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Abstract. It is well-known that Γ-convergence of functionals provides
a tool for studying global and local minimizers. Here we present a gen-
eral result establishing the existence of critical points of a Γ-converging
sequence of functionals provided the associated Γ-limit possesses a non-
degenerate critical point, subject to certain mild additional hypotheses.
We then go on to prove a theorem that describes suitable non-degenerate
critical points for functionals, involving the arclength of a limiting sin-
gular set, that arise as Γ-limits in a number of problems. Finally, we
apply the general theory to prove some new results, and give new proofs
of some known results, establishing the existence of critical points of
the 2d Modica-Mortola (Allen-Cahn) energy and 3d Ginzburg-Landau
energy with and without magnetic field, and various generalizations, all
in a unified framework.

1. Introduction

¿From the time of its inception by De Giorgi in the 1970’s, the notion of
Γ-convergence of a family of functionals {Eε}ε∈(0,1] to a limiting functional
E has proven to be a very powerful tool in studying the relationship be-
tween the minimizers of the sequence and those of the limit. Here we argue
that somewhat surprisingly, it can provide a vehicle for connecting certain
unstable critical points of E to critical points of Eε as well.

Let us recall that Γ-convergence, in its simplest form, can be character-
ized through two requirements: Given a Banach space U , we say a sequence
of functionals Eε : U → R Γ-converges to a limiting functional E : U → R
as ε→ 0 if for every u ∈ U one has
(i) Whenever {uε} ⊂ U converges to u, then lim infε→0 E

ε(uε) ≥ E(u),
and
(ii) There exists a sequence {ũε} ⊂ U such that ũε converges to u and
limε→0E

ε(ũε) = E(u).
A primary motivation for introducing this topology on functionals was

to characterize the weakest notion of convergence that would guarantee min-
imizers of Eε converge to a minimizer of E. In [14] it was shown that when
the Γ-limit E possesses an isolated local minimizer, then Eε will also have a
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local minimizer. More recently, Sandier and Serfaty [28] have introduced a
stronger notion that can be thought of as C1 Γ-convergence, and they have
shown that the gradient flows of C1 Γ-convergent sequences converge to the
gradient flow of the limit. In related work [29], Serfaty shows that infor-
mation from the second variation of Eε may be passed to the Γ-limit. The
present article then represents an additional contribution to the expanding
list of implications of this convergence.

Many of the most interesting examples of Γ-convergence concern the
situation where a sequence of functionals, say Eε

U , maps one Banach space,
U , into R while the limit EV : V → (−∞,∞] is more naturally defined on
another Banach space V , which is typically weaker in its topology. This leads
us to broaden our description of Γ-convergence to essentially incorporate the
two properties (i) and (ii) above when composed with appropriate maps, say
P ε

V U : U → V and Qε
UV : V → U , that mediate between the two Banach

spaces. For example, (ii) is replaced by the requirement that for every v ∈ V
one has

P ε
V UQ

ε
UV (v) → v in V, and Eε

U (Qε
UV (v)) → EV (v) as ε→ 0.

Here, in particular, one should think of {Qε
UV (v)}ε∈(0,1] as taking on the

role of the ‘recovery sequence’ {ũε}. Generalizations of Γ-convergence along
these lines are by now a fairly common practice; see Section 3 for a complete
description.

Our main abstract result, Theorem 4.4, says roughly speaking, that if
Eε

U is a family of functionals Γ-converging to a limiting functional EV , and
if EV has a saddle point vs with corresponding critical value c∗ = EV (vs),
then under certain mild additional hypotheses, Eε

U has a critical point for
every sufficiently small ε, and the associated critical values converge to c∗
as ε → 0. The additional hypotheses include a Palais-Smale condition,
and a requirement that Eε

U is in a certain sense uniformly close to EV on
a specific finite-dimensional set that corresponds roughly speaking to the
unstable manifold of EV near vs. We do not claim that the critical points
of Eε

U converge to vs; in the level of generality of our theorem, this is not
necessarily true, see Remark 4.5.

One subtlety that must be addressed is that the functionals EV that
arise as Γ-limits are typically merely lower semicontinuous, and indeed are
typically infinite on a dense subset of V . This forces us to introduce a
definition of a saddle point that can be formulated without appealing to
any differentiability properties of EV , see Definition 4.1. This is the no-
tion we use in Theorem 4.4 as described above. The second main result
of this paper proves the existence of saddle points, in this sense, for an
energy EV that arises as a Γ-limit in a number of problems, and that cor-
responds roughly to the functional that associates to a Lipschitz curve its
arclength. In various stronger topologies, a nondegenerate critical point of
the arclength functional (with natural boundary conditions in a smooth do-
main Ω ⊂ Rn+1) is a line segment contained in Ω and joining two points
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X0, Y0 ∈ ∂Ω, where (X0, Y0) is a nondegenerate critical point of the smooth
function (X,Y ) ∈ ∂Ω × ∂Ω 7→ |X − Y |. We prove in Theorem 5.1 that to
any such line segment there corresponds a saddle point of the generalized
arclength functional EV in weak topologies useful for Γ-convergence. As
applications of the general theory, we present in Section 6 existence results
for critical points of the 2d Modica-Mortola energy (3.9); the 3d Ginzburg-
Landau energy, both without magnetic field (3.11) and with the field (6.7);
and of a generalized Ginzburg-Landau type energy (3.16) in higher dimen-
sions. In all cases, no boundary conditions are specified, so critical points
satisfy ‘natural’ homogeneous Neumann boundary conditions. We empha-
size that there are numerous other examples of families of functionals that
are known to Γ-converge to the functional EV considered in Section 5, and
for most of these examples, one should be able to deduce the existence of
critical points from Theorems 4.4 and 5.1 by arguments very similar to those
given in the examples that we discuss here.

There is a large literature that uses Γ-convergence to study connections
between Allen-Cahn and Ginzburg-Landau type problems and geometric
problems involving minimal surfaces and minimal connections. Basic Γ-
convergence results for the Modica-Mortola functional are established in
[22, 21], and for the Ginzburg-Landau and related functionals in [2], [13].
These automatically yield some results describing asymptotic behavior of
minimizing sequences. Existence of local minimizers for these functionals is
proved using Γ-convergence arguments in [14, 23, 12].

As far as we know, the present paper is the first to use Γ-convergence to
prove existence of unstable critical points for this class of problems. Prior re-
sults of this sort have, however, been established via techniques that employ
precise control over the spectrum of linearized operators associated with ex-
plicitly constructed approximate solutions, together with Lyapunov-Schmidt
reduction or arguments in a similar spirit. An early result in this direction,
due to Matano [20], establishes existence of stable critical points for the
Modica-Mortola functional. More recently, existence of more general criti-
cal points for the Modica-Mortola functional, associated with nondegenerate
critical points of the arclength functional has been proved by Kowalczyk [15]
in two dimensions, and by Pacard and Ritoré [24] in dimensions n ≥ 2, with
critical points of arclength replaced by minimal hypersurfaces. Similar gen-
eral existence results for the magnetic Ginzburg-Landau functional (6.7) in
a specific (formally self-dual) scaling in dimensions n ≥ 3 have been es-
tablished in a preprint of Brendle [6]. These techniques give very precise
descriptions of the solutions that are proved to exist, much more precise in
fact than can be established via Γ-convergence arguments. (In particular,
our results on the Modica-Mortola functional are strictly weaker than those
of [15], [24].) The main drawback of these linearization techniques is that the
required spectral control can be very difficult to obtain. This has limited the
range of applicability of these methods. In particular, they have not yet been
extended to cover critical points of the model Ginzburg-Landau functional
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(3.11), which has worse spectral properties than its magnetic counterpart
(6.7). Thus, our results on (3.11) are the first existence results for unstable
critical points for this functional in three dimensions; this is also true for
our results on a generalized Ginzburg-Landau functional in arbitrary higher
dimensions. Our results on (6.7) are new in that they consider a different
scaling than that of [6], and they also incorporate some new lower-order
terms involving an applied magnetic field.

For the Ginzburg-Landau functional (3.11) in two dimensions existence
of both stable and unstable critical points has been established by proofs
that, as in this paper, combine variational methods with arguments about
convergence of energy functionals, in the spirit of Γ-convergence, see for ex-
ample [16, 8, 18, 3]; by PDE techniques [25]; and by variational reduction,
which combines elements of both approaches [9]. This last paper consid-
ers homogeneous Neumann boundary conditions, whereas the others cited
above treat Dirichlet data. The first paper to identify a limiting “renor-
malized energy” for (3.11) in two dimensions was [4]. Both global and local
minimizers for the problem (6.7) in two dimensions in the presence of an
applied field are investigated in depth in [27, 29]. We do not consider any
of these problems in this paper. It should be noted that here the limiting
energy depends on only finitely many degrees of freedom, making asymp-
totic variational arguments easier in some respects than the problems that
we focus on.

A different family of related papers characterizes the asymptotic behav-
ior of sequences of critical points of functionals (3.9), (3.11), (6.7). Particu-
larly relevant to our concerns is work of Chiron [7], which builds on earlier
results (see for example [26, 19, 5]) to prove that every sequence of critical
points of the Ginzburg-Landau functional (3.11) in 3 dimensions with uni-
formly bounded energy exhibits energy concentration along line segments
that satisfy certain “orthogonal anchoring” conditions on ∂Ω. (The results
of [7] also apply to the functional (6.7), and indeed are considerably more
general than the conclusions we have mentioned here.)

Our Theorem 6.1 and Theorem 6.4 can be seen as a sort of partial
converse of results from [7], proving that for certain possible limiting con-
figurations as identified by Chiron — those consisting of a single line seg-
ment, and satisfying a nondegeneracy condition — there indeed exists an
associated sequence of critical points of (3.11), (6.7). Among other possi-
ble limiting configurations from [7], our results could be extended without
much difficulty to unions of nonintersecting nondegenerate critical line seg-
ments, but probably not, for example, to unions of nondegenerate critical
line segments that intersect. If the segments intersect at isolated points, it
is not clear how to prove that they can be identified with saddle points of
the arclength functional in the sense of Definition 4.1. And a configuration
consisting of two or more segments that coincide (corresponding to a vortex
of multiplicity 2 or higher) can probably be shown to be a saddle point in
the sense of Definition 4.1, but we do not think that other hypotheses of
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our abstract minmax theorem, such as the uniformity condition (4.8), can
be verified near such a (conjectured) saddle point.

We have attempted to present a largely self-contained discussion by first
reviewing elements of geometric measure theory and degree theory in Section
2 that are required later in the paper. Section 3 contains a description of
the more general characterization of Γ-convergence we work with, and also
places the by now well-known Γ-convergence and compactness results for
Modica-Mortola ([21, 22]) and Ginzburg-Landau ([2, 13]) in this framework.
We also recall in this section the fact that the energies we consider satisfy
the Palais-Smale condition.

In Section 4 we give the definition of saddle point for a Γ-limit that we
employ and then we present the statement and proof of the abstract exis-
tence theorem for critical points of a Γ-converging sequence of functionals.
We emphasize that this material does not in any way rely on the geometric
measure theory machinery introduced in Section 2; it uses only some stan-
dard facts about degree theory, recalled in Section 2.3, and our definition of
a Γ-limit from Section 3.1.

In Section 5 we assume a domain contains a line segment with end-
points on its boundary that is a non-degenerate critical point of arclength
among competing line segments that similarly span the domain. Under this
assumption we show that the Γ-limits of the 2d Modica-Mortola energy and
3d Ginzburg-Landau energy, both arclength in the weak sense of mass of
rectifiable 1-currents, possess a saddle point in the flat norm topology–the
sense required for our abstract framework. This is the only place where the
full machinery from Section 2 is really used.

Finally in Section 6 we verify that for 2d Modica-Mortola and 3d
Ginzburg-Landau, with and without field, all of the remaining conditions
of the abstract theorem are met, thus providing the existence of critical
points for these energies.

2. Preliminaries

Throughout this article Ω will denote a bounded, open set in Rn+1.
Elements of Rn will be denoted by x or y, and elements of Rn+1 will generally
be denoted by either X or (x, xn+1). We denote the k-dimensional Hausdorff
measure of a set S by Hk(S).

2.1. Currents. We review here some notions from geometric measure the-
ory. We refer to [10, 30] for more detail. For integers 0 ≤ k ≤ n + 1,
the space of Grassman k-covectors is denoted by ∧k(Rn+1) endowed with
the usual Euclidean norm | · |. A differential k-form φ on Ω is a mapping
φ : Ω → ∧k(Rn+1). The space of C∞ k-forms compactly supported within
Ω is denoted by Dk(Ω).

A k−current in Ω is a continuous linear functional on the space Dk(Ω)
and the space of such k-currents is denoted by Dk(Ω). We recall that the



6 R.L. JERRARD AND P. STERNBERG

boundary of a k-current T , denoted by ∂ T , is the (k − 1)-current defined
by the relation

∂ T (φ) = T (dφ) for all φ ∈ Dk−1(Ω),

where dφ represents the k-form obtained by exterior differentiation of φ. In
particular, we note that a k-current T has zero boundary relative to the set
Ω if T (dφ) = 0 for all φ ∈ Dk−1(Ω). We will denote by D′k(Ω) the elements
of Dk(Ω) that are boundaries, i.e.

(2.1) D′k(Ω) := {T ∈ Dk(Ω) : T = ∂S for some S ∈ Dk+1}.

For T ∈ Dk(Ω), we denote the mass of T in Ω by

(2.2) M(T ) ≡ sup
{φ∈Dk(Ω): ‖φ‖L∞(Ω)≤1}

|T (φ)| .

If T is a 0-current with finite mass, then there exists a finite Radon
measure µ such that T (φ) =

∫
φdµ for all smooth, compactly supported

functions (= 0-forms). When this holds we will often abuse notation and
write simply T = µ.

If T ∈ Dk(Ω) is a k- current with locally finite mass, then there exists
a nonnegative measure ‖T‖ and a ‖T‖-measurable map ~T : Ω → ∧k(Rn+1)
such that

T (φ) =
∫

Ω
〈φ, ~T 〉d ‖T‖, φ ∈ Dk(Ω)

If B ⊂ Ω is a Borel set, the restriction of T to B, denoted T xB, is defined
by

(2.3) (T xB)(φ) =
∫

B
〈φ, ~T 〉d ‖T‖, φ ∈ Dk(Ω)

Most prominent in our approach will be the class R1(Ω) of rectifi-
able, integer multiplicity 1-currents. These are geometric measure theo-
retic generalizations of Lipschitz curves. Indeed, if I ⊂ R is an interval
and γ : I → Ω ⊂ Rn+1 is a Lipschitz curve, we can define a 1-current T
corresponding to integration over γ by

(2.4) T (
n+1∑
i=1

φidX i) =
∫

I

m∑
i=1

φi(γ(t))
d

dt
γi(t) dt.

We define an element of R1(Ω) to be a current with finite mass in Ω that
can be written in the form

(2.5) T =
∑

j

Tj

where the sum is finite or countable, and each Tj corresponds to integration
over a Lipschitz curve γj . Normally a different definition is given, and the
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above characterization is established as a theorem. It can also be shown (see
[10] 4.1.25) that the sum in (2.5) can be written in such a way that

(2.6) M(T ) =
∑

j

M(Tj) =
∑

j

H1(γj), M(∂T ) =
∑

j

M(∂Tj).

In particular, if ∂T = 0 in Ω then ∂Tj = 0 in Ω for every j.
We introduce the notation R′

1(Ω) to denote the finite-mass elements of
R1(Ω) that are boundaries, i.e.

(2.7) R′
1(Ω) := {T ∈ R1(Ω) : M(T ) <∞, T = ∂S for some S ∈ D2(Ω)}.

