The de Rham Theorem

Nora Loose

University of Toronto

January 8, 2010

The de Rham complex

Review.

Let M^{n} be a smooth, oriented, triangulated n-manifold.
$\begin{array}{cccccccc}\cdots & \Omega^{k-1}(M) & \xrightarrow{d_{k-1}} & \Omega^{k}(M) & \xrightarrow{d_{k}} & \Omega^{k+1}(M) & \longrightarrow \cdots & \text { de Rham cochain complex } \\ & \downarrow \operatorname{lnt}^{k-1} & \begin{array}{c}\circlearrowleft \\ \\ \cdots\end{array} & \downarrow \operatorname{lnt}^{k} & \circlearrowleft & \downarrow \operatorname{lnt}^{k+1} & & \\ \Sigma_{k-1}^{*} & \xrightarrow{\partial_{k-1}^{*}} & \Sigma_{k}^{*} & \xrightarrow{\partial_{k}^{*}} & \Sigma_{k+1}^{*} & \longrightarrow \cdots & \text { simplicial cochain complex }\end{array}$
Int ${ }^{\bullet}: \Omega^{\bullet}(M) \longrightarrow \Sigma_{\bullet}^{*}$ is a morphism of cochain complexes.

Theorem 1 (Elementary forms)

Int ${ }^{\bullet}$ admits a right inverse, i.e. $\exists \Phi^{\bullet}: \Sigma_{\bullet}^{*} \longrightarrow \Omega^{\bullet}(M)$ morphism of cochain complexes such that

$$
\operatorname{lnt}^{k} \circ \Phi^{k}=\mathrm{id}_{\Sigma_{k}^{*}} \quad \forall k
$$

The de Rham cohomology

Definition.

$H^{k}(M):=\operatorname{ker} d_{k} / \operatorname{im} d_{k-1} \quad k^{\text {th }}$ de Rham cohomology group
$H^{k}(\Sigma) \quad:=\operatorname{ker} \partial_{k}^{*} / \operatorname{im} \partial_{k-1}^{*} \quad k^{\text {th }}$ cohomology group of Σ 。

Remark. As a morphism of cochain complexes, $\operatorname{Int}^{k}: \Omega^{k}(M) \longrightarrow \Sigma_{0}^{*}$ induces a well-defined homomorphism

$$
\left[\operatorname{lnt}^{k}\right]: \mathrm{H}^{k}(M) \longrightarrow \mathrm{H}^{k}(\Sigma) \quad \forall k .
$$

Remark. $\operatorname{ker}\left(\operatorname{lnt}{ }^{\bullet}\right)$ is a subcomplex of the de Rham cochain complex.

Lemma 1

The subcomplex $\operatorname{ker}\left(\operatorname{lnt} t^{\bullet}\right)$ is acyclic, i.e. $\mathrm{H}^{k}\left(\operatorname{ker}\left(\ln t^{\bullet}\right)\right)=0 \quad \forall k$.
Claim. Lemma 1 is equivalent to

Lemma 1*

Let $\omega \in \Omega^{k}(M)$ be closed and $A \in \Sigma_{k-1}^{*}$ such that $\operatorname{Int}^{k} \omega=\partial_{k-1}^{*} A$.
Then $\exists \alpha \in \Omega^{k-1}(M)$ such that $d_{k-1} \alpha=\omega$ and $\operatorname{Int}^{k-1} \alpha=A$.

