The de Rham Theorem

Nora Loose

University of Toronto

January 8, 2010

The de Rham complex

Review.

Let M^n be a smooth, oriented, triangulated *n*-manifold.

 $Int^{\bullet}: \Omega^{\bullet}(M) \longrightarrow \Sigma^{*}_{\bullet}$ is a morphism of cochain complexes.

Theorem 1 (Elementary forms)

Int[•] admits a *right inverse*, i.e. $\exists \Phi^{\bullet} : \Sigma_{\bullet}^* \longrightarrow \Omega^{\bullet}(M)$ morphism of cochain complexes such that

$$\operatorname{Int}^k \circ \Phi^k = \operatorname{id}_{\Sigma_k^*} \quad \forall \, k.$$

The de Rham cohomology

Definition.

$H^k(M)$:=	$\ker d_k / \operatorname{im} d_{k-1}$	k th de Rham cohomology group
$H^{k}(\Sigma)$:=	ker $\partial_k^* / \operatorname{im} \partial_{k-1}^*$	k^{th} cohomology group of Σ_ullet

Remark. As a morphism of cochain complexes, $Int^k : \Omega^k(M) \longrightarrow \Sigma^*_{\bullet}$ induces a well-defined homomorphism

$$[\operatorname{Int}^k] : \operatorname{H}^k(M) \longrightarrow \operatorname{H}^k(\Sigma) \quad \forall \, k.$$

Remark. ker(Int[•]) is a *subcomplex* of the de Rham cochain complex.

Lemma 1

The subcomplex ker(Int[•]) is *acyclic*, i.e. $H^k(ker(Int^•)) = 0 \quad \forall k$.

Claim. Lemma 1 is equivalent to

Lemma 1*

Let
$$\omega \in \Omega^k(M)$$
 be closed and $A \in \Sigma_{k-1}^*$ such that $\operatorname{Int}^k \omega = \partial_{k-1}^* A$.
Then $\exists \alpha \in \Omega^{k-1}(M)$ such that $d_{k-1}\alpha = \omega$ and $\operatorname{Int}^{k-1}\alpha = A$.

Proof of Claim. Assume that Lemma 1 holds and that $d_k\omega = 0$, $\operatorname{Int}^k \omega = \partial_{k-1}^* A$. Then

$$\operatorname{Int}^{k}(d_{k-1}(\Phi^{k-1}A)) = \partial_{k-1}^{*}(\operatorname{Int}^{k-1}(\Phi^{k-1}A)) = \partial_{k-1}^{*}A = \operatorname{Int}^{k}\omega.$$

Setting

$$\beta := d_{k-1}(\Phi^{k-1}A) - \omega \in \operatorname{ker}(\operatorname{Int}^k) \cap \operatorname{ker} d_k,$$

we obtain,

$$[\beta] \in \mathsf{H}^k(\operatorname{ker}(\operatorname{Int}^{\bullet})).$$

Lemma 1 imples that $[\beta] = 0$ and therefore, $\exists \gamma \in ker(Int^{k-1})$ with $d_{k-1}\gamma = \beta$. Hence,

$$\omega = d_{k-1}(\Phi^{k-1}A - \gamma)$$

and, by setting $\alpha = \Phi^{k-1}A - \gamma$, we obtain

$$\operatorname{Int}^{k-1} \alpha = \operatorname{Int}^{k-1}(\Phi^{k-1}A) - \operatorname{Int}^{k-1}\gamma = A.$$

Assume now that Lemma 1* is true and let $[\omega] \in H^k(\text{ker}(\text{Int}^{\bullet}))$, i.e. $\omega \in \text{ker}(\text{Int}^k) \cap \text{ker } d_k$. Then by Lemma 1*, $\exists \alpha$ such that $d_{k-1}\alpha = \omega$ and $\alpha \in \text{ker}(\text{Int}^{k-1})$. It follows that $[\omega] = 0$.

The de Rham Theorem

Theorem 2 (de Rham)

 $[\operatorname{Int}^k] : \operatorname{H}^k(M) \longrightarrow \operatorname{H}^k(\Sigma)$ is an isomorphism $\forall k$.

Proof.

- i) $[Int^k]$ is surjective: Let $[A] \in H^k(\Sigma)$. Set $\omega := \Phi^k A \in \Omega^k(M)$. Since $d_k \omega = \Phi^{k+1} \partial_k^* A = 0$, $[\omega] \in H^k(M)$. Also, $[Int^k][\omega] = [Int^k \omega] = [Int^k \Phi^k A] = [A]$.
- ii) $[Int^k]$ is *injective*: Let $[\omega] \in ker([Int^k])$. Then $d_k \omega = 0$ and $[Int^k \omega] = [Int^k][\omega] = 0$, i.e. $Int^k \omega \in im \partial_{k-1}^*$. Lemma 1* implies that ω is exact and thus, $[\omega] = 0$. \Box

Thus, for completing the proof of *de Rham*'s theorem, it remains to show that ker(Int[•]) is acyclic. For that, we need the following two lemmas:

Lemma 2 (Closed forms in star-shaped sets)

Let S be an open and star-shaped set in \mathbb{R}^n and let ω be a closed k-form in S, k > 0. Then ω is exact.

