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The de Rham complex

Review.

Let M" be a smooth, oriented, triangulated n-manifold.
d
L QY (M) = QF(M) R QK+t (M) — ... de Rham cochain complex

Imtk=1 o Itk | Intkt?
o

* - * * . . . .
C— i — Py — i — -+ simplicial cochain complex

Int® : Q*(M) — X} is a morphism of cochain complexes.

Theorem 1 (Elementary forms)

Int® admits a right inverse, i.e. 3 ®® : ¥ — Q°®(M) morphism of cochain complexes such that

Intk o dk = ids:  Vk.
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The de Rham cohomology

Definition.
HK(M) = kerdi/imdi_1 kth de Rham cohomology group
HYZ) =  ker 0F/imof_, kth cohomology group of ¥,

Remark. As a morphism of cochain complexes, Intk : QK(M) — X* induces a well-defined
homomorphism
[Int¥] : H* (M) — HX(Z) Vk.

Remark. ker(Int®) is a subcomplex of the de Rham cochain complex.

Lemma 1
The subcomplex ker(Int®) is acyclic, i.e. H¥(ker(Int®)) =0 Vk. J

Claim. Lemma 1 is equivalent to

Lemma 1*

Let w € Q¥(M) be closed and A € £} | such that Intkw = 9;_,A.
Then Ja € QX1(M) such that dy_jo = w and IntF~1 o = A,
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Proof of Claim. Assume that Lemma 1 holds and that dyw = 0, Intkw = O0f_1A. Then
Intk(d_1(P*7LA)) = 87 _, (Intk "L (d* 1 A)) = 8}, A = IntF w.

Setting
B = dy_1(®*LA) — w € ker(Int¥) N ker dy,

we obtain,

[8] € H¥(ker(Int®)).

Lemma 1 impies that [8] = 0 and therefore, 3 € ker(Int*~1) with dy_1y = .

Hence,
w=dk_1(¢*TA—7)

and, by setting o = ®¥K~1A — ~, we obtain

Int“~t o = Intk =1 (dk"1A) — Intk 1y = A

Assume now that Lemma 1% is true and let [w] € H¥(ker(Int®)), i.e. w € ker(IntX) Nker di. Then
by Lemma 1* Ja such that dy_jo = w and a € ker(Int“~1). It follows that [w] =0 . [
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The de Rham Theorem

Theorem 2 (de Rham)
[IntX] : HX(M) — HX(Z) is an isomorphism Y k. J

Proof.
i) [Int¥] is surjective:
Let [A] € HX(X). Set w := ®¥A € QK(M). Since dyw = ®F+195A = 0, [w] € HK(M).
Also, [IntF][w] = [Intk w] = [Intk dkA] = [A].
ii) [Int¥] is injective:
Let [w] € ker([Int*]). Then dyw = 0 and [Int* w] = [Int“][w] = 0, i.e. Intkw € iMd;_,.
Lemma 1* implies that w is exact and thus, [w] =0. [

Thus, for completing the proof of de Rham’s theorem, it remains to show that ker(Int®) is acyclic.

For that, we need the following two lemmas:
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Lemma 2 (Closed forms in star-shaped sets)

Let S be an open and star-shaped set in R"” and let w be a closed k-form in S, kK > 0.
Then w is exact.

Proof. Follows immediately from Poincar’s Lemma, which we proved last time.

Lemma 3 (Extension of forms)

(ak) Let w be a closed k-form near o, where o = o° is an s-simplex in R", k >0, s > 1.
Suppose that

/ w=0 ifs=k+1. (1)
do

Then there is a closed k-form & near o which extends w.

(bk) Let w be a closed k-form near the s-simplex o = 0 CR", k > 1,5 > 1, and let a be a
(k — 1)-form near 9o such that da = w near 9o.

Suppose that
/ a= / w if s = k. (2)
do o

Then there is a (k — 1)-form & near o such that & extends a and d& = w near o.
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Proof by induction on k. We will show
i) (ao) holds
i) (ak-1) = (bx)

i) (bk) = (ak), k>0
)

i) Being a closed 0-form, w is constant near any connected part of do.
If s > 1, then 9o° is connected and w equals a constant ¢ near do. Set & = ¢ near o.