Proof of Claim. Assume that Lemma 1 holds and that $d_{k} \omega=0, \operatorname{Int}^{k} \omega=\partial_{k-1}^{*} A$. Then

$$
\operatorname{lnt}^{k}\left(d_{k-1}\left(\Phi^{k-1} A\right)\right)=\partial_{k-1}^{*}\left(\operatorname{lnt}^{k-1}\left(\Phi^{k-1} A\right)\right)=\partial_{k-1}^{*} A=\operatorname{lnt}^{k} \omega
$$

Setting

$$
\beta:=d_{k-1}\left(\Phi^{k-1} A\right)-\omega \in \operatorname{ker}\left(\operatorname{lnt}^{k}\right) \cap \operatorname{ker} d_{k}
$$

we obtain,

$$
[\beta] \in \mathrm{H}^{k}\left(\operatorname{ker}\left(\ln t^{\bullet}\right)\right)
$$

Lemma 1 impies that $[\beta]=0$ and therefore, $\exists \gamma \in \operatorname{ker}\left(\operatorname{lnt}{ }^{k-1}\right)$ with $d_{k-1} \gamma=\beta$. Hence,

$$
\omega=d_{k-1}\left(\Phi^{k-1} A-\gamma\right)
$$

and, by setting $\alpha=\Phi^{k-1} A-\gamma$, we obtain

$$
\operatorname{lnt}^{k-1} \alpha=\operatorname{lnt}^{k-1}\left(\Phi^{k-1} A\right)-\operatorname{Int}^{k-1} \gamma=A
$$

Assume now that Lemma 1^{*} is true and let $[\omega] \in \mathrm{H}^{k}\left(\operatorname{ker}\left(\operatorname{lnt} t^{\bullet}\right)\right)$, i.e. $\omega \in \operatorname{ker}\left(\operatorname{lnt}{ }^{k}\right) \cap \operatorname{ker} d_{k}$. Then by Lemma 1*, ヨ α such that $d_{k-1} \alpha=\omega$ and $\alpha \in \operatorname{ker}\left(\operatorname{Int}^{k-1}\right)$. It follows that $[\omega]=0$.

The de Rham Theorem

Theorem 2 (de Rham)

$$
\left[\operatorname{lnt}{ }^{k}\right]: \mathrm{H}^{k}(M) \longrightarrow \mathrm{H}^{k}(\Sigma) \quad \text { is an isomorphism } \forall k .
$$

Proof.

i) $\left[\operatorname{lnt}^{k}\right]$ is surjective:

Let $[A] \in \mathrm{H}^{k}(\Sigma)$. Set $\omega:=\Phi^{k} A \in \Omega^{k}(M)$. Since $d_{k} \omega=\Phi^{k+1} \partial_{k}^{*} A=0,[\omega] \in \mathrm{H}^{k}(M)$. Also, $\left[\operatorname{Int}^{k}\right][\omega]=\left[\operatorname{Int}{ }^{k} \omega\right]=\left[\operatorname{Int}^{k} \Phi^{k} A\right]=[A]$.
ii) $\left[\operatorname{lnt}^{k}\right]$ is injective:

Let $[\omega] \in \operatorname{ker}\left(\left[\operatorname{lnt}{ }^{k}\right]\right)$. Then $d_{k} \omega=0$ and $\left[\operatorname{Int}{ }^{k} \omega\right]=\left[\operatorname{Int}{ }^{k}\right][\omega]=0$, i.e. $\operatorname{Int}^{k} \omega \in \operatorname{im} \partial_{k-1}^{*}$.
Lemma 1* implies that ω is exact and thus, $[\omega]=0$.

Thus, for completing the proof of de Rham's theorem, it remains to show that $\operatorname{ker}\left(\operatorname{lnt}{ }^{\bullet}\right)$ is acyclic.
For that, we need the following two lemmas:

Lemma 2 (Closed forms in star-shaped sets)

Let S be an open and star-shaped set in \mathbb{R}^{n} and let ω be a closed k-form in $S, k>0$. Then ω is exact.

Proof. Follows immediately from Poincar's Lemma, which we proved last time.

