend to zero as L approaches an integer from
above.

Dimension one also allows for explicit computations of the next order in
the asymptotic expansion of Eε. Indeed, we have the following
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Theorem 1.3. Assume that L > 2, and let D = [0, L] ⊂ R with periodic
boundary conditions. Suppose that uε minimizes Eε(·) in H1

per(D). Then there
exist C > c > 0 such that

Eε(up)− Cε2/5 ≤ Eε(uε) ≤ Eε(up)− cε2/5.

The result in Theorem 1.3 is stated only in terms of energy, giving the
next order expansion in powers of ε. However, the proof indicates that the
support of the minimizer uε is concentrated at distance of order ε2/5 from the
support of its limit up, up to an error of size exp(−C/ε). We consider only
the periodic case for simplicity, but similar results hold for the Dirichlet data.

Although we do not have results in dimension d ≥ 2, we believe that a
similar expansion for the energy and boundary layer should be true. However,
this would require a better understanding of the minimizers of F (that is
M∗

ac(D)).

1.5. Large ε. Finally, we prove that in the case of weak interaction, that is,
when ε → ∞ (and Ω = 0), the minimizer is homogeneous (that is, |u| = 1).
Note that this result holds only for the periodic boundary conditions, but is
valid in any dimension:

Proposition 1.2. Let D = [−L/2, L/2]d with periodic boundary conditions.
If

(1.15) ε >
√
ωd,

where ωd is the volume of the unit ball of Rd, then

Eε,0(1) ≤ Eε,0(u)

for all u ∈ H1
per(D) such that

∫
|u|2 = |D|. (Here 1 denotes the constant

function.) Moreover, if equality holds then u = 1.

The proof of this result is based on the decomposition of u in Fourier
series, and on estimates of the energy in this basis.

1.6. Open problems. The main difficulties, due to the nonlocal term in the
equation, are the uniqueness and periodicity of minimizers.

In the one-dimensional setting, we have an explicit expression of the limit
of uε as ε → 0, and it is periodic, even with Dirichlet boundary conditions.
We also expect that, for any ε (or at least for ε small enough), the minimizer
of Eε with periodic boundary conditions is periodic. The difficulty one faces
in proving such a result is to have a uniqueness result for a nonlocal equation:
indeed, the Euler-Lagrange equation reads

−u′′ + 1

ε2

(
V ∗ u2

)
u = λεu
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and we are not able to prove any kind of uniqueness or maximum principle.
This is also open in dimension 2 and 3. In the two-dimensional setting, it is
already a very difficult issue, related to the sphere packing problem [8, 11, 12]
and optimal partition and eigenvalue problems [5, 7, 13], to prove the unique-
ness (modulo symmetries) or periodicity of minimizers of the ε = 0 problem
(1.11), even when Ω = 0. Apart from this problem, minimizing GΩ among
all minimizers of F should give information on the connected components Ai.
For instance, their boundary is probably Lipschitz, and any boundary point
of Ai should be at distance 1 from another Aj. An interesting point of view in
proving this would be to consider the boundary of each Aj as a free boundary,
and derive an Euler-Lagrange equation satisfied by ∂Aj.

Another question in the one-dimensional setting is to study the limit L→
∞. This limit is justified by the fact that physically, the interaction length,
which is set to 1 here, is much smaller than the size of the sample. Thus, it
would be interesting to study the corresponding asymptotics. This is implicitly
what is done in [15]. As pointed out above, in this limit, the minimizers of
F become sums of Dirac masses, and the above results do not apply to this
case. The corresponding proofs would require a more detailed study of the
asymptotic expansion of the energy and of the boundary layer near each peak
of the density.

In the two-dimensional case, a difficult issue is the presence of vortices.
According to numerics [15], it seems that there are no visible vortices. How-
ever, the density is exponentially small between the Aj. We give the proof
of this fact in dimension 1 (see Lemma 4.1 below), but it may be adapted
to dimension 2. Hence, investigating the presence of vortices in this region
will probably be very difficult, since one can add or remove a vortex with a
change in the energy of order e−C/ε. However, proving that there is no vortex
in each Aj is probably more tractable, and would use estimates on ground
states of Schrödinger operators with magnetic potential, in the spirit of [9, 10]
for instance.

1.7. Back to nonclassical rotational effects. We fix ε > 0, d = 2, and
study the limit Ω → 0. The nonclassical rotational inertia fraction (NCRIF)
is defined by

NCRIF =
I − I0

I0

,

where I is the moment of inertia of the system, that is the second derivative of
the energy with respect to Ω, and I0 is the classical moment of inertia, that is,
I0 =

∫
D |x|

2|u0|2, where u0 is the minimizer of Eε,0. This minimizer satisfies an
elliptic equation, which allows to apply the Harnack inequality: u0 is positive
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in D. A perturbation argument then allows to prove that for Ω small enough,
the same property holds for uε,Ω, the minimizer of Eε,Ω, hence one can write

uε,Ω = ρε,Ωe
iΩSε,Ω .

If we assume uniqueness of the minimizer of Eε,0, which is likely to be a difficult
issue, as we have mentionned above, then we can derive an explicit expression
for NCRIF , since we can expand ρε,Ω and Sε,Ω in powers of Ω2, justify the
expansion and find

NCRIF =

∫
D u

2
0|∇S0 − x⊥|2∫
D |x|2u

2
0

=
infS∈H1(D)

∫
D u

2
0|∇S − x⊥|2∫

D |x|2u
2
0

.

In [1], we have derived the lower bound

NCRIF ≥ 1

ε2

π2

16
e−2
√

2T/ε.

This relies on the extra strong assumption that u0 is periodic with a periodic
cell of diameter T , in order to apply the Harnack inequality and get

inf u0 ≥
1

ε2

π

4
e−
√

2T/ε supu0.

The issues of the uniqueness and periodicity are, to our opinion, a key point
in this analysis.

We give in Section 2 the proof of Theorem 1.1, together with a general-
ization to other interaction potentials. In Section 3, we prove the convergence
of minimizers in the limit ε → 0 (Theorem 1.2). The one-dimensional case is
studied in details in Section 4, with the proof of Proposition 1.1 and Theo-
rem 1.3. Finally, Section 5 is devoted to the proof of Proposition 1.2.

2. Minimizers of the interaction

We give in this section the proof of Theorem 1.1. It covers both the
periodic case and the non-periodic case. The proofs are identical in the two
cases, the only difference being that in the periodic case, |x− y| is understood
as in (1.4)

2.1. Preliminaries. In this subsection and part of the next, it is convenient
to work on a closed set; this is used in the proof of Lemma 2.2 below. We
will write such a set as D̄, although in fact our arguments are valid for rather
general closed sets, not only for those that arise as the closure of open sets D
as in the statement of Theorem 1.1.

First we prove
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Lemma 2.1. The functional F as defined in (1.2), (1.3) is lower semicontin-
uous with respect to weak convergence of measures in M(D̄), i.e.

if ρk ∈M(D), ρk ⇀ ρ, then F (ρ) ≤ lim inf
k

F (ρk)

Proof. The point is that

F (ρ) = (ρ× ρ)({(x, y) : |x− y| < 1})
where ρ× ρ denotes the product measure on D̄ × D̄. It is well-known (see [4]
Chapter 1, for example) that ρk ⇀ ρ if and only if ρk × ρk ⇀ ρ× ρ, and also
that if ρk × ρk ⇀ ρ × ρ then ρ × ρ(O) ≤ lim infk ρk × ρk(O) for every O that
is relatively open in D̄ × D̄. Since {(x, y) : |x − y| < 1} is open, the lemma
follows. �

Lemma 2.2. F has a minimizer in M(D̄).