In this article, we will denote the flat norm of a k-current S by

(2.8) F(S) = inf{M(R) : R ∈ Dk+1, ∂R = S in Ω}.

We set F(S) = +∞ if there does not exist any current R with finite mass
such that ∂R = S in Ω. This is a variant of the standard flat norm of
geometric measure theory. We write

(2.9) F ′k(Ω) := {T ∈ D′k(Ω) : F(T ) <∞}.

Remark 2.1. Note that F ′k(Ω) is a Banach space when endowed with the
norm F. This follows from two facts. First, the space of k + 1 currents
on Ω with finite mass, denoted Mk+1(Ω), is a Banach space when endowed
with the norm M; in fact this space can be identified with the Banach space
of Radon measures on Ω with values in the space ∧k+1(Rn) of (k + 1)-
vectors. And second, F ′k(Ω) with the norm F can be identified with the
quotient space Mk+1(Ω)/{T ∈ Mk+1(Ω) : ∂T = 0}; this follows directly
from the definitions. Since {T ∈ Mk+1 : ∂T = 0} is closed in Mk+1, this
quotient space is itself a Banach space.

If T is a k-current in Ω ⊂ Rn such that M(T ) + M(∂T ) < ∞, and if
f : Ω → R is a Lipschitz continuous function, then for a.e. s ∈ R there is a
(k− 1)-current denoted 〈T, f, s〉, supported in f−1(s), and characterized by
the property that

T ((ω ◦ f)φ ∧ df) =
∫

R
〈T, f, s〉(φ) ω(s) ds

for every compactly supported (k− 1)-form φ and every smooth function ω
on R. The currents 〈T, f, s〉 are called “slices of T by level sets of f .” In
some cases there are simple explicit formulas for these slices. In particular,
suppose that T is a 1-current corresponding to integration over a Lipschitz
curve γ : I → Ω, where I is an interval. Then for any Lipschitz function
f : Ω → R,

(2.10) 〈T, f, s〉 =
∑

t∈I:γ(t)∈f−1(s)

sign
(
γ′(t) · ∇f(γ(t))

)
δγ(t)

for a.e. s ∈ R, where we use the convention that sign(0) = 0. This is a
special case of a general result proved in ([10], 4.3.8); the proof there implies
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in particular that the sum on the right contains finitely many nonzero terms
terms for a.e. s ∈ R.

A useful inequality related to slices is the following (cf. [30], p. 158):

(2.11)
∫ ∞

−∞
M(〈T, f, s〉) ds ≤ sup

x∈γ
|∇γf(x)|M(T ).

We will need the following lemma which is a sort of isoperimetric in-
equality:

Lemma 2.2. Suppose that Ω ⊂ Rn+1 is a smooth bounded domain. Let
dΩ = +∞ if ∂Ω is connected, and if not, let dΩ be the smallest distance
between any two distinct components of ∂Ω. Then there exists a constant
CΩ such that if T ∈ R′

1(Ω) satisfies M(T ) < dΩ, then T ∈ F ′1(Ω) and

F(T ) ≤ CΩM(T )2.

Proof. Given T ∈ R′
1(Ω) with M(T ) < dΩ, we must find a 2-current S such

that ∂S = T in Ω, with M(S) ≤ CM(T )2. For use in this proof only, we
introduce the notation MRn+1(·) to denote the mass of a current in all of
Rn+1 as opposed to M(·) which refers to mass in Ω.

We first claim that there exists a current T̃ on Rn+1 such that ∂T̃ = 0
in Rn+1, MRn+1(T̃ ) ≤ C1M(T ), and T̃ (φ) = T (φ) for all smooth 1-forms φ
with support in Ω.

To see this, write T =
∑
Tj as in (2.5), so that Tj is a current in Ω

that corresponds to either a closed Lipschitz loop or a Lipschitz curve that
connects two points on ∂Ω. We will define T̃ =

∑
T̃j , where each T̃j is a

suitable extension of Tj to a current on Rn+1. It suffices to show that this
can be done so that

(2.12) ∂T̃j = 0 in Rn+1, and M(T̃j) ≤ C1M(Tj).

If Tj is compactly supported in Ω (i.e., if the corresponding Lipschitz curve
γj is a closed loop), we define T̃j to be the current on Rn+1 corresponding
to the same loop γj , so that (2.12) clearly holds.

Now consider the other case, and suppose that γj : [0, 1] → Ω̄ is the
Lipschitz curve corresponding to Tj . The length of γj is bounded by M(T ),
which is less than dΩ by hypothesis, so both endpoints of γj must belong to
the same component of ∂Ω. Thus we can find a curve γ̃j : [1, 2] → Rn+1 \Ω
such that γ̃j(1) = γj(1), γ̃j(2) = γj(0), and

∫ 2
1 |γ̃

′
j | ≤ C1

∫ 1
0 |γ

′
j | for a constant

C1 depending on the geometry of the domain. (For example, γ̃j can be taken
to be a length-minimizing geodesic in ∂Ω connecting the given endpoints.)
Now let

Γj(t) =
{
γj(t) if t ∈ [0, 1],
γ̃j(t) if t ∈ [1, 2].

and let T̃j be the corresponding integral current in Rn+1. Then the con-
struction implies that (2.12) holds.
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Now the isoperimetric inequality (see [10], 4.2.10 for example) implies
that there exists some 2-current on Rn+1, say S̃, such that ∂S̃ = T̃ and
MRn+1(S̃) ≤ C2MRn+1(T̃ )2. If we now let S be given by the restriction
S̃ x Ω, then it is clear that ∂S = ∂S̃ = T̃ = T in Ω, and that M(S) ≤
MRn+1(S̃) ≤ C2MRn+1(T̃ )2 ≤ C2

1C2M(T )2. This completes the proof of the
lemma. �

We will also need the following simple result:

Lemma 2.3. Suppose that Q is a 1-dimensional current in an open set
Ω ⊂ Rn+1, and that there is an open set Ω1 ⊂ Ω and a point p ∈ Ω1 such
that ∂Q x Ω1 = δp. Then M(Q) ≥ dist(p, ∂Ω1).

Proof. Let d = dist(p, ∂Ω1). Then for any ε > 0, there exists a smooth
function f such that f(p) > d − ε, ‖df‖∞ ≤ 1, and with support in Ω1.
For example, such a function can be constructed by mollifying the function
g(x) = max{d− ε/2− |x− p|), 0}. Then

d− ε ≤ f(p) = ∂Q(f) = Q(df) ≤ M(Q)‖df‖∞ ≤ M(Q).

Since this holds for all ε > 0, we find that M(Q) ≥ d. �

2.2. Identification of L1 functions and Jacobians with 1-currents.
We would next like to single out two particular types of 1-currents that are
boundaries of 2-currents with finite mass, that is, particular examples of
elements of F ′1(Ω).

First consider the situation where Ω ⊂ Rn+1 and a function v lies in
L1(Ω). Then we can associate to v an n-current, denoted ?dv, via the formula

(2.13) ?dv(φ) =
∫

Ω
v dφ

for all φ ∈ Dn(Ω). Note that the (n + 1)-current Sv(φ) :=
∫
Ω vφ for all

φ ∈ Dn+1(Ω) satisfies ∂Sv = ?dv so that ?dv ∈ F ′n(Ω) and one sees that1

(2.14) F(?dv) ≤ M(Sv) = ‖v‖L1(Ω) .

As a special case of this association that will be relevant to the Modica-
Mortola setting later in the paper, consider the case n = 1 with v ∈
BV (Ω; {±1}). Then

(2.15) v(X) =
{

1 if X ∈ A,
−1 if X ∈ Ω \A,

for some set A ⊂ Ω of finite perimeter. If we denote by Γ the rectifiable
set comprised of the reduced boundary of A in Ω one finds through an

1In fact, if S is any n + 1 current such that ∂S = ?dv, and if Ω is connected, then the
definitions imply that there exists some c ∈ R such that S = Sv+c. It follows that F(?dv) =
infc∈R M(Sv+c) = infc∈R ‖v + c‖L1(Ω). This is a special case of the representation of F ′n(Ω)

as a quotient space of Mn+1(Ω), see Remark 2.1.
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application of the Divergence Theorem that ?dv ∈ R′
1(Ω) since

(2.16) ?dv(φ) = 2
∫

Γ
〈φ(X), τ(X)〉 dH1(X)

for any 1-form φ, where τ is the (approximate) unit tangent vector orienting
Γ. ¿From (2.16) it is clear that for v ∈ BV (Ω; {±1}), one has

(2.17) M(?dv) = total variation of v = 2H1(Γ).

Next, consider the situation where Ω ⊂ R3, and where a function u
lies in the Sobolev space W 1,2(Ω; C). This will be the setting of a second
main application: 3d Ginzburg-Landau theory. We write J(u) to denote the
two-form

J(u) = u#(dy) = du1 ∧ du2

where u = u1+iu2, dy denotes the standard area form on the target C and #

denotes the pullback. This object is simply the 2-form naturally associated
with the Jacobian vector of 2× 2 minors,

(det(uX2 , uX3),det(uX3 , uX1),det(uX1 , uX2)).

It is often convenient to identify J(u) with a 1-current, which we denote
?J(u), and which is defined through its action on 1-forms φ by

(2.18) ?J(u)(φ) =
∫
φ ∧ J(u).

The current ?J(u) can still be defined for u in certain Sobolev spaces below
W 1,p for p < 2. To this end, we define the 1-form j(u) via the formula

(2.19) j(u) =
1
2i

3∑
k=1

(uuXk
− uuXk

)dXk =
1
2i

(ūdu− udū).

where · denotes complex conjugation. We also define an associated 2-current
?j(u) that acts on 2-forms φ via ?j(u)(φ) =

∫
φ ∧ j(u). Note that |j(u)| ∈

L1(Ω) for u ∈ W 1,2(Ω; C) or W 1,1(Ω;S1). Then we define ?J(u) ∈ F ′1(Ω)
through

(2.20) ?J(u) =
1
2
∂(?j(u)), so that ? J(u)(φ) =

1
2

∫
Ω
dφ ∧ j(u).

for any φ ∈ D1(Ω). One can check through integration by parts that this
agrees with the previous definition (2.18) of ?J(u) when u ∈W 1,2(Ω). This
is a consequence of the identity J(u) = 1

2dj(u). It follows that

(2.21) F(?J(u)) ≤ 1
2
M(?j(u)) =

1
2
‖j(u)‖L1(Ω) .
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2.3. Background on degree. Some of our arguments will involve topo-
logical degree. The facts we will need are summarized in the following (cf.
for example, [32]):

Lemma 2.4. For any open subset O ⊂ R` and any continuous f : Ō → R`

such that f 6= 0 on ∂O, there exists an integer called the degree of f in O,
and denoted deg(f,O), with the following properties: First, if f ∈ C1(O; R`)
and 0 is a regular value of f , then

(2.22) deg(f,O) =
∑

{x∈O:f(x)=0}

sign(det∇f(x)).

Next,

(2.23) if deg(f,O) 6= 0 then ∃x ∈ O such that f(x) = 0.

Also

(2.24) if O′ is open, O′ ⊂ O, then deg(f,O) = deg(f,O\Ō′)+deg(f,O′)
whenever the right-hand side makes sense (i.e., whenever f 6= 0 on ∂O′.)
Finally, if h : Ō × [a, b] → R` is continuous and h(x, t) 6= 0 for x ∈ ∂O and
t ∈ [a, b], then

(2.25) deg(h(·, a),O) = deg(h(·, b),O).

3. Background on Γ-limits

3.1. Definition of Γ-limit. We consider here the Γ-convergence as ε → 0
of a family of functionals always denoted
(3.1)
Eε

U : U → (−∞,∞], where U is a Banach space and ε ∈ (0, 1],

to a limiting functional

(3.2) EV : V → (−∞,∞], where V is a Banach space.

We will always write

(3.3) V0 := {v ∈ V : EV (v) <∞}.
In the situations we consider, EV is always lower semicontinuous (see below),
and so V0 is always closed.

We say that Eε
U Γ-converges to EV as ε → 0 if for all ε ∈ (0, 1] there

exists a continuous map P ε
V U : U → V and a map Qε

UV : V0 → U (not
necessarily continuous) such that

lower bound: If v ∈ V0 and {uε} ⊂ U is a sequence such that
‖P ε

V U (uε)− v‖V → 0 as ε→ 0, then

(3.4) lim inf Eε
U (uε) ≥ EV (v).

upper bound: For every v ∈ V0,

(3.5) Eε
U (Qε

UV (v)) → EV (v) and ‖P ε
V UQ

ε
UV (v)− v‖V → 0 as ε→ 0.
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When the above holds, we will sometimes write that Eε
U Γ-converges to

EV via maps P ε
V U , Q

ε
UV ; this is more accurate than simply speaking about

Γ-convergence, since the relationship between Eε
U and EV is not determined

until P ε
V U is specified.

For fixed v ∈ V0, the sequence {Qε
UV (v)}ε∈(0,1] ⊂ U is what is sometimes

called a recovery sequence for v. Our later results will actually require that
(3.5) hold only for v in certain finite-dimensional subsets of V0; we will also
need Qε

UV to be continuous on these subsets. In most applications, including
those presented in this article, the maps P ε

V U are independent of ε ∈ (0, 1].
We will only be interested in Γ-limits for which the following compact-

ness condition is satisfied:
compactness: If supε∈(0,1]E

ε
U (uε) <∞ then

(3.6) {P ε
V U (uε)}ε∈(0,1] is precompact in V.

The definitions imply that

(3.7) EV : V → R is lower semicontinuous

and also that for every K ∈ R,

(3.8) {v ∈ V0 : EV (v) ≤ K} is compact in V .

These facts are standard and are quite easy to check.

3.2. Example 1: the 2d-Modica-Mortola functional. For this family
of problems, Ω is a bounded domain in R2, and

(3.9) Eε
U (u) :=

3
2
√

2

∫
Ω

ε

2
|∇u|2 +

1
4ε

(u2 − 1)2 dX

is a family of functionals on U := H1(Ω)
(

= H1(Ω; R)
)
. We note that

depending on context, this energy is also referred to as the Allen-Cahn
energy or, in the presence of a mass constraint, the Cahn-Hilliard energy.
The factor of 3

2
√

2
is a convenient normalization that has the effect of setting

a constant in the Γ-limit functional to 1.
In order to emphasize parallels and give a unified treatment of various

problems we consider, we describe the Γ-limit in a slightly unusual way:

Theorem 3.1. (cf. [22]) Let Ω be a bounded, open subset of R2. Let U =
H1(Ω) as above, and let V = F ′1(Ω), endowed as usual with the flat norm.
Define PV U (u) = ?du

2 , cf. Section 2.2, and define

(3.10) EV (T ) =

{
M(T ) if T ∈ V0 = {?dv

2 : v ∈ BV (Ω; {±1})},
+∞ otherwise.

Then there exists a family of maps Qε
UV : V0 → U such that the family Eε

U
given by (3.9) Γ-converges to EV given by (3.10) in the sense of (3.4) and
(3.5). Furthermore, the compactness property (3.6) holds.
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Proof. This follows from the standard Modica-Mortola Γ-limit result, which
we will denote by a functional EṼ defined on a space Ṽ . In this standard
result, Ṽ = L1(Ω), PṼ U (u) = u, and

EṼ (v) =

{
1
2

∫
Ω |Dv| if v ∈ Ṽ0 = BV (Ω; {±1})

+∞ if not

where
∫
Ω |Dv| denotes the total variation of the gradient measure.

It follows from (2.14) that if {vk} is precompact in L1(Ω), then {?dvk/2}
is precompact in F ′1(Ω), so the compactness property (3.6) in V = F ′1(Ω)
follows from the corresponding property in Ṽ , which is established in [21]
or [31]. Note also that v ∈ Ṽ0 if and only if ?dv/2 ∈ V0, and EṼ (v) =
2EV (?dv/2).