Lemma 3 (Extension of forms)

$\left(a_{k}\right)$ Let ω be a closed k-form near $\partial \sigma$, where $\sigma=\sigma^{s}$ is an s-simplex in $\mathbb{R}^{n}, k \geq 0, s \geq 1$. Suppose that

$$
\begin{equation*}
\int_{\partial \sigma} \omega=0 \quad \text { if } s=k+1 \tag{1}
\end{equation*}
$$

Then there is a closed k-form $\tilde{\omega}$ near σ which extends ω.
$\left(\mathrm{b}_{k}\right)$ Let ω be a closed k-form near the s-simplex $\sigma=\sigma^{s} \subset \mathbb{R}^{n}, k \geq 1, s \geq 1$, and let α be a ($k-1$)-form near $\partial \sigma$ such that $d \alpha=\omega$ near $\partial \sigma$.
Suppose that

$$
\begin{equation*}
\int_{\partial \sigma} \alpha=\int_{\sigma} \omega \quad \text { if } s=k . \tag{2}
\end{equation*}
$$

Then there is a $(k-1)$-form $\tilde{\alpha}$ near σ such that $\tilde{\alpha}$ extends α and $d \tilde{\alpha}=\omega$ near σ.

Proof by induction on k. We will show
i) (a_{0}) holds
ii) $\left(\mathrm{a}_{k-1}\right) \Rightarrow\left(\mathrm{b}_{k}\right)$
iii) $\left(\mathrm{b}_{k}\right) \Rightarrow\left(\mathrm{a}_{\mathrm{k}}\right), k>0$
i) Being a closed 0 -form, ω is constant near any connected part of $\partial \sigma$.

If $s>1$, then $\partial \sigma^{s}$ is connected and ω equals a constant c near $\partial \sigma$. Set $\tilde{\omega}=c$ near σ. If $s=1$, and say $\sigma^{1}=p_{0} p_{1}$, then

$$
\omega\left(p_{1}\right)-\omega\left(p_{0}\right)=\int_{\partial \sigma} \omega=0,
$$

by (1), and thus, ω equals a constant c near $\partial \sigma$. Set $\tilde{\omega}=c$ near σ.
ii) Assume (a_{k-1}) holds and let ω, α be as in (b_{k}).

By choosing a star-shaped neighborhood of σ and applying Lemma 2, there exists a ($k-1$)-form α^{\prime} near σ such that $d \alpha^{\prime}=\omega$ near σ.
Set $\beta=\alpha-\alpha^{\prime}$ near $\partial \sigma$ and observe that $d \beta=\omega-\omega=0$.

Notice that, if $s=k,(2)$ and Stokes' Theorem imply

$$
\int_{\partial \sigma} \beta=\int_{\partial \sigma} \alpha-\int_{\partial \sigma} \alpha^{\prime}=\int_{\sigma} \omega-\int_{\sigma} d \alpha^{\prime}=0 .
$$

By applying (a_{k-1}), we can extend β to $\tilde{\beta}$, which is defined near σ and closed. Setting $\tilde{\alpha}=\alpha^{\prime}+\tilde{\beta}$ near σ, we obtain that $\tilde{\alpha}$ extends α and $d \tilde{\alpha}=\omega$ near σ as we wished.
iii) Assume $\left(b_{k}\right), k>0$, holds and let ω be as in (a_{k}).

Say $\sigma=p_{0} \ldots p_{s}$ and set $\sigma^{\prime}=p_{1} \ldots p_{s}$. Let \mathcal{P} be the union of all proper faces of σ with p_{0} as a vertex.
Choose now $\epsilon>0$ small enough such that ω is defined in the ϵ-neighborhood $U_{\epsilon}(\mathcal{P})$ of \mathcal{P}. Since $U_{\epsilon}(\mathcal{P})$ is star-shaped, by Lemma 2, there exists a ($k-1$)-form α^{\prime} in $U_{\epsilon}(\mathcal{P})$ such that $d \alpha^{\prime}=\omega$ in $U_{\epsilon}(\mathcal{P})$.
We have, in particular, $d \alpha^{\prime}=\omega$ near $\partial \sigma^{\prime}$.