Proof. Let {ρk} ⊂ M(D̄) be a minimizing sequence such that F (ρk) →
infM(D̄) F (·). Standard facts about weak convergence of measures imply that

there exists a subsequence (still denoted by ρk) and a measure ρ ∈M(D̄) such
that ρk ⇀ ρ. Then the previous lemma implies that F (ρ) ≤ infM F (·). �

Note that the above standard argument does not yield the existence of
minimizers in Mac(D), since this space is not closed with respect to weak
convergence of measures.

Next we find optimality conditions:

Lemma 2.3. If ρ minimizes F in M(D̄), then

(2.1) |D|−1F (ρ) = min
x∈D̄

V ∗ ρ(x)

and

(2.2) V ∗ ρ = |D|−1F (ρ) ρ− a. e.

(ie, the set S := {x ∈ D̄ : F ∗ ρ(x) > |D|−1F (ρ)} satisfies ρ(S) = 0).
The same optimality conditions (2.1), (2.2) are satisfied by a measure ρ

that minimizes F in Mac(D).

Proof. Let ρ0 minimize F inM(D̄). Note thatM(D̄) is a convex set, so that
if ρ1 ∈M(D̄), then ρα = αρ1 + (1− α)ρ0 ∈M(D̄) for every α ∈ [0, 1]. Thus

0 ≤ lim
α→0

1

α
(F (ρα)− F (ρ0)) =

∫
D̄
V ∗ ρ0(ρ1 − ρ0),

In other words,

(2.3)

∫
D̄

(
V ∗ ρ0 −

F (ρ0)

|D|

)
ρ1 ≥ 0
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for every ρ1 ∈M(D̄). In particular, taking ρ1 = |D|δx for arbitrary x ∈ D, we
deduce that V ∗ρ0(x) ≥ |D|−1F (ρ0), and therefore that inf V ∗ρ0 ≥ |D|−1F (ρ0).

Also, note that∫
D̄

(
V ∗ ρ0 −

F (ρ0)

|D|

)
ρ0 = F (ρ0)− F (ρ0)

|D|

∫
D̄
ρ0 = F (ρ0)− F (ρ0) = 0.

However, we have shown above that V ∗ ρ0 − |D|−1F (ρ0) ≥ 0, so we deduce
that V ∗ ρ0(x)− |D|−1F (ρ0) = 0 at ρ0 -a.e. x ∈ D.

Finally, if ρ0 minimizes F in Mac, then since Mac is convex, we find as
before that ρ0 satisfies (2.3) for every ρ1 ∈ Mac. It is clear that V ∗ ρ0 is

continuous, so it follows that V ∗ ρ0 ≥ F (ρ0)
|D| everywhere. Then the remainder

of the proof is exactly as in the previous case. �

2.2. Characterization of minimizers. In this section we present the proof
of Theorem 1.1. We first provide a simpler proof with some (not so) restrictive
hypothesis in Section 2.2.1, then a full proof in Section 2.2.2

A trivial but useful fact is that
(2.4)∫
D̄
V ∗ ρ(x) dx =

∫
D̄
V (x− y) dx ρ(dy) =

(∫
D̄
V dx

)∫
D̄
ρ(dy) = |D|

∫
D̄
V dx.

Let us recall that n(D) is defined by (1.6). We also define

(2.5) n̄(D̄) = max{k : ∃x1, . . . , xk ∈ D̄ such that |xi − xj| ≥ 1 ∀i 6= j}.

¿From these definitions, it is clear that n(D) ≤ n̄(D̄). In many cases, we have
in fact equality: for example, in dimension one, D = (0, L), and equality holds
iff L is not an integer. In such a case, n(D) = n̄(D̄) = [L] + 1, where [L] is
the integer part of L. On the contrary, if n is an integer, then n(D) = L and
n̄(D̄) = L+ 1.

2.2.1. The case n = n̄.

Proof of Theorem 1.1. This proof is valid only in the case n(D) = n̄(D̄).
Throughout the proof we will write B(x) to denote the open ball B(x, 1)
of radius 1 centered at x.

Given a measure ρ ∈ Mac(D), we will extend it to a measure on D̄, still
denoted by ρ, by specifying that ρ(A) = ρ(A ∩ D) for A ⊂ D̄. Thus we can
identify Mac(D) with a subset of M(D̄).
Step 1: upper bound. Let ρ ∈ M∗

ac(D) be defined in (1.9), so that we can
associate to ρ a family of sets A1, . . . , An satisfying (1.7) and (1.8). Then (1.7)
immediately implies that

(2.6) ∀x ∈ Ai, B(x) ∩
(
∪nj=1Aj

)
⊂ Ai.
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Next, note that (1.7), (1.8) imply that ρ(D \∪Aj) = 0. According to (2.6), we
infer that for any x ∈ Ai,

V ∗ ρ(x) = ρ(B(x)) ≤ ρ(Ai) =
|D|
n
.

Computing the energy, we thus find that F (ρ) ≤ |D|2/n, hence

(2.7) inf
Mac(D)

F ≤ sup
M∗ac(D)

F ≤ |D|
2

n
.

We point out for future reference that the verification of (2.7) did not use the
assumption n = n̄.

Step 2: lower bound. Let ρ be a minimizer of F inM(D̄), which exists due to
Lemma 2.2. Then, it satisfies the Euler-Lagrange equations (2.1) and (2.2).
We claim that there exist n points x1, . . . , xn ∈ D̄ such that

(2.8) |xi − xj| ≥ 1 whenever i 6= j, and V ∗ ρ(xi) =
minM F (D̄)

|D|
∀i.

In order to prove it, we define

T := {x ∈ D̄ : V ∗ ρ(x) = inf
x
V ∗ ρ = |D|−1 inf

M(D̄)
F}.

According to (2.1), T has a non-empty intersection with any set J such that
ρ(J) > 0. In particular, T is not empty, and we can find x1 ∈ T . We then
argue by induction: suppose that we have found x1, . . . , xj−1 satisfying (2.8),
and assume that j ≤ n. Since V ∗ ρ(xi) ≤ minM F (D̄) ≤ infMac(D) F , we infer
from Step 1 that

ρ(D̄) = |D| > |D|j − 1

n
≥

j−1∑
i=1

V ∗ ρ(xi)

=

j−1∑
i=1

ρ(B(xi)) ≥ ρ
(
∪j−1
i=1B(xi)

)
.

Thus ρ(D̄ \ (∪j−1
i=1B(xi)) > 0, so we can find xj ∈ T \ (∪j−1

i=1B(xi)). Together
with the induction hypothesis, this implies that {x1, . . . , xj} satisfy (2.8). This
completes the induction proof and hence establishes the claim (2.8).

