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The de Rham complex

Review.

Let Mn be a smooth, oriented, triangulated n-manifold.

· · · −→ Ωk−1(M)
dk−1−→ Ωk (M)

dk−→ Ωk+1(M) −→ · · · de Rham cochain complex?y Intk−1 	
?y Intk 	

?y Intk+1

· · · −→ Σ∗k−1

∂∗k−1−→ Σ∗k
∂∗k−→ Σ∗k+1 −→ · · · simplicial cochain complex

Int• : Ω•(M) −→ Σ∗• is a morphism of cochain complexes.

Theorem 1 (Elementary forms)

Int• admits a right inverse, i.e. ∃ Φ• : Σ∗• −→ Ω•(M) morphism of cochain complexes such that

Intk ◦Φk = idΣ∗
k
∀ k.
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The de Rham cohomology

Definition.

Hk (M) := ker dk/ im dk−1 kth de Rham cohomology group
Hk (Σ) := ker ∂∗k / im ∂∗k−1 kth cohomology group of Σ•

Remark. As a morphism of cochain complexes, Intk : Ωk (M) −→ Σ∗• induces a well-defined
homomorphism

[Intk ] : Hk (M) −→ Hk (Σ) ∀ k.

Remark. ker(Int•) is a subcomplex of the de Rham cochain complex.

Lemma 1

The subcomplex ker(Int•) is acyclic, i.e. Hk (ker(Int•)) = 0 ∀ k.

Claim. Lemma 1 is equivalent to

Lemma 1*

Let ω ∈ Ωk (M) be closed and A ∈ Σ∗k−1 such that Intk ω = ∂∗k−1A.

Then ∃α ∈ Ωk−1(M) such that dk−1α = ω and Intk−1 α = A.

Nora Loose (University of Toronto) The de Rham Theorem January 8, 2010 3 / 14



Proof of Claim. Assume that Lemma 1 holds and that dkω = 0, Intk ω = ∂∗k−1A. Then

Intk (dk−1(Φk−1A)) = ∂∗k−1(Intk−1(Φk−1A)) = ∂∗k−1A = Intk ω.

Setting
β := dk−1(Φk−1A)− ω ∈ ker(Intk ) ∩ ker dk ,

we obtain,
[β] ∈ Hk (ker(Int•)).

Lemma 1 impies that [β] = 0 and therefore, ∃ γ ∈ ker(Intk−1) with dk−1γ = β.
Hence,

ω = dk−1(Φk−1A− γ)

and, by setting α = Φk−1A− γ, we obtain

Intk−1 α = Intk−1(Φk−1A)− Intk−1 γ = A.

Assume now that Lemma 1* is true and let [ω] ∈ Hk (ker(Int•)), i.e. ω ∈ ker(Intk ) ∩ ker dk . Then
by Lemma 1*, ∃α such that dk−1α = ω and α ∈ ker(Intk−1). It follows that [ω] = 0 .
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The de Rham Theorem

Theorem 2 (de Rham)

[Intk ] : Hk (M) −→ Hk (Σ) is an isomorphism ∀ k.

Proof.

i) [Intk ] is surjective:
Let [A] ∈ Hk (Σ). Set ω := ΦkA ∈ Ωk (M). Since dkω = Φk+1∂∗k A = 0, [ω] ∈ Hk (M).

Also, [Intk ][ω] = [Intk ω] = [Intk ΦkA] = [A].

ii) [Intk ] is injective:
Let [ω] ∈ ker([Intk ]). Then dkω = 0 and [Intk ω] = [Intk ][ω] = 0, i.e. Intk ω ∈ im ∂∗k−1.

Lemma 1* implies that ω is exact and thus, [ω] = 0.

Thus, for completing the proof of de Rham’s theorem, it remains to show that ker(Int•) is acyclic.

For that, we need the following two lemmas:
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Lemma 2 (Closed forms in star-shaped sets)

Let S be an open and star-shaped set in Rn and let ω be a closed k-form in S , k > 0.
Then ω is exact.

Proof. Follows immediately from Poincar’s Lemma, which we proved last time.

Lemma 3 (Extension of forms)

(ak ) Let ω be a closed k-form near ∂σ, where σ = σs is an s-simplex in Rn, k ≥ 0, s ≥ 1.
Suppose that Z

∂σ
ω = 0 if s = k + 1. (1)

Then there is a closed k-form ω̃ near σ which extends ω.

(bk ) Let ω be a closed k-form near the s-simplex σ = σs ⊂ Rn, k ≥ 1, s ≥ 1, and let α be a
(k − 1)-form near ∂σ such that dα = ω near ∂σ.
Suppose that Z

∂σ
α =

Z
σ
ω if s = k. (2)

Then there is a (k − 1)-form α̃ near σ such that α̃ extends α and dα̃ = ω near σ.
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Proof by induction on k. We will show

i) (a0) holds

ii) (ak−1) ⇒ (bk )

iii) (bk ) ⇒ (ak ), k > 0

i) Being a closed 0-form, ω is constant near any connected part of ∂σ.
If s > 1, then ∂σs is connected and ω equals a constant c near ∂σ. Set ω̃ = c near σ.
If s = 1, and say σ1 = p0p1, then

ω(p1)− ω(p0) =

Z
∂σ
ω = 0,

by (1), and thus, ω equals a constant c near ∂σ. Set ω̃ = c near σ.

ii) Assume (ak−1) holds and let ω, α be as in (bk ).
By choosing a star-shaped neighborhood of σ and applying Lemma 2, there exists a
(k − 1)-form α′ near σ such that dα′ = ω near σ.
Set β = α− α′ near ∂σ and observe that dβ = ω − ω = 0.
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Notice that, if s = k, (2) and Stokes’ Theorem implyZ
∂σ
β =

Z
∂σ
α−

Z
∂σ
α′ =

Z
σ
ω −

Z
σ

dα′ = 0.