Proof. Follows immediately from Poincar's Lemma, which we proved last time.

Lemma 3 (Extension of forms)

(a_k) Let ω be a closed k-form near $\partial \sigma$, where $\sigma = \sigma^s$ is an s-simplex in \mathbb{R}^n , $k \ge 0$, $s \ge 1$. Suppose that

$$\int_{\partial \sigma} \omega = 0 \quad \text{if } s = k + 1. \tag{1}$$

Then there is a closed k-form $\tilde{\omega}$ near σ which extends ω .

(b_k) Let ω be a closed k-form near the s-simplex $\sigma = \sigma^s \subset \mathbb{R}^n$, $k \ge 1$, $s \ge 1$, and let α be a (k-1)-form near $\partial \sigma$ such that $d\alpha = \omega$ near $\partial \sigma$. Suppose that

$$\int_{\partial \sigma} \alpha = \int_{\sigma} \omega \quad \text{if } s = k.$$
(2)

Then there is a (k-1)-form $\tilde{\alpha}$ near σ such that $\tilde{\alpha}$ extends α and $d\tilde{\alpha} = \omega$ near σ .

Proof by induction on k. We will show

- i) (a₀) holds
- ii) $(a_{k-1}) \Rightarrow (b_k)$
- iii) $(b_k) \Rightarrow (a_k), k > 0$
- i) Being a closed 0-form, ω is constant near any connected part of $\partial \sigma$. If s > 1, then $\partial \sigma^s$ is connected and ω equals a constant c near $\partial \sigma$. Set $\tilde{\omega} = c$ near σ . If s = 1, and say $\sigma^1 = p_0 p_1$, then

$$\omega(p_1) - \omega(p_0) = \int_{\partial \sigma} \omega = 0,$$

by (1), and thus, ω equals a constant c near $\partial \sigma$. Set $\tilde{\omega} = c$ near σ .

ii) Assume (a_{k-1}) holds and let ω, α be as in (b_k).
By choosing a star-shaped neighborhood of σ and applying *Lemma 2*, there exists a (k - 1)-form α' near σ such that dα' = ω near σ.
Set β = α - α' near ∂σ and observe that dβ = ω - ω = 0.

Notice that, if s = k, (2) and *Stokes' Theorem* imply

$$\int_{\partial\sigma}\beta = \int_{\partial\sigma}\alpha - \int_{\partial\sigma}\alpha' = \int_{\sigma}\omega - \int_{\sigma}d\alpha' = 0.$$

By applying (a_{k-1}) , we can extend β to $\tilde{\beta}$, which is defined near σ and closed. Setting $\tilde{\alpha} = \alpha' + \tilde{\beta}$ near σ , we obtain that $\tilde{\alpha}$ extends α and $d\tilde{\alpha} = \omega$ near σ as we wished.

iii) Assume (b_k), k > 0, holds and let ω be as in (a_k).
Say σ = p₀... p_s and set σ' = p₁... p_s. Let P be the union of all proper faces of σ with p₀ as a vertex.
Choose now ε > 0 small enough such that ω is defined in the ε-neighborhood U_ε(P) of P.
Since U_ε(P) is star-shaped, by Lemma 2, there exists a (k - 1)-form α' in U_ε(P) such that dα' = ω in U_ε(P).
We have, in particular, dα' = ω near ∂σ'.

If s = k + 1, setting $A = \partial \sigma - \sigma'$, we obtain $\partial A = -\partial \sigma'$ and

$$\int_{\sigma'} \omega - \int_{\partial \sigma'} \alpha' = \int_{\sigma'} \omega + \int_{\partial A} \alpha' = \int_{\sigma'} \omega + \int_{A} d\alpha' = \int_{\partial \sigma} \omega = 0$$

by (1). We can now apply (\mathbf{b}_k) and extend α' to $\tilde{\alpha}'$ near σ' such that $d\tilde{\alpha}' = \omega$ near σ' . It follows that there is a neighborhood \tilde{U} of $\partial \sigma'$ in which α' and $\tilde{\alpha}'$ are defined and equal. Set

$$\alpha = \begin{cases} \alpha'|_{\widetilde{U}} = \widetilde{\alpha}'|_{\widetilde{U}} & \text{ in } \widetilde{U} \\ \alpha' & \text{ near } \mathcal{P} \backslash \widetilde{U} \\ \widetilde{\alpha}' & \text{ near } \sigma' \backslash \widetilde{U} \end{cases}$$

Observe that $d\alpha = \omega$ near $\partial \sigma$. By means of a partition of unity extend α to $\tilde{\alpha}$ near σ . $\tilde{\omega} := d\tilde{\alpha}$ satisfies the required properties. **Definition.** Let L^s denote the s-dimensional part of the triangulation of M, that is $L^s = \bigcup_i \sigma_i^s$.