To check (3.4), we may assume lim inf Eε
U (uε) < ∞. Hence, invoking

the precompactness in L1(Ω), we can assert that ‖P εj

Ṽ U
Q

εj

UṼ
(v) − v‖Ṽ → 0

along a subsequence {εj} → 0 for some v ∈ L1(Ω). Then (3.4) for EV : V →
(−∞,∞] follows from the lower-semi-continuity established for EṼ under
L1 convergence in [22]. Condition (3.5) also follows from the analogous
construction in [22]. �

The topology we have specified for the Γ-limit is slightly weaker than
the more usual L1 topology. This does not have any effect on our later
applications.

In Section 6, the mappings Qε
UV satisfying (3.5) in this setting will be

recalled explicitly for the case of a straight interface. The theorem above
holds for Ω ⊂ Rn+1 with n arbitrary, as long as F ′1(Ω) is replaced by F ′n(Ω).

3.3. Example 2: the Ginzburg-Landau functional. For this family of
problems, Ω is a bounded domain in R3, and

(3.11) Eε
U (u) :=

1
π |ln ε|

∫
Ω

|∇u|2

2
+

(|u|2 − 1)2

4ε2
dX

is a family of functionals defined on U := H1(Ω; C) ∼= U := H1(Ω; R2). The
result on Γ-convergence in this setting is then:

Theorem 3.2. (cf. [2, 13]) Let Ω be a bounded, open subset of R3. Let
U = H1(Ω; C), and let V = F ′1(Ω), endowed with the flat norm (2.8).
Define

(3.12) PV U (u) =
?Ju

π
,

cf. (2.18) or (2.20), and

(3.13) EV (T ) =

{
M(T ) if T ∈ V0 := R′

1(Ω),
+∞ otherwise,

(cf. (2.7)).
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Then there exists a family of maps Qε
UV : V0 → U such that Eε

U given
by (3.11) Γ-converges to EV given by (3.13) in the sense of (3.4) and (3.5).
Furthermore, the compactness property (3.6) holds.

In Section 6, the mappings Qε
UV satisfying (3.5) will be recalled explic-

itly for the case of a straight vortex line, that is for the case where T ∈ R′
1(Ω)

consists of an oriented line segment with endpoints lying on ∂Ω. Proofs of
(3.4) and (3.6) can be found in [13] while the general recovery sequence
construction (3.5) is established in [2].

In Section 6 we will also consider the case of the Ginzburg-Landau
energy with magnetic field, cf. (6.7).

We point out that the Γ-limits in the two examples above involve the
mass of integral 1-currents – that is, arclength. The only differences are in
the dimension of the ambient space, and the fact that V0 in (3.10) is smaller
than its counterpart in (3.13); see the proof of Corollary 5.2 at the end of
Section 5 for a full discussion.

Finally, we record here the simple fact that both the Modica-Mortola
functional and the Ginzburg-Landau functional satisfy the Palais-Smale con-
dition, cf. [32]. We recall that given a C1 functional F : U → R, a sequence
{uk}∞k=1 is said to be a Palais-Smale sequence if

(3.14) ‖∇F (uk)‖U∗ → 0 as k →∞ and {F (uk)}∞k=1 is bounded.

The functional F is said to satisfy the Palais-Smale condition if

(3.15) every Palais-Smale sequence is precompact in U.

Proposition 3.3. The functionals Eε
U given by (3.9) or (3.11) satisfy the

Palais-Smale condition in the H1 topology.

We recall the standard proof:

Proof. Consider the 2d Modica-Mortola energy; the argument for 3d Ginzburg-
Landau is almost identical. Since the argument is unrelated to the (fixed)
value of ε, we set ε = 1 here. Suppose {uk} ⊂ H1(Ω) is a sequence satisfying
the conditions

sup
k
Eε

U (uk) <∞, ‖δEε
U (uk)‖ → 0 as k →∞.

The energy bound immediately yields a uniform H1 bound. Hence there is
a subsequence {kj} → ∞ such that

ukj
⇀ u in H1(Ω) and ukj

→ u in Lp(Ω), 1 ≤ p <∞,

for some u ∈ H1(Ω). Noting that the first variation is given by

δEε
U (uk)(v) =

∫
Ω
∇uk · ∇v + (u3

k − uk)v dX,
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we then use the conditions δEε
U (uk)(uk) → 0 and δEε

U (uk)(u) → 0 to see
that

lim
j→∞

∫
Ω

∣∣∇ukj

∣∣2 dX = lim
j→∞

∫
Ω
u4

kj
−u2

kj
dX =

∫
Ω
u4−u2 dX =

∫
Ω
|∇u|2 dX,

and so the convergence is strong. �

3.4. Example 3: some generalizations. It is worth noting that Example
2 is a special case of the following more general fact, due to Alberti, Baldo,
and Orlandi [2]:

Theorem 3.4. (cf. [2]) Let Ω be a bounded, open subset of Rn+1. Let
U = H1(Ω; Rn), and let

(3.16) Eε
U (u) :=

1
ωn |ln ε|

∫
Ω

1
n
|∇u|n +

1
4ε2

(|u|2 − 1)2 dX,

where ωn denotes the volume of the unit ball in Rn. Let V = F ′1(Ω), V0 =
R′

1(Ω) and let PV U : U → V be given by

(3.17) PV U (u) =
?Ju

ωn

where J(u) = u#(dy) = du1 ∧ . . . ∧ dun and ?J(u) denotes the 1-current
associated with the n-form J(u) defined exactly as in (2.18).

Then there exists a family of maps Qε
UV : V0 → U such that Eε

U given
by (3.11) Γ-converges to EV given by (3.13) in the sense of (3.4) and (3.5).
Furthermore, the compactness property (3.6) holds.

Note also that the proof of (3.3) is easily modified to prove that the
functional defined in (3.16) satisfies the Palais-Smale condition.

4. general asymptotic saddle point theorem

In this section we define saddle points, and we prove our main result, an
abstract theorem stating that if a Γ-limiting functional EV has a saddle point
at some vs ∈ V0, then for sufficiently small ε the approximating functional
Eε

U has a critical point whose associated critical value approaches the number
EV (vs).

Throughout this work, all saddle points are taken to have finitely many
unstable directions.

4.1. Definition of saddle point. Throughout this section we assume that
V is a Banach space, and that EV : V → R is a lower-semicontinuous
functional such that sublevel sets of EV are compact in V . We continue to
write V0 as in (3.3).

Definition 4.1. We say that EV has a saddle point at vs ∈ V0 if there exists
a nonnegative integer `, a number δ0 > 0, a neighborhood W ⊂ R` of 0, a
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continuous map PWV : V → R` such that PWV (vs) = 0, and a continuous
map QV W : W → V0 satisfying the conditions

EV (vs) < EV (v) for {v ∈ V : 0 < ‖v − vs‖V ≤ δ0, PWV (v) = 0},(4.1)

QV W (0) = vs,(4.2)

PWV ◦QV W (w) = w for all w ∈W,(4.3)

and for every r > 0, sup
{w∈W,|w|≥r}

EV (QV W (w)) < EV (vs).(4.4)

We note that the value 0 in the condition PWV (vs) = 0 is chosen simply
for convenience. Also, if we write EW (w) := inf{EV (v) : ‖v − vs‖V ≤
δ0, PWV (v) = w} for w ∈ W , then these conditions imply that EW has a
strict local maximum at w = 0.

Remark 4.2. The integer ` can be thought of as the number of unstable
directions at vs. A local minimum can be seen as a degenerate saddle point,
for which there are no unstable directions. Indeed, if we adopt the convention
that R0 = {0}, then a local minimum vs ∈ V0 of EV satisfies (4.1) with ` = 0
and PWV (v) = 0, and the conditions of Definition 4.1 hold trivially.

We will need the following

Lemma 4.3. Suppose that vs ∈ V0 is a saddle point in the sense of Defini-
tion 4.1. Then for every γ > 0, there exists r(γ) > 0 such that

‖v − vs‖V ≤ γ

whenever v ∈ V0 satisfies

‖v − vs‖V ≤ δ0, EV (v) ≤ EV (vs) + r(γ) and |PWV (v)| ≤ r(γ).

Proof. We suppose toward a contradiction that the conclusion of the lemma
is false, so that there exists some γ > 0 and a sequence {vn} ⊂ V0 such that

‖vn − vs‖V ≤ δ0, EV (vn) ≤ EV (vs) +
1
n
, |PWV (vn)| ≤ 1

n

and

‖vn − vs‖V > γ.

In view of (3.7) and (3.8) and the continuity of PWV , we may assume after
passing to a subsequence (still labeled vn) that vn → v̄ ∈ V0 with

γ ≤ ‖v̄ − vs‖V ≤ δ0, EV (v̄) ≤ EV (vs) PWV (v̄) = 0.

However, (4.1) implies that this is impossible. �
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4.2. The asymptotic minmax theorem. In this section we prove a gen-
eral theorem asserting that if a Γ-limiting functional EV has a saddle point
vs at which EV (vs) = c, and if some other uniformity conditions are satis-
fied, then for every sufficiently small ε > 0, the approximating functional Eε

U
has a Palais-Smale sequence “near the energy level c” for every sufficiently
small ε. In all the examples later in this paper in which we prove existence
of critical points of concrete functionals, we will do so by verifying that the
hypotheses of this abstract theorem are satisfied and then checking that the
specific functional satisfies the Palais-Smale condition.

Theorem 4.4. Suppose that U, V are Banach spaces and that {Eε
U}ε∈(0,1]

is a family of C1 functionals mapping U to R that Γ-converge to a limiting
functional EV : V0 → R via maps P ε

V U : U → V and Qε
UV : V0 → U .

Assume also that the compactness condition (3.6) holds.
Let vs ∈ V be a saddle point in the sense of Definition 4.1. Assume

also (using notation from the definition of a saddle point) that

(4.5) PWV is uniformly continuous in {v ∈ V : ‖v − vs‖V ≤ 2δ0},

(4.6) Qε
UW := Qε

UV ◦QV W : W → U is continuous for all ε,

(4.7) ‖P ε
V U ◦Qε

UW (w)−QV W (w)‖V → 0 uniformly in w ∈W as ε→ 0,

(4.8) and Eε
U (Qε

UW (w)) → EV (QV W (w)) uniformly in w ∈W as ε→ 0.

Then given δ1 > 0, there exists ε0 > 0 such that for every 0 < ε ≤ ε0 there
exists a Palais-Smale sequence {uε

k}∞k=1 satisfying

(4.9) sup
k
|Eε

U (uε
k)− EV (vs)| ≤ δ1.

In particular, if Eε
U satisfies the Palais-Smale condition (3.15) for every

ε, then for every small ε there exists a critical point uε of Eε
U such that

limε→0E
ε
U (uε) = EV (vs).

Recall that P ε
V U and QV W are assumed to be continuous as parts of the

definition of Γ-limit and saddle point respectively.

Remark 4.5. In this level of generality, it need not be true that the critical
points of Eε

U converge in any sense to the limiting point vs as ε → 0. This
is illustrated by the following elementary example:

Fix λ > 0 and define a family of functions fε : R2 → R by

fε(x) = x1[tanh(x2)− λ sech(x1/ε)].

Note that fε → f = x1 tanh(x2) uniformly as ε→ 0. In fact, f(x)−fε(x) =
εg(x/ε) for g(x) = λx1 sechx1. It is clear that {εg(·/ε)} are uniformly
Lipschitz and converge uniformly to 0, so an interpolation inequality implies
that fε → f in C0,α as ε→ 0 for every α ∈ (0, 1).

It is easy to check that
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• f has exactly one critical point, at x = (0, 0). This critical point is
nondegenerate in the sense that the Hessian is nonsingular.

• fε has no critical points if λ ≥ 1; in this case the Palais-Smale
condition is not satisfied by fε, ε > 0.

• For 0 < λ < 1, fε has a unique critical point (independent of ε) at
x = (0, tanh−1(λ)). Note that this point can be arbitrarily far from
the critical point (0, 0) of f , since tanh−1(λ) ↗∞ as λ↗ 1.

Remark 4.6. An inspection of the proof shows that we do not need the full
Γ-limit to hold. In particular, we do not need to construct the maps Qε

UV
for every v ∈ V0. It suffices that Qε

UV (v) be defined for every v of the form
v = QV W (w), w ∈ W . In particular, note that the hypotheses (4.6), (4.7)
and (4.8) of Theorem 4.4 only involve Qε

UW (w) := Qε
UV ◦QV W (w). For our

later applications to Modica-Mortola and Ginzburg-Landau, this will mean
we only need recovery sequences where the limiting singular set is a line
segment.

For the proof we need the following quantitative deformation lemma:

Lemma 4.7. (cf. [32], Lemma 2.3) Let U be a Banach space, EU ∈
C1(U ; R), S ⊂ U , c ∈ R, δ, ρ > 0 such that

‖∇EU (u)‖U∗ ≥ 8δ/ρ for all u ∈ S2ρ such that EU (u) ∈ [c− 2δ, c+ 2δ],

where S2ρ = {u ∈ U : dist(u, S) ≤ 2ρ}.
Then there exists φ ∈ C([0, 1]× U,U) such that

(i) φ(t, u) = u if t = 0 or u 6∈ {u ∈ S2ρ : EU (u) ∈ [c− 2δ, c+ 2δ]},
(ii) if u ∈ S and EU (u) ≤ c+ δ then φ(1, u) ≤ c− δ,
(iii) φ(t, ·) is a homeomorphism of U for all t ∈ [0, 1], and
(iv) ‖φ(t, u)− u‖U ≤ ρ for all u ∈ U, t ∈ [0, 1].
(v) t 7→ EU (φ(t, u)) is nondecreasing for all u.

Using the lemma we present the proof of Theorem 4.4

Proof. of Theorem 4.4
1. The proof will use degree theory at various points. Facts about

degree that we will need are summarized in Lemma 2.4.
Let r > 0 be small enough that W contains the closed ball of radius r

centered at the origin in R`. We will write

M := {w ∈W : |w| ≤ r} = B(r, 0) ⊂ R`.

By taking r smaller if necessary, we may also assume that

(4.10) r ≤ r(δ0/4) as defined in Lemma 4.3,

and, since QV W is continuous, that

(4.11) ‖QV W (w)− vs‖V ≤ δ0/2 for all w ∈M.

We will write P ε
WU := PWV ◦ P ε

V U .
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2. We first claim that

if φ ∈ C(M ;U) and φ(w) = Qε
UW (w) for all w ∈ ∂M

then deg(P ε
WU ◦ φ,M) = 1(4.12)

for all sufficiently small ε. We write fε(w) = P ε
WU ◦ φ(w). Note that

assumptions (4.5) and (4.7) imply that

(4.13) |P ε
WU ◦Qε

UW (w)− w| → 0 uniformly in W as ε→ 0,

since

|P ε
WU ◦Qε

UW (w)− w| = |PWV ◦ P ε
V U ◦Qε

UW (w)− PWV ◦QV W (w)|.

It follows that there exists ε0 > 0 such that

|fε(w)− w| = |P ε
WU ◦Qε

UW (w)− w| ≤ r/2

for all w ∈ ∂M , whenever ε < ε0. We will show that (4.12) holds for such
ε. Indeed, define

F ε(s, w) = sfε(w) + (1− s)w = w − s(fε(w)− w).

Then |F ε(s, w)| ≥ |w| − s|fε(w) − w| ≥ r − r
2 = r

2 for all s ∈ [0, 1] when
w ∈ ∂M and ε < ε0. In particular F ε(s, w) 6= 0. It follows from the
homotopy invariance of degree (2.25) that

deg(fε,M) = deg(F ε(1, ·),M) = deg(F ε(0, ·),M).