Next, the definition of n̄ and the fact that n = n̄ implies that if x1, . . . , xn
are any points such that |xi − xj| ≥ 1 for all i 6= j, then ∪B(xj) ⊃ D̄. So for
the points x1, . . . , xn satisfying (2.8), we find that

|D| = ρ(D̄) = ρ(∪n̄i=1B(xi)) ≤
n̄∑
i=1

ρ(B(xi)) =
n̄∑
i=1

V ∗ ρ(xi) =
n̄

|D|
inf
M(D̄)

F.
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Since Mac(D) ⊂M(D̄), it follows from this and Step 1 that that

|D|2

n̄
≤ inf
M(D̄)

F ≤ inf
Mac(D)

F ≤ |D|
2

n

and thus that equality holds throughout when n = n̄. It also follows that F
attains its infimum in Mac, and that every measure in M∗

ac is a minimizer.

Step 3: any absolutely continuous minimizer belongs to M∗
ac(D̄). We now as-

sume that ρ ∈ Mac is a minimizer, and denote by x1, . . . , xn the points con-
structed in step 2. We then have ρ(B(xi)) = |D|/n. We thus define

Aj = B(xj) ∩ supp ρ, j = 1, . . . , n.

Then, according to (2.1) and (2.2), V ∗ρ = |D|/n in Aj. Hence, ρ(Aj) = |D|/n:
(1.8) is satisfied. We next prove that (1.7) holds. In order to do so, first note
that

(2.9) ∀i 6= j, ρ(B(xi) ∩B(xj)) = 0.

Indeed, as remarked above, D ⊂ ∪B(xi), so ρ(D) ≤
∑
ρ(B(xi)) =

∑
ρ(Ai) =

|D| = ρ(D), hence ρ (∪B(xi)) =
∑
ρ(B(xi)), which implies (2.9). Since

B(xi)∩B(xj) is open and supp ρ is closed, we deduce from (2.9) that supp ρ∩
B(xi) ∩B(xj) = ∅ whenever i 6= j, hence

(2.10) ∀i 6= j, Ai ∩B(xj) = ∅.

If yi ∈ Ai, then V ∗ ρ(yi) = ρ(B(yi)) = |D|/n, according to the definition of
Ai. Hence, by (2.10), the points ({x1, . . . , xn}∪{yi})\{xi} again satisfy (2.8),
where we know that inf F = |D|2/n. Thus, repeating the reasoning that led
to (2.10), we find that Aj ∩ B(yi) = ∅ for all j 6= i, ie |yi − yj| ≥ 1 for any
yj ∈ Aj, j 6= i. Since yi was an arbitrary point in Ai, this proves (1.7). �

2.2.2. The case n 6= n̄. We write B(a, x) to denote the open ball of radius a
about the point x, with respect to the relevant distance (Euclidean or periodic)
so that B(a, x) := {y ∈ D : |x−y| < a}, with |x−y| understood in the suitable
way.

It is convenient to define, for a > 0,

Fa(ρ) :=

∫
D̄
Va ∗ ρ dρ where Va(x) :=

{
1 if |x| < a

0 if not.

We first note that the result of the last subsection (ie, Theorem 1.1 in the case
n = n̄) remains valid if F is replaced by Fa.

Lemma 2.4. Define

n(D, a) := max{k : ∃x1, . . . , xk ∈ D such that |xi − xj| > a ∀i 6= j}
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and assume that a > 0 satisfies

(2.11) n(D, a) = max{k : ∃x1, . . . , xk ∈ D̄ such that |xi − xj| ≥ a ∀i 6= j}.
Then

min
Mac(D)

Fa = |D|2/n(D; a)

and the minimum is attained. In fact, a measure ρ inMac(D) minimizes Fa if
and only if there exist n(D; a) pairwise disjoint closed sets A1, . . . , An(D;a) ⊂ D,
such that

(2.12) dist(Ai, Aj) ≥ a if i 6= j,

and

(2.13) ρ(Ai) =
|D|

n(D; a)

for all i.

We will use the notation
(2.14)
M∗

ac(D; a) := {ρ ∈Mac(D) : ∃A1, . . . , An ⊂ D satisfying (2.12), (2.13)}.
Note that if ρ ∈M∗

ac(D; a) for some a > 0, the definitions easily yield

(2.15) ρ(D \ ∪Aj) = 0.

When a = 1, this lemma is exactly the result proved in the last subsection,
and in particular assumption (2.11) is exactly the condition n = n̄. It is easy
to see that this assumption holds for all but countable many a.

Proof. This follows from the result of the previous subsection by a simple
rescaling. �

We now use the above lemma to deduce the

proof of Theorem 1.1. Throughout the proof we will write n and n(a) instead
of n(D) (as defined in the statement of the theorem) and n(D; a) (as defined
in Lemma 2.4) respectively. Note that n = n(a) for a = 1. We will also write
n̄(a) to denote the right-hand side of (2.11). It is clear that n(a) ≤ n̄(a) for
all a, and also that n, n̄ are nonincreasing functions of a.

We first remark that there exists δ > 0 such that

(2.16) n = n(a) = n̄(a) for all a ∈ (1, 1 + δ).

To see this, note that by the definition of n, there exist points x1, . . . , xn ∈ D
such that |xi − xj| > 1 whenever i 6= j, and so it is clear that n ≤ n(a)
whenever a < min{|xi − xj| : i 6= j} =: 1 + δ. Then properties of a noted
above imply that n(a) ≤ n̄(a) ≤ n̄(1) for a ∈ (1, 1 + δ), proving (2.16).
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Note that Va → V almost everywhere as a ↘ 1. For any ρ ∈ Mac, it
therefore follows from the dominated convergence theorem, Lemma 2.4, and
(2.16) that

F (ρ) = lim
a↘1

Fa(ρ) ≥ lim inf
a↘1

|D|2

n(a)
=
|D|2

n
.

On the other hand, when considering the case n = n̄, we proved that F (ρ) ≤
|D|2
n

for all ρ ∈ M∗
ac(D). (This proof did not use the assumption n = n̄; see

(2.7)). We deduce that minMac(D) F = |D|2
n

, and this minimum is attained by
measures in M∗

ac(D).

Finally, suppose that ρ is a minimizer of F in Mac, so that F (ρ) = |D|2
n

.
Since the derivation of the optimality conditions (2.1), (2.2) in Lemma 2.3
holds for minimizers in Mac, we can repeat arguments from Step 2 of the
proof of Theorem 1.1 in the case n = n̄ to find points x1, . . . , xn ∈ D such
that V ∗ ρ(xi) = F (ρ) and |xi − xj| ≥ 1 for i 6= j. We then define Aj =
B(xj) ∩ supp ρ for j = 1, . . . , n, and by repeating the arguments from Step 3
of the n = n̄ proof, we verify that these sets satisfy (1.7), (1.8), which shows
that ρ ∈M∗

ac(D). �

2.3. A generalization. The above results extend to the functional

(2.17) FE(ρ) =

∫
D
VE ∗ ρ dρ, where VE(x) =

{
1 if x ∈ E
0 if not

for suitable sets E.

Theorem 2.1. Suppose that E is a bounded, open subset of Rd with 0 ∈ E,
and that E is even in the sense that x ∈ E ⇐⇒ −x ∈ E.