If $s=k+1$, setting $A=\partial \sigma-\sigma^{\prime}$, we obtain $\partial A=-\partial \sigma^{\prime}$ and

$$
\int_{\sigma^{\prime}} \omega-\int_{\partial \sigma^{\prime}} \alpha^{\prime}=\int_{\sigma^{\prime}} \omega+\int_{\partial A} \alpha^{\prime}=\int_{\sigma^{\prime}} \omega+\int_{A} d \alpha^{\prime}=\int_{\partial \sigma} \omega=0
$$

by (1). We can now apply $\left(\mathrm{b}_{k}\right)$ and extend α^{\prime} to $\tilde{\alpha}^{\prime}$ near σ^{\prime} such that $d \tilde{\alpha}^{\prime}=\omega$ near σ^{\prime}. It follows that there is a neighborhood \widetilde{U} of $\partial \sigma^{\prime}$ in which α^{\prime} and $\tilde{\alpha}^{\prime}$ are defined and equal. Set

$$
\alpha= \begin{cases}\left.\alpha^{\prime}\right|_{\widetilde{U}}=\left.\tilde{\alpha}^{\prime}\right|_{\widetilde{U}} & \text { in } \widetilde{U} \\ \alpha^{\prime} & \text { near } \mathcal{P} \backslash \widetilde{U} \\ \tilde{\alpha}^{\prime} & \text { near } \sigma^{\prime} \backslash \widetilde{U}\end{cases}
$$

Observe that $d \alpha=\omega$ near $\partial \sigma$. By means of a partition of unity extend α to $\tilde{\alpha}$ near σ. $\tilde{\omega}:=d \tilde{\alpha}$ satisfies the required properties.

Definition. Let L^{s} denote the s-dimensional part of the triangulation of M, that is $L^{s}=\bigcup_{i} \sigma_{i}^{s}$.
Proof of Lemma 1*. We will define $\alpha_{0}, \ldots, \alpha_{n}$ such that
(a) α_{s} is defined near $L^{s}, s=0,1, \ldots, n$,
(b) $d \alpha_{s}=\omega$ near L^{s}, and $\alpha_{s}=\alpha_{s-1}$ near $L^{s-1}, s>0$, and
(c) $\operatorname{Int} \alpha_{k-1}=A$.

Then, $\alpha:=\alpha_{n}$ is the required form.
Construct $\alpha_{s}, s=0,1, \ldots, n$, by induction on s :
By Lemma 2, there exists an α_{0}^{\prime} near each vertex q_{i} such that $d \alpha_{0}^{\prime}=\omega$.
If $k>1$, set $\alpha_{0}=\alpha_{0}^{\prime}$.
If $k=1$, for each vertex q_{i} choose a number b_{i} such that, setting $\alpha_{0}=\alpha_{0}^{\prime}+b_{i}$ near q_{i}, $\operatorname{Int} \alpha_{0}=A$.

Now suppose α_{s-1} has been constructed.
We will define α_{s} near each s-simplex such that (a), (b) and (c) hold. Since α_{s} is then fixed near L^{s-1}, we obtain a well-defined α_{s} near L^{s}.

Let σ be an s-simplex. Then $d \alpha_{s-1}=\omega$ near $\partial \sigma$, by construction.
If $s=k$, by (c),

$$
\int_{\partial \sigma} \alpha_{k-1}=\operatorname{lnt} \alpha_{k-1} \cdot \partial \sigma=A \cdot \partial \sigma=\partial^{*} A \cdot \sigma=\operatorname{lnt} \omega \cdot \sigma=\int_{\sigma} \omega .
$$

Since we can assume that M is embedded in \mathbb{R}^{N} for some $N \in \mathbb{N}$, we can now apply Lemma 3. It gives us a $(k-1)$-form $\tilde{\alpha}_{s}$ near σ such that $\tilde{\alpha}_{s}=\alpha_{s-1}$ near $\partial \sigma$ and $d \tilde{\alpha}_{s}=\omega$ near σ. So (b) holds for $\tilde{\alpha}_{s}$.