Since F ε(0, ·) : M →M is just the identity map and therefore has degree 1,
using the explicit formula (2.22). This establishes (4.12).

3. Next we define

aε := sup
w∈∂M

Eε
U (Qε

UW (w)),

cε := inf{Eε
U (u) : P ε

WU (u) = 0, ‖P ε
V U (u)− vs‖V ≤ δ0}.

We claim that

aε → a := sup
w∈∂M

EV (QV W (w)) as ε→ 0,(4.14)

cε → c := EV (vs) > a as ε→ 0(4.15)

as ε → 0. In fact (4.14) is an immediate consequence of (4.8). The fact
that c > a follows from condition (4.4) in the definition of a saddle point.
It follows from (4.12) and property (2.23) of degree that if ε < ε0, then
there exists w̄ ∈M such that P ε

WU (Qε
UW (w̄)) = 0. In addition, if ε0 is small

enough then

‖P ε
V U ◦Qε

UW (w)− vs‖V ≤ ‖P ε
V U ◦Qε

UW (w)−QV W (w)‖V + ‖QV W (w)− vs‖V

≤ 2
3
δ0(4.16)
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for all w ∈ M , on account of (4.7) and the constraint (4.11) on the choice
of the parameter r. Since (4.16) holds in particular for w̄, it follows that

cε ≤ Eε
U (Qε

UW (w̄)) ≤ sup
w∈M

Eε
U (Qε

UW (w))

when 0 < ε < ε0. Together with (4.8) this yields

lim sup
ε→0

cε ≤ lim
ε→0

sup
w∈M

Eε
U (Qε

UW (w)) = sup
w∈M

EV (QV W (w)) = c.

To finish the proof of (4.15) we must show that

(4.17) lim inf
ε→0

cε ≥ c,

To prove this, let εn, un be sequences such that εn → 0 , P εn
WU (un) =

0 and limn→∞Eεn
U (un) = lim infε→0 cε. Since {Eεn

U (un)} is bounded, the
compactness assumption (3.6) implies that {P εn

V U (un)} is precompact in V .
Writing vn := P εn

V U (un), after passing to a subsequence and relabelling if
necessary, we may assume that vn → v̄ in V as n→∞, and then the Γ-limit
lower bound (3.4) implies that

lim inf cε = limEεn
U (un) ≥ EV (v̄).

However, since PWV is continuous and P εn
WU (un) = PWV (vn) = 0 for all n,

it is clear that PWV (v̄) = 0, and then (4.1) implies that EV (v̄) ≥ EV (vs).
This proves (4.17) and hence (4.15).

4. We now conclude the proof of the theorem, modulo a final claim
that will be established below. Recall that we are given δ1 > 0, and we
must find (for every sufficiently small ε) a Palais-Smale sequence satisfying
(4.9). We claim that there exists a value δ2 > 0 such that, taking ε0 smaller
if necessary, we have

(4.18) cε ≤ sup
w∈M

{Eε
U (Qε

UW (w)} < cε + δ2

and

(4.19) max{aε, c− δ1} < cε − 2δ2 < cε + 2δ2 < min{c+ δ1, c+ r}.

for all ε ∈ (0, ε0). To see this, just take δ2 < 1
4 min{δ1, (c − a), r}. Then

(4.18), (4.19) hold for sufficiently small ε due to (4.14), (4.15), and hypoth-
esis (4.8). We write

S = {u ∈ U : ‖P ε
V U (u)− vs‖V ≤ δ0}.

Temporarily fix some ρ > 0, and assume toward a contradiction that
(4.20)
‖∇Eε

U (u)‖U∗ ≥ 8δ2/ρ for all u ∈ S2ρ such that EU (u) ∈ [cε − 2δ2, cε + 2δ2],

where S2ρ = {u ∈ U : dist(u, S) ≤ 2ρ}. Then the hypotheses of Lemma 4.7
are satisfied (with c replaced by cε and δ replaced by δ2). Let φ be a function
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satisfying (i)–(v) from that lemma. Let us write uε
1(w) := φ(1, Qε

UW (w)).
We will prove below that
(4.21)

∃ w ∈M such that P ε
WU ◦ uε

1(w) = 0 and ‖P ε
V U ◦ uε

1(w)− vs‖V ≤ δ0.

It follows from this and the definition of cε that supw∈M Eε
U (uε

1(w)) ≥ cε for
all ε sufficiently small.

On the other hand, from (4.18) and property (ii) of φ, we deduce that
supw∈M Eε

U (uε
1(w)) ≤ cε − δ2. This is a contradiction, which proves that

there exists some uε
ρ ∈ S2ρ such that

(4.22)
‖∇Eε

U (uε
ρ)‖U∗ < 8δ2/ρ and Eε

U (uε
ρ) ∈ [cε − 2δ2, cε + 2δ2] ⊂ [c− δ1, c+ δ1].

If now we consider a sequence ρn tending to ∞, then {uε
ρn
}∞n=1 gives us a

sequence satisfying the conclusions of Theorem 4.4.
It remains to prove (4.21), which is the most technical part of the proof.

In fact we will prove
5. If φ ∈ C([0, 1]×U ;U) is any map satisfying properties (i), (iii), (iv),

(v) of Lemma 4.7, and if we write uε
t (w) := φ(t, Qε

UW (w)), then for every
t ∈ [0, 1],
(4.23)
∃ w̄ ∈M such that P ε

WU ◦ ut(w̄) = 0 and ‖P ε
V U ◦ ut(w̄)− vs‖V ≤ 1

2δ0.

Note that (4.23) immediately implies (4.21).
We henceforth suppress the superscript ε and write simply ut. We will

also use the notation

vt = P ε
V U ◦ uε

t : M → V, wt = P ε
WU ◦ uε

t : M → R`.

for w ∈W and t ∈ [0, 1].
First, if w ∈ ∂M , then Eε

U (φ(w)) = Eε
U (Qε

UW (w)) ≤ aε < cε − 2δ2 by
(4.19), so property (i) of φ implies that

(4.24) ut(w) = φ(t, Qε
UW (w)) = Qε

UW (w) for all w ∈ ∂M and t ∈ [0, 1].

Hence (4.12) implies that

(4.25) deg(wt,M) = 1 for all t ∈ [0, 1].

6. We next argue that
(4.26)
wt(w) 6= 0 for all w such that 1

2δ0 < ‖vt(w)− vs‖V ≤ 3
4δ0 and all t ∈ [0, 1].

Assume that t, w are such that ‖vt(w)−vs‖V ≤ 3
4δ0 and wt(w) = 0; we must

show that ‖vt(w)− vs‖V ≤ 1
2δ0. Let γ0 denote a small positive number that

will be fixed in a moment. It will turn out that γ0 depends only on δ0 and
r. Then Lemma 4.8, which is proved after this theorem, implies that if ε0
is sufficiently small, there exists v′t(w) ∈ V such that

(4.27) EV (v′t(w)) ≤ Eε
U (ut(w)) + δ2, ‖v′t(w)− vt(w)‖V < γ0.
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We will require that γ0 ≤ δ0/4; then ‖v′t(w) − vs‖V ≤ δ0. We also require
that γ0 be so small that

|PWV (v′)− PWV (v)| ≤ r

for all v, v′ ∈ V such that ‖v − vs‖V ≤ 1
2δ0 and ‖v − v′‖V ≤ γ0. This is

possible due to (4.5). In particular it follows that

|PWV (v′t(w))| = |PWV (v′t(w))−wt(w)|
= |PWV (v′t(w))− PWV (vt(w))|
≤ r.(4.28)

Next, note that

EV (v′t(w)) ≤ Eε
U (u0(w)) + δ2 by (4.27) and property (v) of φ

≤ cε + 2δ2 by (4.18)

≤ EV (vs) + r by (4.19).(4.29)

Then (4.29), (4.28) are precisely the hypotheses of Lemma 4.3, which implies
(recalling our condition (4.10) on r) that ‖v′t(w) − vs‖V ≤ δ0/4. Then the
triangle inequality and (4.27) yield ‖vt(w)− vs‖V ≤ δ0/2, which is exactly
(4.26).

7. We proceed by defining

At(σ) := {w ∈M : ‖vt(w)− vs‖V > σ}
for σ ∈ R and t ∈ [0, 1]. It is an immmediate consequence of (4.26) that for
σ ∈ [12δ0,

3
4δ0], wt does not vanish on ∂At(σ) and hence that deg(wt, At(σ))

is well-defined for such σ. Property (2.23) of degree further implies that for
every t ∈ [0, 1], there exists a number d(t) such that

(4.30) d(t) = deg(wt, At(σ)) for all σ ∈ [
1
2
δ0,

3
4
δ0].

We will prove that

(4.31) d(t) = 0 for all t ∈ [0, 1].

Note that A0(3
4δ0) is empty, by (4.16), so d(0) = 0. Since d(t) is an integer

for every t, it now suffices to prove that d(·) is continuous on the interval
[0, 1].

To see this, fix some t0 ∈ [0, 1]. Since (w, t) 7→ ‖vt(w)− vs‖V is contin-
uous, and hence uniformly continuous on M × [0, 1], we infer that

(4.32) At(
3
4
δ0) ⊂ At0(

2
3
δ0) ⊂ At(

1
2
δ0)

for t ∈ [0, 1] sufficiently close to t0. (Note that the subscript in the middle
term of (4.32) is t0 rather than t.) Thus (4.26) implies that for this range
of t, wt has no zeros on ∂At0(

2
3δ0), and hence (by the homotopy invariance

(2.25) of degree) that

deg(wt, At0(
2
3
δ0)) = deg(wt0 , At0(

2
3
δ0)) = 0.
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Moreover, deg(At0(
2
3δ0)\At(3

4δ0)) = 0; this is a consequence of (4.26), (4.32)
and property (2.23) of degree. Thus for such t,

d(t) = deg(wt, At(
3
4
δ0))

= deg(wt, At0(
2
3
δ0))− deg(wt, At0(

2
3
δ0) \At(

3
4
δ0))

= deg(wt, At0(
2
3
δ0)) = d(t0).

Thus the proof of (4.31) is completed.
8. It follows from (4.25) and (4.31) and the additivity property (2.24)

of degree that

deg(wt,M \At(1
2δ0)) = deg(wt,M)− deg(wt, At(1

2δ0)) = 1 for all t ∈ [0, 1]

and hence via the property (2.23) of degree that, for every t ∈ [0, 1], wt has
a zero in M \At(1

2δ0), After undoing the notation, this is exactly equivalent
to (4.23) and hence completes the proof of the theorem. �

This lemma was used above.

Lemma 4.8. Given K, γ0, δ > 0, there exists ε0 = ε0(K, γ0, δ) > 0 such
that for all ε ∈ (0, ε0) one has that the condition

(4.33) Eε
U (u) < K for some u ∈ U

implies the existence of v′ ∈ V such that

(4.34) ‖P ε
V U (u)− v′‖V < γ0 and Eε

U (u) > EV (v′)− δ

Proof. Suppose toward a contradiction that no such ε0 exists, so that there
exist sequences εn → 0 and un ∈ U satisfying (4.33), and such that

(4.35) Eεn
U (un) + δ ≤ inf{EV (v) : v ∈ V, ‖P ε

V U (un)− v‖V < γ0}

Let us write vn := P ε
V U (un) and wn := P εn

WU (uεn
n ) = PWV (vn). The energy

bound (4.33) and compactness assumption (3.6) imply that there exists some
v̄ ∈ V0 such that after passing to a subsequence (still labelled {vn}) if nec-
essary, vn → v̄ in V . We then deduce from (3.4) that

lim inf
n→∞

Eεn
U (un) ≥ EV (v̄).

On the other hand, since ‖vn − v̄‖V → 0, for sufficiently large n it must be
the case that

inf{EV (v) : ‖v − vn‖V < γ0} ≤ EV (v̄)
Recalling (4.35), we deduce that

lim sup
n→∞

Eεn
U (un) + δ ≤ EV (v̄) ≤ lim inf

n→∞
Eεn

U (un),

which is a contradiction. This proves (4.34). �



24 R.L. JERRARD AND P. STERNBERG

5. Critical points of arclength

We wish to illustrate the use of Theorem 4.4 by applying it to produce
critical points of the 2d Modica-Mortola energy (3.9) and 3d Ginzburg-
Landau energy (3.11), as well as some other examples. As was discussed
in Section 3, these problems Γ-converge to the mass of 1-currents; that is,
roughly speaking, they converge to the arclength of a Lipschitz continuous
curve. Throughout this section, we will assume that Ω ⊂ Rn+1, n ≥ 1,
is a bounded domain with smooth boundary. We will prove that given
an oriented line segment joining two points on ∂Ω that is a nondegenerate
saddle point of arclength in a naive sense, the associated current T∗ is a
saddle point in the sense of Definition 4.1 of the Γ-limit of the functional

(5.1) EV (T ) =
{

M(T ) if T ∈ V0 := R′
1(Ω)

+∞ if not.

where V = F ′1(Ω).
To formulate these results, we introduce some notation. As usual, we

will write points in Rn+1 either in the form (x, xn+1) with x ∈ Rn, or simply
as X ∈ Rn+1. Throughout this section, Br denotes the n-dimensional ball
{x ∈ Rn : |x| < r}. We will write

Cr := Br × R ⊂ Rn+1,

We assume that for some fixed R > 0, there are two C3 functions h−, h+ :
BR → R and a connnected component ΩR of Ω ∩ CR such that

(5.2) ΩR = {(x, xn+1) : |x| < R, h−(x) < xn+1 < h+(x)}
with

h−(0) = 0 and L := h+(0) > 0.
We will write ∂Ω−, ∂Ω+ for the lower and upper portions of ∂ΩR respectively
and we will write

ψ±(x) := (x, h±(x)).
We will also write

Ωr = ΩR ∩ Cr for r ≤ R.

A crucial role in describing saddle points of length will be played by the
distance function d0 : Rn × Rn → R given by

(5.3) d0(x, y) := |ψ−(x)− ψ+(y)| =
√
|x− y|2 + (h−(x)− h+(y))2.

The main result of this section is

Theorem 5.1. Let Ω be an open, bounded set in Rn+1, n ≥ 1. Assume that
(5.2) holds and that d0 has a non-degenerate critical point at (0, 0) in the
sense that

(5.4) ∇d0(0, 0) = (−∇h−(0),∇h+(0)) = 0 and det D2d0(0, 0) 6= 0,

where D2d0 denotes the Hessian matrix of second partials. Let T∗ denote
the multiplicity 1 current corresponding to the oriented line segment in Ω
starting at ψ−(0) and ending at ψ+(0), and assume that T∗ ∈ R′

1(Ω). Let EV
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be given by (5.1) with V = F ′1(Ω). Then T∗ is a saddle point of EV : V → R
in the sense of Definition 4.1.

For applications to the Modica-Mortola problem, we will also need

Corollary 5.2. Suppose that n = 1, and that all assumptions of Theorem
5.1 hold. Then T∗ is a saddle point of EV : V → R as defined in (3.10).

The proof of the corollary appears at the end of this section.
The nondegeneracy condition states in geometric language that there

are no nontrivial Jacobi fields associated with the segment connecting ψ−(0)
and ψ+(0) and with natural boundary conditions; this condition appears also
in [15, 24, 6].

Since T∗ is by definition integer multiplicity rectifiable, the point of the
assumption T∗ ∈ R′

1(Ω) is that we require T∗ to be a boundary. This holds
if and only if ψ−(0) and ψ+(0) belong to the same component of ∂Ω.

Recall that Definition 4.1 involves maps PWV : V → W and QV W :
W → V , where W is a subset of some Euclidean space R`. Here ` will turn
out to be the number of negative eigenvalues of D2d0(0, 0).