Given a set S ⊂ Rd, define n(D, S) by

n(D, S) := sup{k : ∃x1, . . . , xk ∈ D̄ such that xi − xj 6∈ S ∀i 6= j}.
Then minM FE = |D̄|2/n(D, E) and the minimum is attained. Moreover, a
measure ρ in M minimizes FE if and only if there exist n(D, E) pairwise
disjoint closed sets A1, . . . , An(D,E) ⊂ D̄, such that if xi ∈ Ai, xj ∈ Aj, and

i 6= j, then xi − xj 6∈ E; and in addition ρ(Ai) = |D̄|
n(D,E)

for all i.

If E also satisfies the condition Ld(∂E) = 0, then minMac FE = |D̄|2/n(D, Ē).
In this case a measure ρ minimizes FE inMac if and only if there exist n(D, Ē)
pairwise disjoint closed sets A1, . . . , An ⊂ D̄, such that if xi ∈ Ai, xj ∈ Aj, and
i 6= j, then xi − xj 6∈ Ē; and in addition ρ(Ai) = |D̄|/n(Ē) for all i.

It is natural to assume that E is open, since then FE is lower semicon-
tinuous on the space of nonnegative measures, exactly as the proof of Lemma
2.1. (The same argument shows that if E is closed, then FE is upper semicon-
tinuous.)
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We omit the proof of Theorem 2.1, apart from the following remarks:
The part of the proof that deals with minimizers in M is a straightforward
adaptation of the proof of Lemma 2.4; it is just necessary to replace B(a, x)
by x+ E throughout. The part of the proof concerning minimizers in Mac is
likewise an adaptation of the proof of Theorem 1.1; the point is that if ρ is
absolutely continuous and Ld(∂E) = 0, then FE(ρ) = FĒ(ρ) = limr↘0 FEr(ρ)
where Er := {x ∈ Rd : dist(x,E) < r}.

We do not know what are the most general hypotheses on a set E for a
result of the above sort to hold, and have only written the hypotheses that
allow the earlier proof to go through more or less without change.

3. Asymptotic ε→ 0: derivation of E0,Ω

In other sections of this paper, A denotes the infinitesimal generator of
rotation about the z-axis. In this section we allow somewhat more general
vector fields A, since it makes absolutely no difference to the proof. Thus,
throughout this section,

GΩ(u) :=

∫
D

1

2
|∇u|2 − ΩA · Im(ū∇u) dx

and A ∈ L∞(D; Rd) is a fixed vector field. In fact it will be apparent from our
proof that the result holds for a much larger class of functionals G.

Proof of Theorem 1.2. For concreteness we consider the Dirichlet problem; the
proofs for the periodic problem are almost exactly the same. Throughout the
proof we will write for example A0,M, and so on instead of A0(D),M(D)
when there is no possibility of confusion.

We will repeatedly use the fact that

(3.1) GΩ(u) ≥ 1

4
‖∇u‖2

L2 − Ω2|D|‖A‖2
L∞(D), for u ∈ A0.

1. We first show that GΩ attains its minimum in A∗0. Let {uk} ⊂ A∗0 be
a sequence such that GΩ(uk)→ infA∗0 GΩ.

In view of (3.1), we can extract a subsequence (still labelled uk) and a
function u0 ∈ H1

0 such that such that uk → u0 strongly in L2 and ∇uk → ∇u0

weakly in L2. In particular, it follows that |uk|2 → |u0|2 in L1, and hence
|u0|2 ∈Mac. Also, standard lowersemicontinuity results (see also Step 4 below)
imply that GΩ(u0) ≤ infA∗0 GΩ. So we only need to show that u0 belongs to
A∗0. This however is easy, since the lowersemicontinuity of F implies that

F (|u0|2) ≤ lim inf
k→∞

F (|uk|2) = min
Mac

F,
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since every |uk|2 is a minimizer for F inMac. Since |u0|2 ∈Mac, it follows that
it minimizes F inMac. Hence we conclude from Theorem 1.1 that |u0|2 ∈M∗

ac,
or equivalently that u0 ∈ A∗0.

2. Now let uε minimize Eε,Ω in A0, and let u0 minimize GΩ in A∗0. Then
|u0|2 minimizes F , by Theorem 1.1, so that

GΩ(uε) = Eε,Ω(uε)−
1

4ε2
F (|uε|2)

≤ Eε,Ω(u0)− 1

4ε2
F (|u0|2)

= GΩ(u0).(3.2)

Thus we deduce from (3.1) that {uε}ε∈(0,1] is uniformly bounded in H1. Simi-
larly

F (|uε|2) = 4ε2 [Eε,Ω(uε)−GΩ(uε)]

≤ 4ε2 [Eε,Ω(u0)−GΩ(uε)]

= 4ε2

[
GΩ(u0) +

1

4ε2
F (|u0|2)−GΩ(uε)

]
≤ min

Mac

F + Cε2.(3.3)

3. In view of (3.2), (3.1), and Rellich’s compactness theorem, we may
extract a subsequence (still labelled uε) and a function u∗ ∈ H1

0 such that
uε → u∗ strongly in L2 and ∇uε ⇀ ∇u∗ weakly in L2. In particular, it follows
|uε|2 → |u∗|2 in L1, and also that |u∗|2 ∈ L1 ⊂ Mac. Since F is continuous
with respect to the L1 norm, this convergence and (3.3) imply

F (|u∗|2) = limF (|uε|2) = min
Mac

F.

It then follows from the characterization of minimizers of F in Theorem 1.1
that u∗ ∈ A∗0. Moreover, it follows from (3.2) and the lower semicontinuity of
GΩ that

min
A∗0

GΩ ≤ GΩ(u∗) ≤ lim inf
ε→0

GΩ(uε) ≤ lim sup
ε→0

GΩ(uε) ≤ GΩ(u0) = min
A∗0

GΩ.

Therefore u∗ minimizes GΩ in A∗0, and

(3.4) lim
ε→0

GΩ(uε) = GΩ(u∗).

4. It only remains to prove that uε → u∗ strongly in H1. This is easy, however,
because the weak H1 convergence uε ⇀ u∗ implies that∫

D
A · Im(ūε∇uε) dx →

∫
D
A · Im(ū∗∇u∗) dx,
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so we deduce from (3.4) that ‖∇uε‖L2 → ‖∇u∗‖L2 , and this together with
weak convergence implies that ∇uε → ∇u∗ strongly in L2. �

4. One dimensional case

In this section we consider one-dimensional problems. It is easy to check
that Eε(|u|) ≤ Eε(u), and similarly E0. Since we are interested in minimiz-
ers, we will therefore often implicitly restrict our attention to nonnegative
functions.

The analysis here is much simpler than in higher dimensions, but the
results we establish here presumably give at least some indication of what to
expect when n ≥ 2.

4.1. Minimizers of the ε = 0 problem. In this subsection we consider the
problem (1.14), which we recall here:

find u0 ∈ A∗0(D) such that E0(u0) = min
A∗0(D)

E0,Ω.

Recall that dLe to denote the smallest integer that is greater than or equal to
L. We now give the

Proof of Proposition 1.1. In the Dirichlet case, Theorem 1.1 implies that A0

consists of functions supported in n(D) sets A1, . . . An(D), each one separated
from all others by distance at least 1. Hence there are numbers ak < bk,
k = 1, . . . , n(D) such that (after relabelling the Ai if necessary) Ai ⊂ [ai, bi]
for all i, and bi + 1 ≤ ai+1 for i = 1, . . . , n(D) − 1. Moreover, the choice of
n(D) makes it impossible for some Aj to have nonempty intersection with the
convex hull of some other Ai.