By applying (ak−1), we can extend β to β̃, which is defined near σ and closed. Setting

α̃ = α′ + β̃ near σ, we obtain that α̃ extends α and dα̃ = ω near σ as we wished.

iii) Assume (bk ), k > 0, holds and let ω be as in (ak ).
Say σ = p0 . . . ps and set σ′ = p1 . . . ps . Let P be the union of all proper faces of σ with p0

as a vertex.
Choose now ε > 0 small enough such that ω is defined in the ε-neighborhood Uε(P) of P.
Since Uε(P) is star-shaped, by Lemma 2, there exists a (k − 1)-form α′ in Uε(P) such that
dα′ = ω in Uε(P).
We have, in particular, dα′ = ω near ∂σ′.
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If s = k + 1, setting A = ∂σ − σ′, we obtain ∂A = −∂σ′ andZ
σ′
ω −

Z
∂σ′

α′ =

Z
σ′
ω +

Z
∂A
α′ =

Z
σ′
ω +

Z
A

dα′ =

Z
∂σ
ω = 0

by (1). We can now apply (bk ) and extend α′ to α̃′ near σ′ such that dα̃′ = ω near σ′.

It follows that there is a neighborhood eU of ∂σ′ in which α′ and α̃′ are defined and equal.
Set

α =

8><>:
α′|eU = α̃′|eU in eU
α′ near P\eU
α̃′ near σ′\eU

Observe that dα = ω near ∂σ. By means of a partition of unity extend α to α̃ near σ.
ω̃ := dα̃ satisfies the required properties.
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Definition. Let Ls denote the s-dimensional part of the triangulation of M, that is Ls =
S
i
σs

i .

Proof of Lemma 1∗. We will define α0, . . . , αn such that

(a) αs is defined near Ls , s = 0, 1, . . . , n,

(b) dαs = ω near Ls , and αs = αs−1 near Ls−1, s > 0, and

(c) Intαk−1 = A.

Then, α := αn is the required form.

Construct αs , s = 0, 1, . . . , n, by induction on s:

By Lemma 2, there exists an α′0 near each vertex qi such that dα′0 = ω.
If k > 1, set α0 = α′0.
If k = 1, for each vertex qi choose a number bi such that, setting α0 = α′0 + bi near qi ,
Intα0 = A.
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Now suppose αs−1 has been constructed.

We will define αs near each s-simplex such that (a), (b) and (c) hold. Since αs is then fixed near
Ls−1, we obtain a well-defined αs near Ls .

Let σ be an s-simplex. Then dαs−1 = ω near ∂σ, by construction.
If s = k, by (c),Z

∂σ
αk−1 = Intαk−1 · ∂σ = A · ∂σ = ∂∗A · σ = Intω · σ =

Z
σ
ω.

Since we can assume that M is embedded in RN for some N ∈ N, we can now apply Lemma 3. It
gives us a (k − 1)-form α̃s near σ such that α̃s = αs−1 near ∂σ and dα̃s = ω near σ.
So (b) holds for α̃s .
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If s 6= k − 1, set αs = α̃s near σ.
If s = k − 1, define B = A− Int α̃k−1 and set

αk−1 = α̃k−1 + ΦB near Lk−1.

To see that αk−1 satisfies (b), recall Supp(Φρ∗) ⊂ St(ρ) for each simplex ρ.
It follows that αk−1 = α̃k−1 near Lk−2 and thus, αk−1 = αk−2 near Lk−2.
Also,

dαk−1 = dα̃k−1 + dΦB = dα̃k−1 + Φ∂∗B = ω near Lk−1.

Since
Intαk−1 = Int α̃k−1 + B = A,

(c) holds and αs = αk−1 is as we wished.
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An example: The Euler characteristic
Definition. Let Mn be a manifold. The Euler characteristic χ of M is the alternating sum

χ(M) =
nX

k=0

(−1)kdimRHk (Ω).

The de Rham Theorem tells us that, no matter which triangulation we pick, the Euler
characteristic equals the following:

χ(M) =
nX

k=0

(−1)kdimRHk (Σ),

where

0 −→ Σ∗0
∂∗0−→ Σ∗1

∂∗1−→ . . .
∂∗n−2−→ Σ∗n−1

∂∗n−1−→ Σ∗n −→ 0

is the simplicial cochain complex according to the chosen triangulation of Mn.
Using

dimRHk (Σ) = dimR ker ∂∗k − dimR im ∂∗k−1 and dimRΣ∗k = dimR ker ∂∗k + dimR im ∂∗k ,

we finally obtain

χ(M) =
nX

k=0

(−1)kdimRΣ∗k ,

that is simply the alternating sum of the number of the k-dimensional faces, k = 0, 1, · · · , n.
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Example 1. 2-Sphere

We can use a tetrahedron T to triangulate S2.
Then

χ(S2) = number of vertices of T − number of edges of T + number of faces of T

= 4− 6− 4 = 2.

Example 2. 2-Torus

Triangulate the torus in the following way:

K

χ(T2) = number of vertices of K − number of edges of K + number of faces of K

= 9− 27 + 18 = 0
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