5.1. Construction of PWV . Invoking the non-degeneracy assumption, let
us denote the 2n not necessarily distinct eigenvalues of the symmetric matrix
D2d0(0, 0) by

(5.5) λ1 ≤ . . . ≤ λ` < 0 < λ`+1 ≤ . . . λ2n.

Here we assume ` ∈ {0, . . . , 2n}. The case ` = 0 corresponds to a local mini-
mum of arclength. In this case, our arguments will show that the associated
current T∗ is a local minimizer of mass. This has been proved elsewhere
when l = 0, under the assumption that h− is concave and h+ convex near
x = 0, [14, 23]. Below we adopt the convention that when l = 0, R` = {0}.

We let A denote the 2n × 2n matrix having as column vectors an or-
thonormal basis of eigenvectors for D2d0(0, 0) ordered as in (5.5). Then we
introduce w = (w1, . . . , w`) and ζ = (ζ1, . . . , ζ2n−`) through the relation

(5.6) A

(
x
y

)
=
(
w
ζ

)
.

We also define a linear mapping p : R2n → R`

(5.7) p(x, y) = w,

Note from the construction that AAT = ATA = I. Also, from Taylor’s
Theorem, we have

d0(x, y) = d0

(
AT

(
w
ζ

))
= L+ λ1w

2
1 + . . .+ λ`w

2
` + λ`+1ζ

2
1 + . . .+ λ2nζ

2
2n−` + o(|w|2 , |ζ|2)(5.8)

The idea of the construction of PWV is as follows: Note that p : R2n →
R` is a projection onto the “unstable directions” of d0 near (0, 0), that
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is, onto directions associated with negative eigenvalues of D2d0. Given a
current T near T∗, we would similarly like to construct a projection onto
an `-dimensional space of unstable directions for the functional EV given by
(5.1), which is a sort of extension of d0 to a much larger space. Heuristically,
we would like to define

(5.9) PWV (T ) = p(x(T ), y(T )),

where x(T ) is the “lower endpoint of T” (in the coordinates we have been
using for ∂Ω−), and y(T ) is the “upper endpoint.” Then for example, to
verify condition (4.1) in the definition of a saddle point, we would have to
check that if T corresponds to a curve near T∗ whose endpoints x(T ), y(T )
satisfy the constraint p(x(T ), y(T )) = 0, then this curve is longer than L.
This is immediate from (5.5), (5.7), (5.8).

However, (5.9) does not in general make sense for an arbitrary rectifiable
1-current T , and even in cases when we can define what we mean by an upper
and lower endpoint of T , the map

(5.10) T 7→ lower endpoint of T

for example, is certainly not continuous in the V (flat) norm. To get
around this, we define Rn-valued 1-forms Φ−,Φ+ such that, for example,
T 7→ T (Φ−) is a smoothing of (5.10), constructed by averaging the “x-
coordinates” of T over level sets of the function s−(X) = dist (X, ∂Ω−) for
X ∈ Ω near ∂Ω−. Then we replace x(T ), y(T ) in (5.9) by T (Φ−), T (Φ+)
to obtain a map PWV that is formally similar to (5.9) but well-defined and
continuous in suitable weak topologies.

To set up the definitions of these 1-forms, we will need a bit more
notation. In particular, we will write ν±(x) := ± (−∇h±(x),1)

(1+|∇h±|2)1/2 for the outer
unit normal to ∂Ω at ψ±(x), and

(5.11) Ψ±(x, s) := ψ±(x)− sν±(x).

For concreteness we assume that

(5.12) h−(x) ≤ |x| ≤ L− |x| ≤ h+(x) in BR,

and note that d0(0, 0) = M(T∗) = L. It is convenient to assume that
R ≤ L/3. Appealing to (5.8), we also assume, taking R smaller if necessary,
that

(5.13) d0(x, y) ≥ L− λ−|w|2 + λ+|ζ|2 for all (x, y) ∈ BR ×BR

for λ− = 2|λ1| and λ+ = 1
2λ`+1.

Next, after further shrinking R if need be, we fix s0 > 0 such that

(5.14) Ψ−,Ψ+ are diffeomorphisms of BR × (0, s0) onto their images;

(5.15) {X ∈ ΩR/2 : dist(X, ∂Ω±) < s0} ⊂ Ψ±(B2R/3 × (0, s0))
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and

(5.16) |(∇xΨ±)v| ≥ 1
2
|v| in BR × (0, s0) for all v ∈ Rn.

The last conditions are possible since ∇h±(0) = 0. (Here (∇xΨ±) v denotes
matrix-vector multiplication.)

At this point R and s0 are fixed once and for all.
We remark that it is easy to check that

(5.17) ∂xiΨ
± · ∂sΨ± ≡ 0 for i = 1, 2, . . . , n and that |∂sΨ±| ≡ 1

in BR × (0, s0).
Let X 7→ (x±(X), s±(X)) denote the inverse maps of Ψ±, so that

(5.18)
x−(Ψ−(x, s)) = x, s−(Ψ−(x, s)) = s, x+(Ψ+(x, s)) = x, s+(Ψ+(x, s)) = s

in BR× (0, s0). We set s± = 0, x± = 0 away from the set Ψ±(BR× (0, s0)
)
.

Note that on the image of Ψ±, s± is just the distance from ∂Ω±, and also
that x±(X) = x if and only ψ±(x) is the unique closest point to X on ∂Ω.

Let η ∈ C∞c (BR) be a function such that η(x) = 1 if |x| < 2R/3 and
0 ≤ η ≤ 1 for all x, and define ξ± : Ω → BR ⊂ Rn by

(5.19) ξ±(X) :=
{
η(x±(X)) x±(X) if X ∈ Ψ±(BR × (0, s0)

)
,

0 if not.

Observe that the definitions and (5.15) imply that

(5.20) ξ± = x± in {X ∈ ΩR/2 : dist(X, ∂Ω±) < s0}.

We next introduce a new positive parameter s1 < 1
2s0, to be further specified

later, and we fix a smooth nonnegative function ω : R → [0,∞), satisfying

(5.21) supp(ω) ⊂⊂ (0, s1),
∫ s1

0
ω(s) ds = 1, ω ≤ 2/s1,

and we define vector-valued 1-forms Φ± = (φ±1 , . . . , φ
±
n ) by

(5.22) Φ±(X) = ∓ξ±(X)ω(s±(X)) ds±.

Note that Φ± are smooth; the discontinuities of ξ± and s± occur away from
the support of Φ±. Finally we define

(5.23) PWV (T ) := p(T (Φ−), T (Φ+)) for T ∈ F ′1(Ω).

This should be viewed as a well-defined if more complicated realization of
the heuristic definition given in (5.9).

Note that if T is a current corresponding to a Lipschitz curve γ : I → Ω,
then from (2.4) we find that

(5.24) T (Φ±) = ∓
∫

I
ξ±(γ(t)) ω(s±(γ(t)))

d

dt
s±(γ(t)) dt.

The interpretation of T (Φ−), for example, as an average of the “x-coordinate”
of T over level sets of s− can be extracted from (5.24) as follows: suppose
for simplicity that γ can be reparametrized near ∂Ω− in such a way that
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γ(s) = Ψ−(x(s), s) for some path x(s) ∈ BR/2, s ∈ (0, s0). (This can be
done if the original parametrization γ(t) moves monotonically away from
∂Ω− with increasing t, and remains close to T∗.) When this holds, it follows
from (5.24) and the definitions that

T (Φ−) =
∫
ξ−(γ(s))ω(s) ds =

∫
x(s)ω(s) ds

which is an average of the x-coordinates, as asserted.
We point out that for T = T∗, one has T∗(Φ±) = 0 since x±(X) = 0 for

X on the line segment joining ψ−(0) to ψ+(0). Hence,

(5.25) PWV (T∗) = 0.

This represents the first requirement of Definition 4.1.
We turn next to checking the continuity of the map PWV . In fact, we

will establish that PWV : V → W is Lipschitz continuous since this will
imply the extra requirement (4.5) of Theorem 4.4, to be needed later.

Lemma 5.3. There exists a constant C (depending on R, s0, ∂Ω but inde-
pendent of s1) such that for all T, T ′ ∈ F ′1(Ω) one has

(5.26) |PWV (T )− PWV (T ′)| ≤ C

s1
F(T − T ′).

One can check that (5.26) holds with C = 3max{‖∇ξ−‖∞, ‖∇ξ+‖∞}.

Proof. Given T and T ′ in F ′1(Ω), we can find S such that ∂S = T − T ′ and
M(S) ≤ 2F (T − T ′). Then

|T (Φ−)− T ′(Φ−)| = |(T − T ′)(Φ−)| = |∂S(Φ−)| = |S(dΦ−)|
≤ ‖dΦ−‖∞M(S).

Recalling (5.19), (5.21) and (5.22), one finds that

dΦ−(X) = ω(s−(X))
∂ξ−(X)
∂X i

∂s−(X)
∂Xj

dX i ∧ dXj

so that ‖dΦ−‖∞ ≤ C/s1, with C independent of s1. Hence,

|T (Φ−)− T ′(Φ−)| ≤ C

s1
F(T − T ′).

The same argument applies also to Φ+. Finally, it is clear from the defini-
tions (5.6), (5.7) and (5.23) that

|PWV (T )− PWV (T ′)| ≤ C
(
|T (Φ−)− T ′(Φ−)| + |T (Φ+)− T ′(Φ+)|

)
,

so (5.26) follows from the above estimates. �
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5.2. Verification of (4.1). The main part of the proof of Theorem 5.1
consists in verifying that T∗ is a strict local minimizer of mass in the flat
norm topology among competitors in the set {T ∈ R′

1(Ω) : PWV (T ) =
PWV (T∗) = 0} with PWV given by (5.23); this is condition (4.1) in our
definition of a saddle point.

This is the content of the following proposition.

Proposition 5.4. There exists a positive number δ0 such that if T ∈ R′
1(Ω)

satisfies the conditions
(5.27)

F(T − T∗) < δ0, PWV (T ) = PWV (T∗) = 0, and M(T ) ≤ M(T∗)

for PWV given by (5.23), then

(5.28) T = T∗.

Given a current T satisfying (5.27), we begin the proof of Proposition
5.4 by arguing that we can modify it in order to be able to assume cer-
tain good properties. Our first lemma allows us to replace T by a current
corresponding to a single Lipschitz curve that is uniformly close to T∗:

Lemma 5.5. There exists a constant c such that, for any r ∈ (0, R), if
δ0 < cr2 and T ∈ R′

1(Ω) satisfies (5.27), then there exists a 1-current T ′ ∈
R′

1(Ω) that consists of a single Lipschitz curve starting in Cr ∩∂Ω−, ending
in Cr ∩ ∂Ω+, and satisfying

(5.29) suppT ′ ⊂ Ω̄r,

(5.30) M(T − T ′) = M(T )−M(T ′).

Proof of Lemma 5.5. We will show that the conclusions of the theorem hold
with c = 1/400. Thus, we fix any r ∈ (0, R), and we assume that

(5.31) δ0 <
1

400
r2,

Then we will prove the existence of a current T ′ satisfying (5.29) and (5.30).
1. First, in view of (5.27), there exists a 2-current S such that

∂S = T − T∗ in Ω, M(S) < δ0.

For X = (x, xn+1) ∈ Ω, let pn+1(X) = xn+1. Writing 〈S, pn+1, s〉 as usual
to denote a slice of S by a level set of pn+1, note that

∂〈S, pn+1, s〉 = 〈∂S, pn+1, s〉 = 〈T, pn+1, s〉 − 〈T∗, pn+1, s〉
= 〈T, pn+1, s〉 − δ(0,s)(5.32)

for a.e. s ∈ (0, L), since it is clear from (2.10) and our geometric assumptions
(see in particular (5.12)) that 〈T∗, pn+1, s〉 = δ(0,s) for such s. Then (2.11)
implies that

(5.33)
∫

M(〈S, pn+1, s〉)ds ≤ M(S) < δ0.
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so that in particular, M(〈S, pn+1, s〉) <∞ for a.e. s.
2. We define the sets

Σ0 := {s ∈ (0, L) : M(〈T, pn+1, s〉 x Ωr/2) = 0}
Σ1 := {s ∈ (0, L) : M(〈T, pn+1, s〉) = M(〈T, pn+1, s〉 x Ωr/2) = 1}
Σ2 := {s ∈ (0, L) : M(〈T, pn+1, s〉) ≥ 2}.

Recall that if T is a current and B a Borel set, then T xB denotes the
restriction of T to B, defined in (2.3). For a.e. s ∈ Σ1, T intersects the
level set p−1

n+1(s) exactly once, at a point within distance r/2 of T0. This is
a good property, and our goal for now is to show that Σ1 is large.

Note that for any s ∈ (0, L) such that 〈T, pn+1, s〉 is well-defined, one
has that s 6∈ Σ1 if and only if s ∈ Σ0 ∪ Σ2, though Σ0 and Σ2 are not
necessarily disjoint. Thus

(5.34) |Σ0|+ |Σ1|+ |Σ2| ≥ L = M(T∗) ≥ M(T ).

So to prove that |Σ1| is large, it suffices to show that |Σ0| and |Σ2| are small.
We first consider Σ0. For a.e. s ∈ Σ0, it follows from (5.32) and

the definition of Σ0 that ∂〈S, pn+1, s〉 x Ωr/2 = −δ(0,s). Then, by applying
Lemma 2.3 to Q = 〈S, pn+1, s〉 we find that

M(〈S, pn+1, s〉) ≥ dist((0, s), ∂Ωr/2).

Assumptions (5.2) and (5.12) imply that

dist((0, s), ∂Ωr/2) ≥
1
2

min{r, s, L− s}

for s ∈ (0, L). Thus

M(〈S, pn+1, s〉) ≥
1
2

min{r, s, L− s} for a.e. s ∈ Σ0.

Comparing this to (5.33), we find that δ0 ≥ 1
2

∫
Σ0

min {s, r, L− s} ds. To
estimate the right-hand side from below, note that the integral decreases
if we replace Σ0 with the set (0, |Σ0|

2 ) ∪ (L − |Σ0|
2 , L) of the same measure

but concentrated near the ends of the interval (0, L), where the integrand
min {s, r, L− s} is smallest. This leads to the inequality

δ0 ≥
1
2

∫
Σ0

min {s, r, L− s} ds ≥
∫ |Σ0|/2

0
min{s, r, L− s} ds

=
∫ |Σ0|/2

0
min{s, r} ds ≥ 1

8
min{|Σ0|2, r2}.

Since we have assumed that δ0 < r2/400, it must be the case that the
right-hand side above is smaller than r2/8, hence that

(5.35) |Σ0| = min{|Σ0|, r} ≤ 3
√
δ0.
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3. Next, note that

M(T ) ≥
∫ L

0
M(〈T, pn+1, s〉) ds ≥ |Σ1|+ 2|Σ2|.

Combining this with (5.34), we see that |Σ2| ≤ |Σ0| ≤ 3
√
δ0, and hence that

(5.36) |Σ1| ≥ L− 9
√
δ0.

Also, from the definition of Σ1,

M(T x Ωr/2) ≥
∫

Σ1

M(〈T, pn+1, s〉 x Ωr/2) ds = |Σ1| ≥ L− 9
√
δ0.

Thus, since M(T ) ≤ L, we have

(5.37) M(T x (Ω \ Ωr/2)) ≤ 9
√
δ0.

4. Now write T as a sum T =
∑
Ti of indecomposable currents (so that

each is the current associated with integration over a Lipschitz curve) and

(5.38)
∑

M(Ti) = M(T ) ≤ L,
∑

M(∂Ti) = M(∂T ) = 0.