Then, since (1.8) implies that
∫ bi
ai
|u|2 = L

n(D)
for every i,∫

D
|u′|2 =

n(D)∑
i=1

∫ bi

ai

|u′|2 ≥
n(D)∑
i=1

π2

(bi − ai)2

∫ bi

ai

|u|2 =
L

n(D)

n(D)∑
i=1

π2

(bi − ai)2
,

with equality if and only if the restriction of u to each interval (ai, bi) is a
scaled and normalized sine function multiplied by a constant of modulus 1.
Moreover, Jensen’s inequality implies that∑ 1

(bi − ai)2
≥ n(D)

(n(D)−1
∑

(bi − ai))2
≥ n(D)/h2

0,

with equality if and only if bi − ai = h0 for every i. This implies that, if we
assume that u0 ≥ 0, it is the function defined in the statement of the theorem.
The proof of the periodic case is essentially the same. �
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4.2. Minimizers of Eε for 0 < ε � 1. This section is devoted to the proof
of Theorem 1.3. We first prove three technical lemmas, then give the proof of
the theorem. We use the notation of Proposition 1.1, namely

(4.1) n̄p = dLe − 1, hp = (L− n̄p))/n̄p.
Recall also the notation τyu(x) := u(x− y).

The starting point of the proof of the theorem is the fact that a minimizer
uε of Eε is close (after a suitable translation) to the minimizer up of the ε = 0
problem. The first lemma records a quantitative consequence of this fact. Thus
uε has n “bumps” separated by regions in which it is exponentially small. In
the proof of the theorem, we extract 3n parameters, related to a local mass,
kinetic energy, and a length-scale associated with each of these bumps. The
second lemma is used, in the proof of the theorem, to bound Eε below by a
function depending only on these parameters, and the third lemma gives a
lower bound for this function of 3n variables.

Lemma 4.1. Given δ > 0, there exists ε0 > 0 such that for 0 < ε < ε0, if uε
is a nonnegative minimizer in H1

per(D) of Eε and

(4.2) y 7→ ‖up − τyuε‖H1 is minimized for y = 0

then there exists a constant C > 0 depending only on L such that

(4.3) uε(x) ≤ 2

(
1 +

πL

hp

)
e−C

δ5/2

ε for all x such that dist (x, suppup) > δ.

Remark 3. Note that because D = (0, L] with periodic boundary conditions
is compact, the function y ∈ D 7→ ‖up− τyuε‖H1 attains its minimum, and we
can arrange by a suitable translation that this minimum is attained at y = 0.

Remark 4. Tracking the dependence of the constants in the proof of Lemma 4.1,
it is possible to give an explicit expression for the constant C: C = L/(2

√
6hpn̄p).

Proof. Let uε be a sequence satisfying the assumptions of the theorem. We
first point out that

1

2

∫ L

0

(u′ε)
2

= Eε(uε)−
1

4ε2
F (uε) ≤ Eε(up)−

1

4ε2
F (up) =

1

2

∫ L

0

(
u′p
)2

=
π2L

2h2
p

.(4.4)

Moreover, since −
∫
u2
ε = 1, one can find x ∈ D such that uε(x) ≤ 1. Hence,

(4.5) ‖u‖L∞(D) ≤ 1 +
√
L

(∫ L

0

(u′ε)
2

)1/2

≤ 1 +
πL

hp
.
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Next, we claim that uε → up in H1. Indeed, it follows from Theorem 1.2
(and also from inequality (4.4)) that {uε} is precompact in H1, and that every
limit of a convergent subsequence is a minimizer for the limiting problem.
However, every such minimizer is a translate of up, and since ‖τ−yup−uε‖H1 =
‖up− τyuε‖H1 it follows from (4.2) that the only possible limit of a convergent
subsequence is up.

Moreover, the convergence of uε in H1 implies that

V ∗ u2
ε −→ V ∗ u2

p in H1.

It is easy to check that

∀x ∈ D,
(
V ∗ u2

p

)
(x) ≥ L

n̄p
+ c [dist (x, supp(up))]

3 ,

where c is a constant independent of ε. Hence, if dist(x, supp up) ≥ δ/2, we
can find ε0 > 0 such that, for any 0 < ε < ε0,

(4.6)
(
V ∗ u2

ε

)
(x) ≥ L

n̄p
+
c

2
[dist (x, supp(up))]

3

Next we record the Euler-Lagrange equation for uε, which is

(4.7) u′′ε =
1

ε2
(V ∗ u2

ε)uε − λεuε, λε = −
∫
D

(u′ε)
2 +

1

ε2
V ∗ u2

ε · u2
ε dx.

Note that

Eε(uε) ≤ Eε(up) =
1

4ε2

L2

n̄p
+

π2

2h2
p

L.

Clearly λε <
4
L
Eε(uε), so λε <

L
ε2n̄p

+ 2π2

h2
p

. So it follows from (4.6), (4.7) that

(4.8) − ε2u′′ε +

(
c

2
dist(x, supp(up))

3 − 2π2

h2
p

ε2

)
uε ≤ 0,

whenever dist (x, supp up) ≥ δ/2. Taking ε0 smaller if necessary, we may as-
sume that ε2 < (h2

p δ
3)/(64π2), so that (4.8) becomes

(4.9) − u′′ε +
c

4ε2
dist(x, supp(up))

3uε ≤ 0,

whenever dist (x, supp up) ≥ δ/2. Without loss of generality, we may assume
that a connected component of {x, dist(x, supp(up)) ≥ δ/2} is an open interval
(a, b). On this connected component, we use the function

U(x) = ‖up‖L∞
(
e
−
√
cδ3/2

4ε
√

2
(x−a)

+ e
√
cδ3/2

4ε
√

2
(b−x)

)
as a supersolution. Hence, on (a, b),

uε(x) ≤ U(x) ≤ 2‖up‖L∞e−
√
cδ3/2

4ε
√

2
(dist(x,supp(up))− δ

2).
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If dist(x, suppup) > δ, we infer (4.3), with C =
√
c/8
√

2. �

The next lemma quantifies the fact that one cannot confine the entire mass
of a one-dimensional wave function in a small interval, if the kinetic energy is
bounded. As remarked earlier, it will be used to bound Eε below by a function
of finitely many variables.

Lemma 4.2. Given an interval J = (a, b) ⊂ R, let

p(m, k, J) := sup

{∫
J

u2 dx :

∫
R
u2 dx = m,

∫
R
u′2 dx = k

}
Then there exists a function f : [0,∞)→ [0,∞) such that

(4.10) p(m, k, J) = mf

(
|J |
√
k

m

)
,

and in addition f satisfies

f(s) ≤ 1 for all s, and f(s) = 1 if s ≥ π,(4.11)

f(s) = 1− 1

2π
(π − s)3 +O

(
(π − s)4

)
for s ≤ π.(4.12)

As a result, there exists a constant c > 0 such that f(s) ≤ 1− c(π − s)+ 3 for
every s ≥ 0.