If s =1, and say o! = popi, then
wlp) — i) = [ w=0,
do

by (1), and thus, w equals a constant ¢ near do. Set & = ¢ near o.

i) Assume (ax_1) holds and let w, a be as in (bg).
By choosing a star-shaped neighborhood of o and applying Lemma 2, there exists a
(k — 1)-form o’ near o such that do/ = w near o.
Set 3 = o — o’ near 9o and observe that d3 = w — w = 0.
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Notice that, if s = k, (2) and Stokes’ Theorem imply

L= oo o= [ Lo

By applying (ax—1), we can extend 3 to [3‘ which is defined near o and closed. Setting
& = o + 3 near o, we obtain that & extends o and d& = w near o as we wished.

iii) Assume (by), k > 0, holds and let w be as in (ak).
Say 0 = pp...ps and set 0/ = p1...ps. Let P be the union of all proper faces of o with py
as a vertex.
Choose now € > 0 small enough such that w is defined in the e-neighborhood U (P) of P.
Since Uc(P) is star-shaped, by Lemma 2, there exists a (k — 1)-form &’ in U¢(P) such that
da’ = w in Ue(P).
We have, in particular, da/ = w near do’.
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If s =k + 1, setting A= 0o — o', we obtain A = —9o’ and

/wf/ a':/er a’:/er/do/:/ w=0
o’ o’ e A e A do

by (1). We can now apply (bk) and extend o’ to &' near o’ such that d&’ = w near o’.
It follows that there is a neighborhood U of ¢’ in which o’ and &’ are defined and equal.

Set

O/‘U :&llﬁ in U _
a=4 o near P\U
a' near o’\U

Observe that da = w near do. By means of a partition of unity extend « to & near o.
@ := d& satisfies the required properties. O

Nora Loose (University of Toronto) The de Rham Theorem January 8, 2010 9/14



Definition. Let L® denote the s-dimensional part of the triangulation of M, that is L* = |J o7.

i

Proof of Lemma 1*. We will define ay, ..., ap such that

(a) as is defined near L, s =0,1,...,n,

(b) das = w near L*, and as = as—1 near 571, s>0, and
(c) Intak—1 = A.

Then, o := ay, is the required form.

Construct as, s =0,1,...,n, by induction on s:

By Lemma 2, there exists an oy near each vertex g; such that daj = w.
If k> 1, set apg = .

If k =1, for each vertex g; choose a number b; such that, setting ag = oy + bj near g,
Intag = A.
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Now suppose as—1 has been constructed.

We will define as near each s-simplex such that (a), (b) and (c) hold. Since as is then fixed near
L5~ we obtain a well-defined as near LS.

Let o be an s-simplex. Then das_1 = w near do, by construction.
If s =k, by (c),

/ ak_1=Intay_1-00=A-00c=0"A-c=Intw-0= | w.
do

T~

Since we can assume that M is embedded in RV for some N € N, we can now apply Lemma 3. It
gives us a (k — 1)-form &s near o such that &s = as_1 near 9o and dé&s = w near o.
So (b) holds for és.
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If s # k — 1, set as = &5 near o.
If s=k —1, define B=A — Int&,_1 and set
ay_1=dk_1+PB near LKL

To see that a1 satisfies (b), recall Supp(®p*) C St(p) for each simplex p.
It follows that ax_1 = 61 near LK=2 and thus, ax_1 = ax_p near Lk—2,

Also,
doy_1 = déy_1 + d®B = déyy_1 + PO*B =w near LK1,
Since
Intak_1 =Intdx_1+ B=A,
(c) holds and as = ak—1 is as we wished. |
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An example: The Euler characteristic
Definition. Let M" be a manifold. The Euler characteristic x of M is the alternating sum

xX(M) = (—1)kdimg H*(Q).
k=0

The de Rham Theorem tells us that, no matter which triangulation we pick, the Euler
characteristic equals the following:

x(M) = i(—l)kdimRHk(Z),

k=0
where
a5 of o, n
0 — ¥ % oy Ao = oy =5 0

is the simplicial cochain complex according to the chosen triangulation of M".
Using

dimRHk():) = dimpg ker 8 — dimpim9;_; and dimpX} = dimg ker 9} + dimg im 9},

we finally obtain

n
x(M) = (-1)*dimg X},
k=0

that is simply the alternating sum of the number of the k-dimensional faces, k = 0,1, -, n.
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Example 1. 2-Sphere

We can use a tetrahedron T to triangulate S2.
Then

x(52) = number of vertices of T — number of edges of T 4 number of faces of T
= 4-6-4 = 2

Example 2. 2-Torus

Triangulate the torus in the following way:

K

x(T?) = number of vertices of K — number of edges of K + number of faces of K
9-27+18 = 0
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