Now if for some i one has supp(Ti)∩Ωr/2 6= ∅, then we claim that our choice
of δ0 guarantees this Ti satisfies

(5.39) supp(Ti) ⊂ Ωr.

To see this, note that any indecomposable Ti whose support intersects both
Ωr/2 and Ω\Ωr must correspond to a curve that stretches between these two
sets, and therefore has arclength at least r/2 outside Ωr/2. It would follow
that

M(Ti x (Ω \ Ωr/2)) ≥ r/2,

which contradicts (5.37) in light of our assumption (5.31) that δ0 < r2/400.
5. Let γi denote the Lipschitz curves associated with the currents Ti in

the decomposition T =
∑
Ti. Then for any positive integer j, let

Σ1,j := {s ∈ Σ1 :
∑

i

H0(γi ∩ p−1
n+1(s)) = j}.

We claim that

(5.40) |Σ1,1| ≥ L− 18
√
δ0.

(In fact |Σ1,1| = |Σ1|, but this is a bit harder to prove.) The explicit formula
(2.10) for the slice of an indecomposable 1-current implies for a.e. s that

M(〈T, pn+1, s〉) ≤
∑

i

M(〈Ti, pn+1, s〉) =
∑

i

H0(γi ∩ p−1
n+1(s)).

It follows that
∑

iH0(γi ∩ p−1
n+1(s)) ≥ 1 for a.e. s ∈ Σ1, and hence that

(5.41)
∞∑

j=1

|Σ1,j | = |Σ1| ≥ L− 9
√
δ0
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Now we essentially repeat arguments from Step 3: we compute

L ≥ M(T ) =
∑

i

M(Ti) =
∑

i

H1(γi) ≥
∫

Σ1

∑
i

H0(γi ∩ p−1
n+1(s)) ds

=
∞∑

j=1

j |Σ1,j |

≥ |Σ1,1|+ 2
∞∑

j=2

|Σ1,j | .

Together with (5.41), this implies (5.40).
6. Our assumptions (5.12) about the geometry of ΩR imply that if

s ∈ (R, 2R) ⊂ (R,L − R), then p−1
n+1(s) separates the two components

∂Ω− and ∂Ω+ of Ω̄R ∩ ∂Ω. Fix s ∈ Σ1,1 ∩ (R, 2R); this is possible since
|(0, L) \ Σ1,1| ≤ 18

√
δ0 < r ≤ R, from Step 5 and our choice of δ0. Let γi

be the Lipschitz curve that intersects p−1
n+1(s); there is a unique such curve

due to the definition of Σ1,1. Since s ∈ Σ1, the point at which γi intersects
p−1

n+1(s) must be in Ωr/2. Therefore, by (5.39), γi is entirely contained in
Ωr. Since ∂Ti = 0, γi must either be a closed loop or must start and end
in ∂Ω. The former is impossible in view of the fact that γi intersects the
hyperplane p−1

n+1(s) exactly once. Then it follows from the choice of s that
γi must run from ∂Ω− through Ωr to ∂Ω+.

7. We finally define T ′ to be the indecomposable current Ti associated
with the Lipschitz curve γi from the previous step. Then we have proved
(5.29), and (5.30) follows from (5.38). �

Having proved Lemma 5.5, we now turn to the proof of Proposition 5.4,
which is the central part of the proof of Theorem 5.1.

Proof of Proposition 5.4. 1. Recall that s0 is a number, depending on the
geometry of ∂Ω, that was fixed in (5.14), (5.15), (5.16), and that the defi-
nition of PWV involves a small parameter s1 ≤ 1

2s0. This parameter will be
required to satisfy conditions (5.45), (5.57), (5.59), appearing in the proof
below.2

We next select a small parameter r as follows: Note that since the map(
x
y

)
7→
(
w
ζ

)
is an isometry, it follows from (5.13) that d0(x, y) ≥ L − 2λ−r2

for all (x, y) ∈ Br ×Br. We fix r such that r ≤
√
s1/2λ−, so that

(5.42) dist(Cr ∩ ∂Ω−, Cr ∩ ∂Ω+) ≥ L− s1

We also insist that r ≤ R/2, so that the maps x±, s± are defined for points
in Ωr that are within distance s0 of ∂Ω, using (5.15).

2One can check that s1 = 1
2

min{s0, dΩ, 1
10λ−(‖∇ξ±‖∞CΩ)2

, 1
104 λ−

} satisfies the stated

conditions, where dΩ and CΩ are defined in Lemma 2.2, ξ± are defined in (5.19), and
‖∇ξ±‖∞ denotes max{‖∇ξ−‖∞, ‖∇ξ+‖∞}.
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Having fixed r, we take δ0 < cr2 for the small number c from Lemma
5.5 (in fact we have shown that c = 1/400 is small enough). We will prove
that the conclusions of the Proposition hold for this δ0.

Now let T be a current satisfying the hypotheses (5.27). Applying
Lemma 5.5 for the above choice of δ0, we obtain a current T ′ corresponding
to a single Lipschitz curve supported in Ωr and satisfying (5.30). Let γ :
[0, L′] → Ω̄r denote the corresponding Lipschitz curve, parametrized by
arclength.

2. We will write δ1 := M(T∗) − M(T ′), with δ1 ≥ 0 by assumption.
(We will eventually show that δ1 = 0.) Note from (5.30) and (5.42) that

(5.43) L′ = M(T ′) = length(γ) ≥ dist(Cr ∩ ∂Ω−, Cr ∩ ∂Ω+) ≥ L− s1

by (5.42). In particular, it follows that δ1 ≤ s1.
Then by (5.27) and (5.30),

(5.44) M(T − T ′) = M(T )−M(T ′) ≤ M(T∗)−M(T ′) = δ1 ≤ s1.

We additionally impose the condition

(5.45) s1 < dΩ (defined in the statement of Lemma 2.2),

and then it follows from Lemma 2.2 that F(T − T ′) ≤ CΩM(T − T ′)2.
Recalling that PWV (T ) = PWV (T∗) = 0, we see from Lemma 5.3 and (5.44)
that

|PWV (T ′)| = |PWV (T ′ − T )| ≤ C

s1
F(T − T ′)

≤ C

s1
M(T − T ′)2 ≤ C

s1
δ21 ≤ C

√
δ1
√
s1.(5.46)

Here the constant depends on ∂Ω, R and s0 but is independent of s1.
3. Recall that γ(0) ∈ ∂Ω− and γ(L′) ∈ ∂Ω+). Define

τ− := max{t > 0 : dist(γ(t), ∂Ω−) ≤ s1}
τ+ := max{t > 0 : dist(γ(L′ − t), ∂Ω+) ≤ s1}.

Using (5.42) we see that

L− s1 ≤ dist(Cr ∩ ∂Ω−, Cr ∩ ∂Ω+)

≤ dist(Cr ∩ ∂Ω−, γ(τ−)) + |γ(τ−)− γ(L′ − τ+)|
+ dist(γ(L′ − τ+), Cr ∩ ∂Ω+)

= |γ(τ−)− γ(L′ − τ+)|+ 2s1.

Also, since γ is parametrized by arclength,

L ≥ L′ ≥ τ− + |γ(τ−)− γ(L′ − τ+)|+ τ+.

By combining these we find that τ− + τ+ ≤ 3s1. Again, because of the
arclength parametrization, τ−, τ+ ≥ s1, so we conclude that

(5.47) τ+, τ− ≤ 2s1
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4. In particular, dist(γ(t), ∂Ω) ≤ 2s1 ≤ s0 for t ∈ (0, τ−)∪(L′−τ+, L′).
This together with the fact that γ(t) ∈ Ωr for all t, our assumption r ≤ R/2,
and (5.15), implies for example that γ(t) ∈ Ψ−(BR× (0, s0)) for t ∈ (0, τ−).
We will abuse notation somewhat and write

x−(t) = x−(γ(t)) ∈ Br, s−(t) = s−(γ(t)) ∈ [0, 2s1],

for t ∈ [0, τ−], and similarly

x+(t) = x+(γ(L′ − t)), s+(t) = s+(γ(L′ − t))

for t ∈ [0, τ+]. These are Lipschitz functions, since x± and s± are smooth
and γ is Lipschitz. We differentiate the relation γ(t) = Ψ−(x−(t), s−(t)) to
find that

γ′(t) = ∇xΨ−dx
−

dt
+
∂Ψ−

∂s

ds−

dt
= ∇xΨ−dx

−

dt
− ν−(x−)

ds−

dt
.

Squaring both sides and using (5.15), (5.17), we find that

(5.48) 1 = |γ′|2 =
∣∣∣∣∇xΨ−dx

dt

−∣∣∣∣2 +
(ds
dt

−)2 ≥ 1
4

∣∣∣∣dxdt −
∣∣∣∣2 +

(ds
dt

−)2
.

5. Next, note that for any t− ∈ [0, τ−] and t+ ∈ [0, τ+], since γ is
parametrized by arclength,

(5.49) M(T ′) = L′ ≥ t− + t+ + |γ(t−)− γ(L′ − t+))|.

Also, note from the definitions that for example

|Ψ(x−(t−), 0)− γ(t−)| = |Ψ(x−(t−), 0)−Ψ(x−(t−), s−(t−))| = s−(t−),

so the triangle inequality implies that

d0(x−(t−), x+(t+)) = |Ψ(x−(t−), 0)−Ψ(x+(t+), 0)|
≤ s−(t−) + |γ(t−)− γ(L′ − t+))|+ s+(t+).(5.50)

Combining this with (5.49) and recalling the notation δ1 = M(T∗)−M(T ′),
we find that

−δ1 ≥ [t− − s−(t−)] + [t+ − s+(t+)] + [d0(x−(t−), x+(t+))− L].

For (t−, t+) ∈ [0, τ−]× [0, τ+], we define w(t−, t+), ζ(t−, t+) by

(5.51)
(
w
ζ

)
= A

(
x−(t−)
x+(t+)

)
,

for A from (5.6). Then we deduce from (5.13) that

(5.52) [t− − s−(t−)] + [t+ − s+(t+)] + δ1 ≤ λ−|w|2 − λ+|ζ|2.

6. Now we claim that

(5.53) s−(t−)2 +
1
4
|x−(0)− x−(t−)|2 ≤ (t−)2
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and similarly (s+)2+ 1
4 |x

+(0)−x+|2 ≤ (t+)2. This follows from (5.48), which
can be rewritten

| d
dt

(
1
2
x−, s−)| ≤ 1

for all t− ∈ (0, τ−]. Thus∣∣∣∣(12x−(t−), s−(t−)
)
−
(1
2
x−(0), 0

)∣∣∣∣
=

∣∣∣∣∣
∫ t−

0

d

dt

(
1
2
x−, s−

)
dt

∣∣∣∣∣ ≤
∫ t−

0

∣∣∣∣(1
2
dx−

dt
,
ds−

dt

)∣∣∣∣ dt ≤ t−.

This is (5.53).
7. Since the map

(
x
y

)
7→
(
w
ζ

)
is a linear isometry,

|w(0, 0)− w(t−, t+)|2 ≤
(
|x−(0)− x−(t−)|2 + |x+(0)− x+(t+)|2

)
.

Thus, by adding (5.53) and its counterpart for t+, s+ etc, we obtain

(5.54)
1
4
|w(0, 0)− w(t−, t+)|2 ≤ [(t−)2 − (s−)2] + [(t+)2 − (s+)2].

8. Next we will use the constraint (5.46) to show that we can find some
(t−, t+) such that

(5.55) |w(t−, t+)| ≤ C|w(0, 0)− w(t−, t+)|.

for some absolute constant C. This is the key point in the proof. We use
(5.20) to rewrite T (Φ−) (see (5.24)) in the form

T (Φ−) =
∫ τ−

0
x−(t)f−(t)dt, f−(t) = ω(s−(t))

d

dt
s−(t).

We define f+ in a similar way. A change of variables and the definition
(5.21) of ω show that ∫ τ−

0
f−(t−) dt− = 1

and (5.47), (5.48) and (5.21) imply that∫ τ−

0
|f−(t−)| dt− ≤ τ−‖f−‖∞ ≤ τ−‖ω‖∞ ≤ 4.

The same estimates hold for f+. Now, since p : R2n → R` is linear,

PWV (T ′) = p(T (Φ−), T (Φ+))

=
∫ τ+

0

∫ τ−

0
p(x−(t−), x+(t+)) f−(t−)f+(t+) dt− dt+

=
∫ τ+

0

∫ τ−

0
w(t−, t+) f−(t−) f+(t+) dt− dt+
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We assume that w(0, 0) 6= 0 — otherwise (5.55) is obvious — and we write
η := w(0,0)

|w(0,0)| . By taking t− = t+ = 0 in (5.52) we find that

|w(0, 0)| ≥ (δ1/λ−)1/2.

We combine the above inequality with (5.46), to see that

(5.56) |η · PWV (T ′)| ≤ C
√
δ1
√
s1 ≤ C

√
s1
√
λ−|w(0, 0)|.

where C is independent of s1. We now require that

(5.57) s1 ≤
1

4C2λ−
, for the same C as in (5.56).

Then |η · PWV (T ′)| ≤ 1
2 |w(0, 0)|, and so

1
2
|w(0, 0)| ≤ |w(0, 0)| − η · PWV (T ′)

= η · [w(0, 0)− PWV (T ′)]

≤ η ·
∫ τ+

0

∫ τ−

0
[w(0, 0)− w(t−, t+)] f−(t−) f+(t+) dt− dt+

≤
∫ τ+

0

∫ τ−

0
|w(0, 0)− w(t−, t+)| |f−(t−)| |f+(t+)| dt− dt+

≤ 16 max
{
|w(0, 0)− w(t−, t+)| : t− ∈ [0, τ−], t+ ∈ [0, τ+].

}
In other words,

|w(0, 0)| ≤ 32 |w(0, 0)− w(t−, t+)|
for some (t−, t+). It follows that

|w(t−, t+)| ≤ |w(t−, t+)− w(0, 0)| + |w(0, 0)| ≤ 33|w(0, 0)− w(t−, t+)|
at the same point (t+, t−), proving (5.55).

9. Now by combining (5.52), (5.55), and (5.54), we find that

(t− − s−) + (t+ − s+) ≤ Cλ−
[
((t−)2 − (s−)2) + ((t+)2 − (s+)2)

]
for some numerical constant C. Note from (5.47) that ((t−)2 − (s−)2) =
(t− − s−)(t− + s−) ≤ 4s1(t− − s−) for example, so the above reduces to

(5.58) (t− − s−) + (t+ − s+) ≤ Cλ−s1[(t− − s−) + (t+ − s+)].

We now require that

(5.59) s1 ≤
1

2Cλ−
, for the same C as in (5.58).

Then
t− = s−(t−), t+ = s+(t+).

10. Now (5.54) implies that w(0, 0) = w(t−, t+) for the point (t−, t+)
considered above. Since this same point also satisfies (5.55), we conclude
that w(0, 0) = w(t−, t+) = 0. Then (5.52) (evaluated at (t−, t+) = (0, 0))
implies that δ1 = 0 and that ζ(0, 0) = 0.
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Then (5.51) implies that x−(0) = 0 and x+(0) = 0.
Undoing the notation, this means that the curve γ starts at the point

(0, 0) and ends at the point (0, L). Since the length of the curve is at most
L, it must consist of the straight segment joining these two points.

Since T∗ is exactly the current corresponding to integration over this
segment, it follows that T ′ = T∗.

Finally, recall that at the first step of this proof, we used Lemma 5.5
to replace a given current T by a current T ′ with better properties; all of
our arguments since then have dealt with T ′. So to finish the proof we must
show that T = T ′. This is easy, however, since from (5.30),

M(T − T ′) = M(T )−M(T ′).