Proof. 1. We will eventually prove the lemma when J = (−1
2
, 1

2
). We first

show that the general case follows by a change of variables. Indeed, suppose
J = (a, b), and for m, k given, consider any u ∈ H1(R) such that ‖u‖2

L2 =
m, ‖u′‖2

L2 = k. Let x0 = 1
2
(a + b) and L = b − a, and define a new variable

y = x−x0

L
. Next define U(y) = u(x), and let m′ = ‖U‖2

L2 = m/L, k′ :=

‖U ′‖2
L2 = Lk and J ′ = (−1

2
, 1

2
). Note that∫
J

u2 dx = L

∫
J ′
U2 dy

Hence if the conclusion holds for J ′ = (−1
2
, 1

2
), then

p(m, k, J) = Lp(m′, k′, J ′) = Lm′f(|J ′|
√
k′

m′
) = mf(|J |

√
k

m
).

2. We henceforth fix J = (−1
2
, 1

2
). By a scaling argument similar to that

given above, we can also assume that m = 1, so that in fact

(4.13) f(s) = sup

{∫
J

u2 dx : ‖u‖L2 = 1, ‖u′‖L2 = s

}
.
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It is clear that f(s) ≤ 1 for all s. For s ≥ π, define

u(x) =

{√
2s
π

cos(sx) if |x| ≤ π/2s

0 if not,

and note that ‖u‖L2 = 1, ‖u′‖L2 = s, and
∫
J
u2 = 1. Hence f(s) = 1 for s ≥ π.

3. It remains to prove (4.12), which is the real content of the lemma. To
do this, fix s < π. We first claim that the supremum in (4.13) is attained. To
see this, let uk be a sequence such that ‖uk‖L2 = 1 and ‖u′k‖L2 = s, and such
that

∫
J
u2
k ↗ f(s). Let u ∈ H1(R) be a function such that uk → u locally in

L2, and u′k ⇀ u weakly in L2. Then∫
J

u2 dx = f(s), ‖u‖L2 ≤ 1, ‖u′‖L2 ≤ s.

Let us write a = ‖u‖L2 and b = 1
s
‖u′‖L2 , so that 0 < a, b ≤ 1. We consider

two cases:
case 1: suppose b ≤ a ≤ 1. Then define U(x) = (ab)−1/2u(ax/b). Then

one can check that ‖U‖L2 = 1, ‖U ′‖L2 = s, and∫
J

U2 dx =
1

a

∫ a
2b

− a
2b

u2 dx ≥
∫
J

u2dx = f(s).

Then U satisfies the constraints and attains the supremum on the right-hand
side of (4.13). Note also that we get strict inequality, and hence a contradic-
tion, if a < 1.

case 2: suppose a < b ≤ 1. First, define U0 to be the symmetric re-
arrangement of u (see [22] for example), so that U0 is even and nonincreasing
in (0,∞). Then∫

J

U2
0 dx ≥

∫
J

u2 dx = f(s), ‖U0‖L2 = a, ‖U ′0‖L2 = b′s ≤ bs = ‖u′‖L2 .

If b′ ≤ a then we are back to case 1, and this leads to a contradiction since
a < 1. If not, we define U1(x) by

U1(x) :=

{
U0(0) if |x| ≤ δ

U0(|x| − δ) if |x| ≥ δ,

where δ is chosen so that ‖U1‖L2 = b′. Note also that ‖U ′1‖L2 = ‖U ′0‖L2 = b′,
regardless of the choice of δ. Also, since U0 attains its maximum at x = 0,∫
J
U2

1 ≥
∫
J
U2

0 ≥ f(s). Finally, let U2 = 1
b′
U1. Then U2 satisfies the constraints

‖U2‖L2 = 1, ‖U ′2‖L2 = s, and
∫
J
U2

2 ≥ f(s), so the supremum on the right-hand
side of (4.13) is attained.
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4. Now let us denote a function such that∫
J

u2
s dx = f(s), ‖us‖L2 = 1, ‖u′s‖L2 = s.

Standard arguments show that us > 0 everywhere. The Euler-Lagrange equa-
tion satisfied by us is

χJus = λus + µu′′s

where λ, µ are Lagrange multipliers. Here χJ(x) = 1 if x ∈ J and 0 otherwise.
This equation cannot be satisfied if µ = 0, so it can be rewritten

(4.14) − u′′s = (νχJ + ηχJc)us

for certain constants ν, η, where J c denotes the complement of J . Note that
this is essentially the equation for a one-dimensional quantum particle in a
square well, so that if we like, we can find a complete description of solutions
by consulting basic quantum mechanics textbooks. From this, or by solving
directly, we find that (4.14) has square-integrable solutions only if ν > 0 and
η < 0, so we can rewrite the equation as

(4.15) − u′′s = (α2χJ − β2χJc)us.

We further see that L2 solutions exist only if β = α tan(α/2), and when this
holds, all square-integrable solutions are multiples of

ψα(x) :=

{
cosαx if |x| ≤ 1

2

cos(α/2) exp
[
β
(

1
2
− |x|

)]
if |x| ≥ 1

2
.

It follows from this that for s < π, us = ψα/‖ψα‖L2 for some α = α(s) such
that ψα > 0 and ‖ψ′α‖L2/‖ψα‖L2 = s. Note that ψα > 0 iff α < π. We now
define

g(α) := ‖ψ′α‖L2/‖ψα‖L2 , h(α) = ‖ψα‖−2
L2

∫
J

ψ2
α dx.

It follows from what we have said that f(s) = h(α) for some α ∈ (0, π) such
that g(α) = s. We will show that in fact g is one-to-one in (0, π], so that
f(s) = h(g−1(s)), where g−1 denotes the inverse of the restriction of g to
(0, π].

5. We next explicitly compute g(α) and h(α). We integrate to find that

‖ψα‖2
L2 =

1

2

(
1 +

1

α
sinα

)
+

1

β
cos2 α

2

We substitute β = α tan α
2

and write 1
2

sinα = sin α
2

cos α
2
, then simplify to find

‖ψα‖2
L2 =

1

2
+

1

α
cot

α

2
.
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Similarly, noting that ψ′2α = α2ψ2
α in J and ψ′2α = β2ψ2

α elsewhere, and rewriting
as above, we see that

‖ψ′α‖2
L2 =

α2

2
(1 +

1

α
sinα) + β cos2 α

2
=
α2

2
+ α sinα.

Thus

g(α) = α

[
α + 2 sinα

α + 2 cot α
2

]1/2

Similarly,

h(α) =
α + sinα

α + 2 cot α
2

.

It is easy to check that g2, and hence g, is an increasing function on (0, π), as
is h for that matter. Thus f(s) = h(g−1(s)). Now (4.12) follows by calculus.
Indeed, we compute that g(π) = π, g′(π) = 1

2
which implies that g−1(s) =

π + 2(s− π) + O((s− π)2) near s = π. We also check that h(π) = 1, h′(π) =
h′′(π) = 0 and h′′′(π) = 3

2π
. Substituting the expansion for g−1(s)− π into the

Taylor series for h at α = π yields (4.12). �

The last technical lemma is

Lemma 4.3. Let L > 2 be as in Theorem 1.3, let c > 0 be given, and define
n̄p, hp by (4.1). Then, for any positive numbers (mi)1≤i≤n̄p , (αi)1≤i≤n̄p , (`i)1≤i≤n̄p
such that

n̄p∑
i=1

mi = L,

n̄p∑
i=1

`i = n̄php,

we have

(4.16)

n̄p∑
j=1

m2
j + c(π − `jαj)+ 6 + 2ε2mjα

2
j ≥

L2

n̄p
+ 2ε2π

2

h2
p

L− Cε2/5.