Proof of Lemma 1^{*}. We will define $\alpha_0, \ldots, \alpha_n$ such that

(a) α_s is defined near L^s , $s = 0, 1, \ldots, n$,

(b)
$$d\alpha_s = \omega$$
 near L^s , and $\alpha_s = \alpha_{s-1}$ near L^{s-1} , $s > 0$, and

(c)
$$\operatorname{Int} \alpha_{k-1} = A$$

Then, $\alpha := \alpha_n$ is the required form.

Construct α_s , s = 0, 1, ..., n, by induction on s:

By Lemma 2, there exists an α'_0 near each vertex q_i such that $d\alpha'_0 = \omega$. If k > 1, set $\alpha_0 = \alpha'_0$. If k = 1, for each vertex q_i choose a number b_i such that, setting $\alpha_0 = \alpha'_0 + b_i$ near q_i , Int $\alpha_0 = A$. Now suppose α_{s-1} has been constructed.

We will define α_s near each s-simplex such that (a), (b) and (c) hold. Since α_s is then fixed near L^{s-1} , we obtain a well-defined α_s near L^s .

Let σ be an *s*-simplex. Then $d\alpha_{s-1} = \omega$ near $\partial \sigma$, by construction. If s = k, by (c),

$$\int_{\partial\sigma} \alpha_{k-1} = \operatorname{Int} \alpha_{k-1} \cdot \partial\sigma = A \cdot \partial\sigma = \partial^* A \cdot \sigma = \operatorname{Int} \omega \cdot \sigma = \int_{\sigma} \omega.$$

Since we can assume that M is embedded in \mathbb{R}^N for some $N \in \mathbb{N}$, we can now apply Lemma 3. It gives us a (k-1)-form $\tilde{\alpha}_s$ near σ such that $\tilde{\alpha}_s = \alpha_{s-1}$ near $\partial \sigma$ and $d\tilde{\alpha}_s = \omega$ near σ . So (b) holds for $\tilde{\alpha}_s$. If $s \neq k - 1$, set $\alpha_s = \tilde{\alpha}_s$ near σ . If s = k - 1, define $B = A - \operatorname{Int} \tilde{\alpha}_{k-1}$ and set

$$\alpha_{k-1} = \tilde{\alpha}_{k-1} + \Phi B$$
 near L^{k-1} .

To see that α_{k-1} satisfies (b), recall $Supp(\Phi\rho^*) \subset St(\rho)$ for each simplex ρ . It follows that $\alpha_{k-1} = \tilde{\alpha}_{k-1}$ near L^{k-2} and thus, $\alpha_{k-1} = \alpha_{k-2}$ near L^{k-2} . Also,

$$d\alpha_{k-1} = d\tilde{\alpha}_{k-1} + d\Phi B = d\tilde{\alpha}_{k-1} + \Phi \partial^* B = \omega \quad \text{near } L^{k-1}.$$

Since

$$\operatorname{Int} \alpha_{k-1} = \operatorname{Int} \tilde{\alpha}_{k-1} + B = A,$$

(c) holds and $\alpha_s = \alpha_{k-1}$ is as we wished.

An example: The Euler characteristic

Definition. Let M^n be a manifold. The *Euler characteristic* χ of M is the alternating sum

$$\chi(M) = \sum_{k=0}^{n} (-1)^{k} dim_{\mathbb{R}} H^{k}(\Omega).$$

The *de Rham Theorem* tells us that, no matter which triangulation we pick, the Euler characteristic equals the following:

$$\chi(M) = \sum_{k=0}^{n} (-1)^{k} dim_{\mathbb{R}} H^{k}(\Sigma),$$

where

$$0 \longrightarrow \Sigma_0^* \xrightarrow{\partial_0^*} \Sigma_1^* \xrightarrow{\partial_1^*} \dots \xrightarrow{\partial_{n-2}^*} \Sigma_{n-1}^* \xrightarrow{\partial_{n-1}^*} \Sigma_n^* \longrightarrow 0$$

is the simplicial cochain complex according to the chosen triangulation of M^n . Using

$$\textit{dim}_{\mathbb{R}}\textit{H}^{k}(\Sigma) = \textit{dim}_{\mathbb{R}} \ker \partial_{k}^{*} - \textit{dim}_{\mathbb{R}} \operatorname{im} \partial_{k-1}^{*} \quad \text{and} \quad \textit{dim}_{\mathbb{R}}\Sigma_{k}^{*} = \textit{dim}_{\mathbb{R}} \ker \partial_{k}^{*} + \textit{dim}_{\mathbb{R}} \operatorname{im} \partial_{k}^{*},$$

we finally obtain

$$\chi(M) = \sum_{k=0}^{n} (-1)^k \dim_{\mathbb{R}} \Sigma_k^*,$$

that is simply the alternating sum of the number of the k-dimensional faces, $k = 0, 1, \dots, n$.

Example 1. 2-Sphere

We can use a tetrahedron T to triangulate S^2 . Then

 $\chi(S^2)$ = number of vertices of T – number of edges of T + number of faces of T= 4 - 6 - 4 = 2.

Example 2. 2-Torus

Triangulate the torus in the following way:

$$\chi(\mathbb{T}^2)$$
 = number of vertices of K – number of edges of K + number of faces of K
= 9 - 27 + 18 = 0