If $s \neq k-1$, set $\alpha_{s}=\tilde{\alpha}_{s}$ near σ.
If $s=k-1$, define $B=A-\operatorname{Int} \tilde{\alpha}_{k-1}$ and set

$$
\alpha_{k-1}=\tilde{\alpha}_{k-1}+\Phi B \quad \text { near } L^{k-1} .
$$

To see that α_{k-1} satisfies (b), recall $\operatorname{Supp}\left(\Phi \rho^{*}\right) \subset \operatorname{St}(\rho)$ for each simplex ρ. It follows that $\alpha_{k-1}=\tilde{\alpha}_{k-1}$ near L^{k-2} and thus, $\alpha_{k-1}=\alpha_{k-2}$ near L^{k-2}. Also,

$$
d \alpha_{k-1}=d \tilde{\alpha}_{k-1}+d \Phi B=d \tilde{\alpha}_{k-1}+\Phi \partial^{*} B=\omega \quad \text { near } L^{k-1} .
$$

Since

$$
\operatorname{Int} \alpha_{k-1}=\operatorname{Int} \tilde{\alpha}_{k-1}+B=A
$$

(c) holds and $\alpha_{s}=\alpha_{k-1}$ is as we wished.

An example: The Euler characteristic

Definition. Let M^{n} be a manifold. The Euler characteristic χ of M is the alternating sum

$$
\chi(M)=\sum_{k=0}^{n}(-1)^{k} \operatorname{dim}_{\mathbb{R}} H^{k}(\Omega) .
$$

The de Rham Theorem tells us that, no matter which triangulation we pick, the Euler characteristic equals the following:

$$
\chi(M)=\sum_{k=0}^{n}(-1)^{k} \operatorname{dim}_{\mathbb{R}} H^{k}(\Sigma)
$$

where

$$
0 \longrightarrow \Sigma_{0}^{*} \xrightarrow{\partial_{0}^{*}} \Sigma_{1}^{*} \quad \xrightarrow{\partial_{1}^{*}} \ldots \xrightarrow{\partial_{n-2}^{*}} \Sigma_{n-1}^{*} \xrightarrow{\partial_{n-1}^{*}} \Sigma_{n}^{*} \longrightarrow 0
$$

is the simplicial cochain complex according to the chosen triangulation of M^{n}. Using
$\operatorname{dim}_{\mathbb{R}} H^{k}(\Sigma)=\operatorname{dim}_{\mathbb{R}} \operatorname{ker} \partial_{k}^{*}-\operatorname{dim}_{\mathbb{R}} \operatorname{im} \partial_{k-1}^{*} \quad$ and $\quad \operatorname{dim}_{\mathbb{R}} \Sigma_{k}^{*}=\operatorname{dim}_{\mathbb{R}} \operatorname{ker} \partial_{k}^{*}+\operatorname{dim}_{\mathbb{R}} \operatorname{im} \partial_{k}^{*}$, we finally obtain

$$
\chi(M)=\sum_{k=0}^{n}(-1)^{k} \operatorname{dim}_{\mathbb{R}} \Sigma_{k}^{*},
$$

that is simply the alternating sum of the number of the k-dimensional faces, $k=0,1, \cdots, n$.

Example 1. 2-Sphere

We can use a tetrahedron T to triangulate S^{2}.
Then

$$
\begin{aligned}
\chi\left(S^{2}\right) & =\text { number of vertices of } T-\text { number of edges of } T+\text { number of faces of } T \\
& =4-6-4=2 .
\end{aligned}
$$

Example 2. 2-Torus

Triangulate the torus in the following way:

$\chi\left(\mathbb{T}^{2}\right)=$ number of vertices of $K-$ number of edges of $K+$ number of faces of K

$$
=9-27+18=0
$$