Proof. Let us write q0((mj), (αj), (`j)) to denote the left-hand side of (4.16).
Fix (mj), (αj), (`j) that minimize q0(·, ·, ·) subject to the constraints on

∑
mi

and
∑
`i. If we let m̃j = L/n̄p, ˜̀

j = hp, α̃j = π/hp for all j, then

(4.17) q0((mj), (αj), (`j)) ≤ q0((m̃j), (α̃j), (˜̀
j)) =

L2

n̄p
+ 2ε2π

2

h2
p

L.

The constraint
∑
mi = L implies that

n̄p∑
i=1

m2
i =

L2

n̄p
+

n̄p∑
i=1

(mi −
L

n̄p
)2.
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Thus

sup
j

(mj −
L

n̄p
)2 ≤

n̄p∑
i=1

(mj −
L

n̄p
)2 ≤ 2ε2π

2

h2
p

L.

¿From (4.17) we also see that

sup
j
mjα

2
j ≤

n̄p∑
j=1

mjα
2
j ≤

π2

h2
p

L.

Combining these, we deduce that mjα
2
j ≥ L

n̄p
α2
j −O(ε) for every j. Hence

q0((mj), (αj), (`j)) ≥
L2

n̄p
+

n̄p∑
j=1

c(π − `jαj)+ 6 + 2ε2 L

n̄p
α2
j − Cε3.

It now suffices to show

(4.18) q1((αj), (`j)) :=

n̄p∑
j=1

c(π − `jαj)+ 6 + 2ε2 L

n̄p
α2
j ≥ 2ε2π

2

h2
p

L− Cε2/5.

To do this, let (α∗j ), (`
∗
j) minimize q1 subject to the constraint

∑
`∗j = n̄php.

Clearly q1((α∗j ), (`
∗
j)) ≤ 2ε2 π2

h2
p
L, which implies that π − `jαj ≤ Cε1/3. Since

`j ≤
∑
`j = C, it follows that αj ≥ C > 0 for all j.

The first-order optimality conditions for (α∗j ), (`
∗
j) are

6c
(
π − `∗jα∗j

)+ 5
`j = 4ε2 L

n̄p
α∗j 6c

(
π − `∗jα∗j

)+ 5
α∗j = λ

for all j, where λ is a Lagrange multiplier. These imply that 4ε2 L
n̄p
α∗ 2
j = λ`∗j ,

and hence that

(4.19) 6c

(
π − 4ε2

λ

L

n̄p

(
α∗j
)3
)+ 5

α∗j = λ.

We also deduce that

λn̄php =
∑
j

λ`∗j = 4ε2 L

n̄p

∑
j

a∗ 2
j = O(ε2).

which implies that λ = O(ε2). For λ > 0, the equation 6c(π− 4ε2

λ
L
n̄p
x)+ 5x = λ

has at most two roots, say x− < x+. Since λ = O(ε2), one of these roots must
x− = O(ε2). However, we have already shown that αj ≥ C for all j, and so it
follows that α∗j = x+ for every j. In particular, all α∗j are equal, which implies
that all λ∗j are equal. Thus λ∗j = hp for all j. It follows that

q1((αj), (`j)) ≥ n̄p inf
α

[
c(π − hpα)+ 6 + 2ε2 L

n̄p
α2

]



26 A. AFTALION, X. BLANC, AND R. L. JERRARD

Now it is easy to deduce (4.18). �

Proof of Theorem 1.3. 1. upper bound: We define a one-parameter family
of test functions vh, and we then optimize over h. Let

vh(x) =


√

2L
hn̄p

sin(π
h
(x− xi)) if x ∈ (xi, xi + h)

for some i ∈ {0, . . . n̄p − 1}
0 if not

where n̄p and xi are defined by

n̄p = dLe − 1, xi = i(1 + hp), hp =
1

n̄p
(L− n̄p).

The assumption that L > 2 implies that 1
2
< L

n̄p
≤ 1. We have normalized vh

so that −
∫
D v

2
h dx = 1. We easily see that

(4.20) ‖v′h‖2
L2 =

(π
h

)2

‖vh‖2
L2 =

(π
h

)2

L.

Let hp = 1
n̄p

(L− n̄p). If h ≤ hp then components of the support of vh are

separated by distance at least 1, and so

(4.21) F (|vh|2) = min
Mac

F = F (up) = L2/n̄p

On the other hand, if h > hp, then for x ∈ (0, h),

V ∗ v2
h(x) =

∫ h

0

v2
hdx = L/n̄p if hp − h ≤ x < hp,

since then {y ∈ suppu : x− 1 < y < x + 1} = (0, h). If hp < x < h say, then
x+ 1 ≤ 1 + h, so

V ∗ v2
h(x) ≤

∫ h

0

v2
hdx+

∫ 1+h

1+hp

v2
hdx ≤

L

n̄p
+ C

(h− hp)3

h3
.

The same bound holds for 0 < x < h− hp. On these intervals, v2
h is bounded

by C(h− hp)2/h3, so∫ h

0

V ∗ v2
h · v2

hdx ≤
L

n̄p

∫ h

0

v2
h + C

(h− hp)3

h3

∫
(0,h−hp)∪(h,hp)

v2
h dx

≤
(
L

n̄p

)2

+ C
(h− hp)6

h6
.

Summing the contributions from different components of the support of vh,
we find that

(4.22) Eε(vh) ≤
1

4ε2

[
L2

n̄p
+ Cnp

[(h− hp)+]6

h6

]
+

π2

2h2
L.
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where (h − hp)
+ = max{0, h − hp}. Let hε minimize the right-hand side

of (4.22). One can then check by calculus that hε − hp ≈ ε2/5 and that
Eε(vhε) ≤ Eε(up)− cε2/5, proving the upper bound.

2. lower bound. Let uε denote a minimizer of Eε in H1
per(D) which

satisfies the hypotheses of Lemma 4.1. For i = 1, . . . , n̄p, let Ij = (yj, yj+1),
where yj = 1

2
(xj + xj+1) + h/2. Thus each yi is the midpoint between two

adjacent maxima of up, and each Ii is centered at a max of up. We will use
the notation

mj =

∫
Ij

u2
ε dx, Fij :=

∫∫
Ii×Ij

V (x− y)u2
ε(x)u2

ε(y) dx dy

so that
∫
D V ∗ u

2 · u2dx =
∑

i,j Fij. Note that for every j,

Fjj = m2
j −

∫∫
{x,y∈Ij×Ij : |x−y|≥1}

u2
ε(x)u2

ε(y) dx dy ≥ m2
j − Ce−C/ε

by Lemma 4.1. Also, clearly Fij = 0 if |i − j| ≥ 2. For each j, we define an
interval Kj ⊂ Ij ∪ Ij+1 such that |Kj| = 1 and∫

K−j

u2
ε dx =

∫
K+
j

u2
ε dx =

1

2

∫
Kj

u2
ε dx =:

1

2
κj,

where K−j := Kj ∩ Ij and K+
j := Kj ∩ Ij+1. Since V (x−y) = 1 if x ∈ K−j ⊂ Ij

and y ∈ K+
j ⊂ Ij+1, we see that

Fj+1,j = Fj,j+1 ≥

(∫
K−j

u2
ε(x)dx

)(∫
K+
j

u2
ε(y)dy

)
=

1

4
κ2
j .