By hypothesis, M(T ) ≤ M(T∗) = M(T ′), so we conclude that M(T −T ′) ≤
0, and hence that T = T ′. �

5.3. Construction of QV W . Verification of (4.2)–(4.4). To complete
the proof of Theorem 5.1, it remains to construct a continuous map QV W

satisfying the conditions (4.2)–(4.4) of Definition 4.1. For this purpose, we
introduce the notation Txy to denote the element of R′

1(Ω) corresponding
to the multiplicity one, oriented line segment joining ψ−(x) to ψ+(y). Note
that with this notation, one has T∗ = T00.

For given w ∈ R` with |w| small, we would like to find values x(w) and
y(w) in Rn such that the 1-current Tx(w)y(w) can be used as a definition
of QV W (w). For this to be successful, we will in particular need to fulfill
requirement (4.3), which reads

(5.60) A

(
Tx(w)y(w)(Φ−)
Tx(w)y(w)(Φ+)

)
=
(
w
0

)
,

in light of the definition (5.23) of PWV .

Lemma 5.6. There exists a positive number a and C1 functions x(w) and
y(w) defined for w ∈ Ba ⊂ R` such that (5.60) holds.

Proof. We define

F (x, y) =
(
Txy(Φ−)
Txy(Φ+)

)
.

Note that F (0, 0) = (0, 0) ∈ Rn × Rn. If we can show that F is invertible
near (0, 0), then (since A is nonsingular) we can define (x(w), y(w)) by

(5.61) (x(w), y(w)) = F−1(A−1

(
w

0

)
).

Then (5.60) follows immediately. We check the local invertibility of F at
(0, 0) using the Inverse Function Theorem. Since it is clear that F is C2, it
suffices to check that

(5.62) DxyF =
(
DxTxy(Φ−) DyTxy(Φ−)
DxTxy(Φ+) DyTxy(Φ+)

)
is nonsingular
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when evaulated at x = y = 0. A rather lengthy calculation shows that(
DxTxy(Φ−) DyTxy(Φ−)
DxTxy(Φ+) DyTxy(Φ+)

)
=(5.63) (∫ s1

0 B−(t) (1− t/L)ω(t) dt
∫ s1

0 B−(t) (t/L)ω(t) dt∫ s1

0 B+(t) (t/L)ω(t) dt
∫ s1

0 B+(t) (1− t/L)ω(t) dt

)
,

where B±(t) = [I − tD2h±(0)]−1.
¿From the definition of B− and B+ one sees that B± = I + O(t) with

a bound on the error depending on D2h±(0). Recalling that ω is supported
in the interval [0, s1], with

∫ s1

0 ω(t) dt = 1, we infer that

(5.64) DxyF =
(
I 0
0 I

)
+O(s1)

where O(s1) denotes a matrix whose entries are all bounded above and below
by Cs1, with the constant C depending on D2h±(0) and L. Thus it is clear
that the nullspace of DxyF (0, 0) is trivial if s1 is taken to be small enough.
Consequently, we have condition (5.62) satisfied so we conclude that for
some a > 0, there do indeed exist C1 functions x = x(w) and y = y(w)
defined on Ba ⊂ R` and taking values in Rn such that (5.60) is satisfied. �

We are now prepared to define QV W : W → V = F ′1 by

(5.65) QV W (w) := Tx(w)y(w).

Taken in conjunction with Lemma 5.3 and Proposition 5.4, the following
Proposition establishes Theorem 5.1.

Proposition 5.7. There exists a number a1 > 0 such that for W = Ba1 ⊂
R` and V = F ′1(Ω), the map QV W given by (5.65) is continuous. Further-
more, with PWV given by (5.23) and saddle point vs = T∗ (= T00 in the
notation of (5.65)), the conditions (4.2)–(4.4) are satisfied.

Proof. We first verify the assertion of continuity. To this end, given w1 and
w2 in Ba ⊂ R` (with a provided by Lemma 5.6), let Γ−w1w2

be the 1-current
corresponding to the shortest (oriented) curve along ∂Ω− joining the point
ψ−(x(w2)) to ψ−(x(w1)) and let Γ+

w1w2
be the 1-current corresponding to

the shortest curve along ∂Ω+ joining the point ψ+(y(w1)) to ψ+(y(w2)).
Then let Sw1w2 be the oriented, multiplicity one 2-current corresponding to
the surface of least area such that in Ω̄ one has ∂Sw1w2 = Tx(w1)y(w1) +Γ+−
Tx(w2)y(w2) + Γ−. Since w → x(w) and w → y(w) are continuous it is clear
that M(Sw1w2) → 0 as w2 → w1. Hence, F(QV W (w2) −QV W (w1)) → 0 as
well.

Next we note that conditions (4.2) and (4.3) follow immediately in light
of (5.60), along with (5.25).

To check the last condition (4.4), we fix any w ∈ Ba1 \ {0} and first
note that for EV given by (5.1) one has EV (QV W (w)) = d0(x(w), y(w)), cf.
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(5.3). Let us write
(w̃

ζ̃

)
= A

(x(w)
y(w)

)
. Then (5.8) implies that

EV (QV W (w))− EV (T00) = d0(x(w), y(w))− L ≤ −Λ−|w̃|2 + Λ+|ζ̃|2
(5.66)

for Λ− = 1
2 |λ`| > 0 and Λ+ = 2|λ2n| > 0. Since F is C2, (5.64) implies

that DF−1 =
(

1 0
0 1

)
+ O(s1) is a neighborhood of

(
0
0

)
. Recall also that

F−1(
(
0
0

)
) =

(
0
0

)
. Thus the Mean Value Theorem implies that |F−1(

(
x
y

)
) −(

x
y

)
| ≤ Cs1

∣∣∣(xy)∣∣∣ for x, y in a neighborhood of (0, 0). It follows from this and
(5.61) that(

w̃

ζ̃

)
= A

(
x(w)
y(w)

)
= AF−1(A−1

(
w

0

)
) =

(
w

0

)
+O(s1|w|)

Choosing s1 small enough, it follows that the right-hand side of (5.66) is
negative, which is what we needed to check. �

Finally, we prove Corollary 5.2, stated earlier, which adapts the above
results to the functional arising as the Γ-limit of the Modica-Mortola prob-
lem.

Proof of Corollary 5.2. For the duration of this proof only, let us write
EV,MM to denote the functional defined in (3.10), arising as the Γ-limit
of the Modica-Mortola functional, and EV,GL for the 2-dimensonal case of
the functional defined in (5.1). The only difference between these two func-
tionals is that

V0,MM := {T : EV (T ) <∞} ⊂ V0,GL := {T : EV,GL(T ) <∞}.
To see this, recall that every T ∈ V0,MM has the form T = ?dv/2 for
some v ∈ BV (Ω; {±1}). Then it follows from basic facts recalled in Section
2.2 (see for example (2.17), (2.14)) and the definition (2.7) of R′

1(Ω) that
T ∈ R′

1(Ω) = V0,GL. Although we do not need it here, note also that the
inclusion is strict, since for example every element of V0,MM is a current
with constant multiplicity 1, whereas R′

1(Ω) = V0,GL contains currents of
arbitrary integer multiplicity.

In particular, EV,MM (T ) = EV,GL(T ) for T ∈ V0,MM , and EV,GL(T ) ≤
EV,MM (T ) for all T . By inspection of the definition of saddle point, we then
find that to deduce the corollary from the theorem, it suffices to check that
QV W (w) ∈ V0,MM for all sufficiently small w (and in particular for T∗). This
is clear however from the definition (5.65) of QV W . �

6. some applications

In principle, it should be possible to combine the general asymptotic
minmax result, Theorem 4.4, with the description in Theorem 5.1 of critical
points of the functional EV as defined in (5.1), to prove existence results
for a very large number of examples of functionals that Γ-converge to an
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energy of the form of EV , that is, an energy involving the arclength of
an asymptotic singular set. In this section we carry this out for several
examples, as described in the introduction.

Throughout this section, we assume that Ω ⊂ Rn+1 is bounded, and
∂Ω is C3. In order to bypass some technicalities we also assume that there
exists some R > 0 such that

(6.1) {(x, xn+1) ∈ Ω : |x| < R} consists of a single connected component,

This component agrees with ΩR as defined in the last section. We continue
to use other notation introduced in the previous section, and we also assume
throughout this section that (5.4) holds, so that (0, 0) is a nondegenerate
critical point of the function d0 as defined in (5.3).

We give more or less exactly the same proof in every case. (The
Ginzburg-Landau functional with magnetic field requires a bit of extra work,
since we must also adapt Γ-convergence results from the literature.) We be-
gin with to the 3-d Ginzburg-Landau energy:

Theorem 6.1. Assume that Ω is a bounded domain in R3 with C3 boundary
and that (6.1) holds. Assume that the distance function d0 given by (5.3) has
a non-degenerate critical point at (0, 0) in the sense of (5.4). Let T∗ ∈ R′

1(Ω)
correspond to the oriented line segment joining ψ−(0) to ψ+(0). Then there
exists a value ε0 > 0 such that for all ε < ε0, the Ginzburg-Landau energy
Eε

U as defined in (3.11) possesses a critical point uε and Eε
U (uε) → EV (T∗)

as ε→ 0 for EV given by (3.13).

Proof. We recall that for the Ginzburg-Landau example, U = H1(Ω; C),
V = F1(Ω) and again W = Ba1 ⊂ R` for l ∈ {0, 1, 2, 3, 4}. The fact that
Eε

U Γ-converges to EV is the content in Theorem 3.2. Recall that the map
P ε

V U : H1(Ω; C) → F ′1(Ω) in this case is again independent of ε and is given
by PV U (u) = ?Ju

π , cf. (3.12). The mapping Qε
UW corresponding to the

recovery sequence construction will be described below. The Palais-Smale
condition is verified in Proposition 3.3.

We recall that for the case l = 0, we have adopted the convention
that R0 denotes {0} so that in particular, PWV is trivial in this case. For
l ∈ {1, 2, 3, 4}, we define the map PWV via (5.23) and we define QV W via the
formula QV W (w) = Tx(w)y(w), where we recall that Tx(w)y(w) is the element
of R′

1(Ω) corresponding to the directed line segment joining ψ−(x(w)) to
ψ+(y(w)) and x(w) and y(w) are defined through the condition (5.60). We
observe that T∗ (= T00) is a saddlepoint of EV in light of Theorem 5.1. We
also can appeal to Lemma 5.3 to see that the uniform continuity condition
(4.5) is met.

We now verify (4.6)–(4.8). In light of Remark 4.6, we will only need
to construct the mapping Qε

UW := Qε
UV ◦ QV W defined for w ∈ W . In

other words, we only require a recovery sequence for the case of a straight
interface. To define the mapping Qε

UW , we first introduce some auxiliary
functions. For w ∈ Ba1 ⊂ R`, let Ow : R3 → R3 be a rigid motion of
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R3 (that is, a combination of a translation and a rotation) that maps the
line passing through ψ1(x(w)) and ψ+(y(w)) onto the x3 coordinate axis
{(0, x3) : x3 ∈ R}. We always assume that (X,w) 7→ Ow(X) is C2; this is
clearly possible, since w 7→ (x(w), y(w)) is C2. We take uε

w to have the form

(6.2) uε
w(X) = vε(Ow(X)), with vε(X) = vε(x, x3) = qε(x)

where

(6.3) qε(x) =

{
x
ε if |x| ≤ ε
x
|x| if not.

We also write u0
w(X) = v0(Ow(X)), where v0(X) = q0(x) := x

|x| .
The smoothness of w 7→ Ow implies that (4.6) holds, in other words

that w 7→ uε
w is continuous, for every ε.

The verification of (4.7) follows by noting first that the 1-current Tx(w)y(w)

satisfies the relation
?J(u0

w) = π Tx(w)y(w),

cf. (2.20). Then through an appeal to (2.21) we have

‖P ε
V U ◦Qε

UW (w)−QV W (w)‖V =
1
π
F(?J(uε

w)− ?J(u0
w))

≤ 1
2π

∥∥j(uε
w)− j(u0

w)
∥∥

L1(Ω)
.

By a change of variables, since Ow is a rigid motion,

(6.4)
∥∥j(uε

w)− j(u0
w)
∥∥

L1(Ω)
=
∥∥j(vε)− j(v0)

∥∥
L1(Ow(Ω))

Recalling the definition of (2.19) of j(·), we compute

j(vε)(X)− j(v0)(X) ≤ C/|x|.
Since vε = v0 when |x| > ε, it is also clear that the set {X ∈ Ow(Ω) :
j(vε)(X) − j(v0)(X) 6= 0} is contained in a cylinder of radius ε and length
at most diam (Ω), so it is easy to see that the right-hand side of (6.4) is
bounded by Cεdiam (Ω). Thus (4.7) follows.

It remains to verify (4.8). This follows from inspection of the argument
on pages 110-111 of [23]. We give a slightly different argument here, which
can and will be repeated with very few changes for every example we consider
in this section. Changing variables as in (6.4), we find that

Eε
U (uε

w) =
1

π| ln ε|

∫
Ow(Ω)∩{(x,x3):|x|≤| ln ε|−1}

|∇vε|2

2
+

(|vε|2 − 1)2

4ε2
dX

+
1

π| ln ε|

∫
Ow(Ω)∩{(x,x3):|x|>| ln ε|−1}

|∇vε|2

2
+

(|vε|2 − 1)2

4ε2
dX(6.5)

= E1 + E2

A short calculation shows that
1

π| ln ε|

∫
{x∈R2:| ln ε|−1≤|x|≤diam (Ω)}

|∇qε|2

2
+

(|qε|2 − 1)2

4ε2
dx ≤ C

ln(|ln ε|)
| ln ε|
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for a constant depending on diam (Ω). This implies E2 ≤ C diam (Ω) ln(|ln ε|)
| ln ε| .

This bound is independent of w.
To estimate the other term E1 from (6.5), we use the notation

Aε
w := {x3 : (x, x3) ∈ Ow(Ω) for all x such that |x| ≤ | ln ε|−1}

Bε
w := {x3 : (x, x3) ∈ Ow(Ω) for some x such that |x| ≤ | ln ε|−1}.

Note that

1
π| ln ε|

∫
{x∈R2:|x|≤| ln ε|−1}

|∇qε|2

2
+

(|qε|2 − 1)2

4ε2
dx = 1 +O

(
ln(|ln ε|)
| ln ε|

)
Since vε(x, x3) = qε(x), the definition of Aε

w implies that

E1 ≥
∫

Aε
w

(
1

π| ln ε|

∫
{x∈R2:|x|≤| ln ε|−1}

|∇qε|2

2
+

(|qε|2 − 1)2

4ε2
dx

)
dx3

= H1(Aε
w)
(

1 +O
( ln(|ln ε|)
| ln ε|

))
.

Similar considerations imply that E1 ≤ H1(Bε
w)
(
1 + O( ln(|ln ε|)

| ln ε| )
)
. Finally,

elementary geometric arguments show that

H1(Aε
w),H1(Bε

w) → H1({x3 : (0, x3) ∈ Ow(Ω)}) as ε→ 0,

with the convergence uniform for w in a small neighborhood of the origin.
Also, the definition of Ow implies that

H1({x3 : (0, x3) ∈ Ow(Ω)}) = |ψ−(x(w))− ψ+(y(w))| = EV (Tx(w)y(w))

Thus Eε
w(uε

w) → EV (Tx(w)y(w)) uniformly for w in a neighborhood of the
origin, which is (4.8). �

In fact Theorem 6.1 above is a special case of a more general result:

Theorem 6.2. Assume that Ω is a bounded domain in Rn+1, n ≥ 2, with C3

boundary, and that (6.1) holds. Assume that the distance function d0 given
by (5.3) has a non-degenerate critical point at (0, 0) in the sense of (5.4).
Let T∗ ∈ R′

1(Ω) be defined as in Theorem 6.3. Then there exists a value
ε0 > 0 such that for all ε < ε0, the generalized Ginzburg-Landau energy Eε

U
as defined in (3.16) possesses a critical point uε and Eε

U (uε) → EV (T∗) as
ε→ 0 for EV given by (3.13).