Thus ∫
D
V ∗ u2

ε · u2
εdx ≥

∑
j

(m2
j +

1

2
κ2
j)− Ce−C/ε

≥
∑
j

[m2
j +

1

2
(
κj−1 + κj

2
)2]− Ce−C/ε.(4.23)

Note also that

(4.24)
1

2
(κj−1 + κj) =

∫
K+
j−1

u2
ε dx+

∫
K−j

u2
ε dx = mj −

∫
Jj

u2
ε dx.

for Jj := Ij \ (K+
j−1 ∪ K−j ). We now change a little bit the function uε in

order to have uε ∈ H1
0 (Ij), so that, extending it by 0 outside Ij, we may apply

Lemma 4.2. Indeed, recall that, according to Lemma 4.1, uε(yj) ≤ Ce−C/ε.
Hence, one can find an affine function v such that

‖v‖W 1,∞(Ij) ≤ Ce−
C
ε , uε + v ∈ H1

0 (Ij).
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Hence, denoting by wε the function equal to uε + v in Ij and 0 elsewhere, we
apply Lemma 4.2 to wε, finding that∫

Jj

w2
ε ≤ m

1− c

(
π − |Jj|

√
k

m

)+ 3
 ,

where

k =

∫
R
(w′ε)

2, m =

∫
R
w2
ε .

Hence, using the fact that ‖wε − uε‖W 1,∞(Ij) ≤ Ce−C/ε and that the function
s 7→ (π − s)+ 3 is uniformly continuous on R+, we have
(4.25)∫
Jj

u2
ε dx ≤ mj

[
1− c(π − |Jj|αj)+ 3

]
+Ce−

C
ε for αj =

(
1

mj

∫
Ij

(u′ε)
2 dx

)1/2

.

We combine (4.24) and (4.25) and substitute into (4.23) to obtain∫
D
V ∗ u2

ε · u2
εdx ≥

∑
j

[
m2
j + c(π − |Jj|αj)+ 6

]
− Ce−C/ε.

Since
∫
D(u′ε)

2 dx =
∑

jmjα
2
j , we finally conclude that

(4.26) Eε(uε) ≥
∑
j

[
1

4ε2

(
m2
j + c(π − |Jj|αj)+ 6

)
+

1

2
mjα

2
j

]
− Ce−C/ε.

Note that
∑
mj = |D| = L, and

∑
|Jj| = L− n̄p = n̄php. This last fact follows

from the fact that D = ∪n̄pj=1(Jj ∪Kj), since |Kj| = 1 for every j and the union
is disjoint. Thus the lower bound follows from Lemma 4.3. �

5. Minimizers of Eε for large ε

We give in this section the

Proof of Proposition 1.2. Let us first point out that

ωd = ‖V ‖L1 = (V ∗ 1)(x), ∀x ∈ D.

This will be useful in the sequel.
Fix u ∈ H1

per(D) such that
∫
|u|2 = |D|, and write u = 1 + h. We may

assume that u ≥ 0, since Eε(|u|) ≤ Eε(u). Hence, h ≥ −1 and∫
D

(2h+ h2) dx =

∫
D

(1 + h)2 dx −
∫
D

1 dx = 0.
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Using this fact, one easily checks that

Eε(u)− Eε(1) =

∫
D

1

2
|∇h|2dx +

1

4ε2

[
V ∗ (1 + h)2 · (1 + h)2 − V ∗ 1 · 1

]
dx

=

∫
D

1

2
|∇h|2dx +

1

4ε2

∫
D
V ∗ (2h+ h2) · (2h+ h2) dx.

Note also that

1

4

∫
D
V ∗ (2h+ h2)·(2h+ h2) dx

=

∫
D
V ∗ h · h+ V ∗ h · h2 +

1

4
V ∗ h2 · h2 dx

=

∫
D
V ∗ h · h + V ∗ (1 + h/2)2 · h2 − V ∗ 1 · h2 dx

≥
∫
D
V ∗ h · h dx − ωd‖h‖2

L2 ,

hence

(5.1) Eε(u)− Eε(1) ≥
∫
D

1

2
|∇h|2dx +

1

ε2

∫
D
V ∗ h · h dx − 1

ε2
ωd‖h‖2

L2 .

We are now going to prove that if (1.15) holds, then the right-hand side of
(5.1) is non-negative, and vanishes only when h ≡ 0. We will do this using
Fourier series, and we first fix notation: for f ∈ L2(D) we write

f̂(n) :=
1

Ld

∫
D
f(x)e−iπn·x/L dx

so that

f(x) =
∑
Zd

f̂(n)eiπn·x/L.

We have the usual identities, which scale in L as follows:∫
D
f(x)g(x) dx = Ld

∑
Zd

f̂(n)ĝ(n),

(̂f ∗ g) (n) = Ldf̂(n) ĝ(n),

Using these we check that

(5.2)
1

2

∫
D
|∇h|2 dx+

1

ε2

∫
D
V ∗h·h dx = Ld

∑
Zd

(
π2

2

|n|2

L2
+
Ld

ε2
V̂ (n)

)
|ĥ(n)|2.
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Next, we write FV (ξ) =
∫

Rd V (x)e−ix·ξ dx for the Fourier transform on Rd, so

that FV (nπ/L) = LdV̂ (n). Since V is even and nonnegative,

FV (ξ) =

∫
Rd

1

2
(V (x) + V (−x))e−ix·ξ dx =

∫
Rd
V (x)

1

2

[
e−ix·ξ + eix·ξ

]
dx

=

∫
Rd
V (x) cos(x · ξ) dx =

∫
{|x|<1}

cos(x · ξ) dx.

In particular,

LdV̂ (n) ≥ ωd inf
|s|≤|n|π/L

cos s ≥ ωd

(
1− π2

2

|n|2

L2

)
.

It follows from this, (5.2) and (5.1) that

Eε(u)− Eε(1) ≥ Ld
∑
Zd

[
π2|n|2

2L2
+
ωd
ε2

(
1− π2|n|2

2L2

)
− ωd
ε2

]
|ĥ(n)|2

= Ld
∑
Zd

[
π2|n|2

2L2

(
1− ωd

ε2

)]
|ĥ(n)|2

≥ 0,

with equality iff h ≡ 0. This completes the proof of the proposition. �

Remark 5. In the preceding proof, we have used an exact decomposition of
the energy of 1 +h. However, the crucial point is that u ≡ 1 is a critical point
of Eε under the constraint

∫
u2 = |D|, and that the second derivative of Eε is

positive definite for ε sufficiently large. Under this condition, using the fact
that the minimizer of uε converges to 1 as ε tends to infinity, it is possible to
argue by contradiction and prove that there exists ε1 > 0 such that for any
ε > ε1, the unique minimizer is u ≡ 1. However, this kind of proof does not
give any information on ε1. In particular, ε1 may depend on L.
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