Proof. The proof is exactly like that of Theorem 6.1, with (x, x3) ∈ R3

replaced by (x, xn+1) ∈ Rn+1 throughout. So for example, uε
w = Qε

UW (w) is
defined by formulas (6.2), where now qε is a map Rn → Rn defined exactly
as in (6.3), and Ow is a rigid motion of Rn+1 that maps the line passing
through x(w) and y(w) onto the xn+1 coordinate axis {(0, xn+1) : xn+1 ∈ R}.
Then the continuity (4.6) of w 7→ uε

w follows as before, and the estimate of
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Eε
U (uε

w) is also precisely the same as that of Theorem 6.1, once we note that
for n ≥ 3 one has

1
ωn| ln ε|

∫
{x∈Rn:| ln ε|−1≤|x|≤diam (Ω)}

|∇qε|n

n
+

(|qε|2 − 1)2

4ε2
dx ≤ C| ln ε|−1

1
ωn| ln ε|

∫
{x∈Rn:|x|≤| ln ε|−1}

|∇qε|n

n
+

(|qε|2 − 1)2

4ε2
dx = 1 +O(| ln ε|−1).

Finally, the verification of (4.7) goes precisely as in the proof of Theorem
6.1, after we recall that for a map u = (u1, . . . , un) ∈W 1,n(Ω ⊂ Rn+1; Rn),

J(u) =
1
n
d(u1 ∧ du2 ∧ . . . ∧ dun),

and also that ?J(u0
w) = ωnTx(w)y(w), see for example [2]. �

Next, we recover some known results about the 2d Modica-Mortola
functional.

Theorem 6.3. Assume that Ω is a bounded domain in R2 with C3 boundary
and that (6.1) holds. Assume that the distance function d0 given by (5.3) has
a non-degenerate critical point at (0, 0) in the sense of (5.4). Let T∗ ∈ R′

1(Ω)
be as defined in Theorem 6.1. Then there exists a value ε0 > 0 such that
for all ε < ε0, the Modica-Mortola energy (3.9) possesses a critical point uε

and Eε
U (uε) → EV (v∗) as ε→ 0 for EV given by (3.10).

As remarked in the introduction, stronger and more general results in
the same vein are established by very different techniques in [15, 24].

Proof. The proof again follows very closely the argument of the proof of
Theorem 6.1. Recall that we have recast the usual Modica-Mortola Γ-limit
so that U = H1(Ω; R), V = F ′1(Ω) and W = Ba1 ⊂ R`, l ∈ {0, 1, 2}. The
fact that Eε

U Γ-converges to EV is the content in Theorem 3.1. The map
P e

V U is again independent of ε and is given by PV U (u) = ?du/2, cf. (2.13).
The mapping Qε

UV corresponding to the recovery sequence construction will
be described below in the case needed for the present theorem. Proposition
3.3 establishes the fact that Eε

U verifies the Palais-Smale condition.
We again define PWV and QV W via (5.23) and (5.65). With an eye

towards verifying the hypotheses of Theorem 4.4, we first note that T∗ is
a saddlepoint of EV in light of Corollary 5.2. It remains to verify (4.6)–
(4.8) To this end, we now describe in detail the mapping Qε

UV . We define
uε

w = Qε
UW (w) for X = (x, x2) by

uε
w(X) = vε(Ow(X)) where vε(X) = vε(x, x2) = qε(x).

Now Ow : R2 → R2 is a rigid motion of R2 depending smoothly on w and
mapping the line through ψ−(x(w)) and ψ+(y(w)) onto the x2 coordinate
axis, and qε(x) = q(x/ε), where q : R → R denotes the (heteroclinic) solution
to the differential equation

(6.6) q′′ = q3 − q on R, q(±∞) = ±1, q(0) = 0.
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(In fact one can solve this explicitly to find q(t) = tanh(t/
√

2).) The conti-
nuity (4.6) follows exactly as before from the smoothness of w 7→ Ow.

As before we write u0
w(X) = v0(Ow(x)) where v0(X) = q0(x) = x/|x|.

Regarding condition (4.7) we use (2.14) to verify that

‖PV U ◦Qε
UW (w)−QV W (w)‖F ′1(Ω) ≤ ‖uε

w − u0
w‖L1(Ω) = ‖vε

w − v0
w‖L1(Ow(Ω))

≤ diam (Ω)‖qε − q0‖L1(R).

A change of variables shows that ‖qε − q0‖L1(R) = ε‖q1 − q0‖L1(R), proving
(4.7).

Finally, (4.8) follows almost exactly as in the proof of Theorem 6.1,
once we use (6.6) to see that

1
2
(
q′(t)

)2 =
1
4
(q(t)2 − 1)2.

This implies through equipartition of energy (i.e. A2 +B2 = 2AB) that

3
2
√

2

∫
{x∈R:| ln ε|−1≤|x|}

ε(qε ′)2

2
+

(|qε|2 − 1)2

4ε
dx ≤ Ce−1/

√
ε

and

3
2
√

2

∫
{x∈Rn:|x|≤| ln ε|−1}

ε(qε ′)2

2
+

(|qε|2 − 1)2

4ε
dx = 1 +O(e−1/

√
ε).

Changing x3 to x2 in the definitions of the sets Aε
w and Bε

w, the remainder
of the verification follows as in Theorem 6.1. �

We conclude this section on applications with a result on critical points
for the full 3d Ginzburg-Landau energy modeling superconductivity, namely,

Eε
U (u,A) :=
1

|ln ε|

{∫
Ω

(
1
2
|(∇− iA)u|2 +

1
4ε2

(|u|2 − 1)2
)
dX +

1
2

∫
R3

∣∣∇×A−Hε
ap

∣∣2 dX}.
(6.7)

Here, as before, u ∈ H1(Ω; C) for Ω ⊂ R3, while one typically takes the
vector field A : R3 → R3 to lie in the space H0 consisting of the completion
of C∞0 (R3; R3), zero-divergence vector fields A with respect to the norm
‖∇A‖L2(R3) . Physically, A corresponds to the effective magnetic potential.
The vector field Hε

ap : R3 → R3 denotes a given external magnetic field and
for the result below we must assume

(6.8) lim sup
ε→0

1
|ln ε|2

∫
Ω

∣∣Hε
ap

∣∣2 dX = 0.

It is under the assumption (6.8) that, roughly speaking, the Γ-limit is again
given by arclength. (We refer e.g. to [1] for a discussion of the asymptotic
behavior of the Ginzburg-Landau energy in the presence of larger magnetic
fields.) Using techniques very similar to those just invoked for the energy
(3.11), we have
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Theorem 6.4. Assume that Ω is a bounded, simply connected domain in R3

with C3 boundary. Assume that the distance function d0 given by (5.3) has a
non-degenerate critical point at (0, 0) in the sense of (5.4). Let T∗ ∈ R′

1(Ω)
be defined as in Theorem 6.3. Then under assumption (6.8), there exists a
value ε0 > 0 such that for all ε < ε0, the full Ginzburg-Landau energy (6.7)
possesses a critical point (uε, Aε) and Eε

U (uε, Aε) → EV (T∗) as ε → 0 for
EV again given by (3.13).

Proof. We will only sketch the proof. Following the general approach of
[12], it is convenient to introduce the decomposition of any vector field A ∈
H1(Ω; R3) in the form

A = ∇×B +∇φ
where φ ∈ H1(Ω; R) is unique up to a constant and B ∈ H2(Ω; R3) is
uniquely determined by the decomposition and the requirements
(6.9)
divB = 0 in Ω, B×ν = 0 on ∂Ω and ‖B‖H2(Ω;R3) ≤ C ‖∇ ×A‖L2(Ω;R3) .

We then write

(6.10) P(A) := ∇×B = A−∇φ.
It is then easy to argue that to find critical points of (6.7) it is sufficient to
find critical points of the functional Gε

U (u,A) given by

Gε
U (u,A) := Eε

U (uei(φ+φε
ap), A+Aε

ap) =

Eε
U (u) +

∫
Ω

1
2 |u|

2
∣∣P(A+Aε

ap)
∣∣2 − 〈P(A+Aε

ap), j(u)〉 dX + 1
2

∫
R3 |∇ ×A|2 dX

|ln ε|
.

(6.11)

where here and throughout this proof Eε
U (u) (as distinguished from Eε

U (u,A))
denotes the Ginzburg-Landau energy without field (3.11) and we have in-
troduced Aε

ap to denote the applied magnetic potential satisfying

∇×Aε
ap = Hε

ap in R3, divAε
ap = 0 in Ω and Aε

ap · ν = 0 on ∂Ω.

In (6.11), A and φ and Aε
ap and φε

ap respectively are related via (6.10).
One can then apply the machinery of our Theorem 4.4 with U =

H1(Ω; C) × H0, V = F ′1(Ω), Gε
U playing the role of Eε

U and EV still given
by (3.13). As in the case with no field, we define PV U (u,A) := ?J(u)/π and
we define Qε

UW (w) = (uε
w, 0) where as before, the definition of uε

w is given
in (6.2), (6.3). The mappings PWV and QV W are the same as in the 3d
Ginzburg-Landau setting without field.

Verification of (4.5)–(4.7) follow as before. As regards the verification
of Γ-convergence in the sense of (3.4), (3.5) and (4.8), along with the com-
pactness requirement (3.6), it turns out that the key term to control in the
expression (6.11) is the only indefinite one:∫

Ω〈P(A+Aε
ap), j(u)〉 dX

|ln ε|
.
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Here we appeal to (6.10) to write∫
Ω
〈P(A+Aε

ap), j(u)〉 dX = ? J(u)(Bε)

where P(A + Aε
ap) = ∇ × Bε defines Bε. A technical issue that is more

fully developed in [12] is the fact that in viewing Bε as a 1-form to be
acted upon by the 1-current ? J(u), we must extend various estimates on
weak Jacobians beyond their action on compactly supported 1-forms to the
setting where they act instead upon 1-forms such as Bε that are purely
normal at the boundary, cf. (6.9). Particularly crucial is the estimate that
for any α ∈ (0, 1] there exist positive constants γ and C(α,Ω) such that for
any u ∈ H1(Ω; C) one has

(6.12) ‖ ? J(u)‖
C0,α

T (Ω)∗ ≤ C(α,Ω)
(
εγ +

Eε
U (u)
| ln ε|

)
.

Here C0,α
T (Ω) denotes the space of Hölder continuous 1-forms having zero

tangential component and C0,α
T (Ω)∗ denotes its dual.

Using (6.12) with α ∈ (0, 1/2), and invoking (6.8), (6.9) and the Sobolev
embedding ofH2 in C0,α, one easily checks that whenever a sequence {(uε, Aε)} ⊂
H1(Ω; C)×H0 obeys the uniform bound Gε

U (ue, Aε) < C, one has∣∣∫
Ω〈P(Aε +Aε

ap), j(u
ε)〉 dX

∣∣
|ln ε|

= o(1)Eε
U (uε) + o(1).

In light of (6.11), this allows us to infer the desired lower-semi-continuity and
compactness properties of such a sequence {(uε, Aε)} from the corresponding
properties, already discussed, enjoyed by sequences {uε} satisfying a uniform
bound Eε

U (uε) < C. Property (3.5) and its strengthened version (4.8) also
easily follow from the corresponding conditions already verified for Eε

U since
we then see that Gε

U (uε
w, 0) = Eε

U (uε
w) + o(1).

When combined with the verification of the Palais-Smale condition be-
low, we have checked all the requirements of Theorem 4.4. �

Lemma 6.5. For each ε > 0, every Palais-Smale sequence {(uk, Ak)} ⊂
H1(Ω)×H0 for the functional Gε

U given by (6.11) has a strongly convergent
subsequence.

Proof. We pursue an argument similar to that found in the appendix to [3],
where the Palais-Smale condition for the 2d Ginzburg-Landau energy with
field is verified. Since ε is fixed and plays no role in the proof, we will ignore
the factor of 1/| ln ε| appearing in the definition of Gε

U .
Assume {(uk, Ak)} ⊂ H1(Ω)×H0 is a Palais-Smale sequence, cf. (3.14).

The uniform energy bound

(6.13) Gε
U (uk, Ak) < C

immediately yields

(6.14) ‖∇ ×Ak‖L2(R3;R3) < C
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and it then follows from (6.9) that ‖P(Ak)‖H1(Ω;R3) < C. Hence, there
exists A0 ∈ H0 such that after passing to a subsequence (with subsequential
notation here and later supressed), ∇Ak ⇀ ∇A0 in L2(R3; R3) while Ak →
A0 and P(Ak) → P(A0) strongly in Lp(Ω; R3) as k →∞ for all 1 ≤ p < 6.

The energy bound also immediately yields a uniform bound on the
L4(Ω) norm of {uk}. Then applying Hölder’s inequality twice, we find∣∣∣∣∫

Ω
〈P(Ak +Aε

ap), j(uk)〉 dX
∣∣∣∣ ≤ 2

(∫
Ω

∣∣P(Ak +Aε
ap)
∣∣2 |uk|2 dX

)1/2(∫
Ω
|∇uk|2 dX

)1/2

≤ C

(∫
Ω

∣∣P(Ak +Aε
ap)
∣∣4 dX)1/2(∫

Ω
|uk|4 dX

)1/2

+
1
4

∫
Ω
|∇uk|2 dX.

Once again appealing to the uniform energy bound, we can absorb this last
term into the left-hand side of (6.13) to conclude that

‖uk‖H1(Ω) < C.

Consequently, the sequence {uk} is also uniformly bounded in L6(Ω) and for
a subsequence, one has ∇uk ⇀ ∇u0 in L2(Ω; R3), and uk → u0 in Lp(Ω),
1 ≤ p < 6, for some u0 ∈ H1(Ω).

Considering variations only in the first argument of Gε
U , the hypothesis

that

(6.15) ‖∇Gε
U (uk, Ak)‖(H1(Ω)×H0)∗ → 0

implies that

(6.16) |Lk(v)| ≤ Ck ‖v‖H1(Ω) with Ck → 0

where Lk is the linear functional on H1(Ω) given by

Lk(v) :=
1
2

∫
Ω

{
〈∇uk,∇v∗〉+ 〈∇u∗k,∇v〉+ (|uk|2 − 1)(ukv

∗ + u∗kv)
}
dX

− 1
2i

∫
Ω
〈(u∗k∇v − uk∇v∗ + v∗∇uk − v∇u∗k) , P(Ak +Aε

ap)〉 dX

+
1
2

∫
Ω
(ukv

∗ + vu∗k)
∣∣P(Ak +Aε

ap)
∣∣2 dX.

Choosing v = uk − u0 in (6.16), we note that all terms from the second
line above of Lk(uk − u0) will approach zero in that they involve integrals
pairing strongly convergent sequences with weakly convergent ones. The
last line also approaches zero in the limit. Then we can rearrange the terms
coming from the first line to obtain from (6.16) an inequality of the form

‖∇uk −∇u0‖2
L2(Ω) ≤

∫
Ω

(
|∇u0|2 − |∇uk|2

)
dX

+Ck

(
‖∇uk −∇u0‖L2(Ω) + ‖uk − u0‖L2(Ω)

)
+ o(1).

Since lim infk→∞
∫
Ω |∇uk|2 dX ≥

∫
Ω |∇u0|2 dX, we conclude that uk → u0

strongly in H1(Ω).
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A similar manipulation of the condition coming from the application of
(6.15) to variations of the second argument of Gε

U allows us to improve the
convergence of Ak to A0 from weak to strong as well. �
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