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Our goal is the Hasse-Minkowski Theorem:

Recall: for a prime p € Z we have the field of p-adic numbers Q,;

also, put Q« := R. We have the inclusion Q < Q,, v prime or cc.

n
Say f := Z a,-Xj2 on Q", we associate to this a form f, on Q,.
i=1

Thm. H-M.: There is a nonzero element X € Q" s.th f(X) =0

iff for all v, there is a nonzero element X, € Q) s.th f(X,) = 0.

Now, in more details and much more definitions:
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Def. A quadratic module (shortly g.m.) (V, Q):

is a module V over a comm. ring A with a quadratic form Q on V,
i.e. a function Q : V — A that satisfies the assumptions:
1) Q(ax) = a*Q(x) fora€ Aand x € V,

2) (x,y) — Q(x+y)— Q(x) — Q(y) is a bilinear form.

A = k field, char(k) # 2 = the A-module V is a k-vector space.

We assume the k-vector space is finite dimensional.
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We set the scalar product associated to Q: (x, y) — x.y where

x.y = HQx+y) = Q(x) = Q(y)}. So, Q(x) = x.x .

Thus symmetric bilinear forms on V <— quadratic forms on V.

For quad. modules (V,Q), (V',Q),amapf:V =V’

sith. Q' of = Q is called a morphism (V,Q) — (V', Q).

Then f(x).f(y) = x.y.
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Matrix of a quadratic form w.r.to a basis (&;)1<;j<, of V,

is A= (aj) where a; = e;.¢j, thus A is symmetric.
If x =72 xie; € V, then Q(x) =3, ; ajjxix; .

If B € GL(n, k), we can change the basis w.r.to B, the matrix A" of
Q w.r.to the new basis is BAB®. Thus det(A) is an invariant of Q

in k*/k*2U {0}: det(A) =: disc(Q) is the discriminant of Q.
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Orthogonality: x,y € V are orthogonal iff x.y = 0.

H C V, set H to be the subspace of x € V s.th. x.y =0, Vy € H.

Vi, Vi subspaces of V = V; and V5 are orthogonal iff V; C V20 .
V0 =: rad(V) is the radical of V, its codimension =: rank(Q) .
If rad(V) = 0, then we say Q is nondegenerate < disc(Q) # 0 .
ForUCV,qu:V3x—(U3y— xy)e U :=Hom(U; k).

ker qu = U°, so disc(Q) # 0 < qy : V — V* is an isomorphism.
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V.=Ud...8U,iff Uy, ..., U, are pairwise
orthogonal subspaces of V and V is the sum of the U; .

If x has components x; € U; then Q(x) =" Qi(x;), Qi :== Q|U; .

Def. x € V is isotropic if Q(x) =0 ; U C V isotropic & Q|U = 0.

Q.m. with an isotropic basis x, y s.th. x.y # 0 =: hyperbolic plane.

If (V, Q) is a hyperbolic plane, then disc(Q) = —1 .
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Prop. A: If x € V' \ {0} is isotropic and disc(Q) # 0

= d a subspace U C V, s.th. x € U and U is a hyperbolic plane.
Pf. disc(Q) #0 = 3 z€ V sith. x.z=1. Let y =2z — (z.2)x,
= y is isotropic and x.y = 2. Put U = k{x} @ k{y}. O

Cor. Al: 3 x € V'\ {0} isotropic and disc(Q) # 0 = Q(V) = k.
Pf. If V is a hyperbolic plane with basis x, y with x.y =1 and

ack=a= Q(x+3y). dim,V > 2 case follows from Prop. A.CJ
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(e/) C (V, Q) is an orthogonal basis when V = &,k{e;}.

Theorem 1. Every quad. module (V, Q) has an orthogonal basis.
Def. Bases (&), (e) are contiguous if e; = €] for some i, /.

Fact 1. Given two orthogonal bases (¢;), (e;) there is a finite
sequence of orthogonal bases starting with (e;) ending with (/)

s.th every two consecutive ones are contiguous.

Def. For two forms f, g let f+g = f(x1,...,Xn) +&(Xnt1s- -+ Xm)-
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Prop. B: g, h nondegen. of rank > 1, f = g+(—h) =
TFAE:

(a) f represents 0, i.e. 3 x € V' \ {0} s.th. f(x) =0.
(b) 3 a € k* represented by both g and h.

(c) 3 a € k* such that g-+(—aZ?) and h+(—aZ?) represent 0.

Pf. (b) < (c) and (b) = (a) are direct. f(x,y) =0 =
g(x) =h(y) =:b. If b€ k* we are done, if b =0, then
g(V)=h(V) =k by Cor. Al = g(x') = h(y’) =: a € k* for some

X,y ev. O
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The Hilbert Symbol: let a, b € k* put:

(a, b) :=1if 22 — ax? — by? = 0 has a nontrivial solution in k3,
and (a, b) := —1 otherwise.

The Hilbert symbol is a bilinear map k*/k*? x k*/k*2 — {£1}.

For an orthogonal basis e = (¢;) of (V, Q) with a; := e;.¢;:

e(e) == [[(a1, 2).

i<j

Theorem 3. ¢(e) does not depend on the choice of e.
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Pf. Induction on rank n: n=1=¢(e)=1. If n=2 = ¢(e) =
& 7% — a1 X% — a,Y? represents 0 < a1 X2 + a, Y? represents 1
< Jv € V s.th. Q(v) = 1, which is independent of basis.

If n > 3, enough to show €(e) = ¢(e’) when e, € are contiguous.

WLOG assume e; = e; = a; = a]. Since disc(Q) = a1 ...an

e(e) = (a1, a2---a3) H aj, aj) = (ax, disc(Q)a1) H (ai, a))

2<i<y 2<i<y

1
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Repeat: €(e) = (a1, disc(Q)a1) H (ai, a))

2<i<y

Similarly, e(e') = (a1, disc(Q)a1) [] (a} ).

2<i<y

Inductive hypothesis applied to the orthogonal complement of e;

= [] (@i.a) = ][ (&.2) = e(e) = (). O

2<i<j 2<i<]

Thus we write €(Q) instead of ¢(e).

Fact 2. Forms f, g are equivalent iff rank(f) = rank(g),

disc(f) = disc(g), e(f) = €(g).
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Quadratic forms over Q, let f(X) = a;X? + -+ + a,X?

We assume from now that forms are nondegenerate.

Let V be the set of prime numbers along with co, we put Q = R.
For v e V, Q — Q, allows us to view f over Q,, denoted f,,
Q*/Q*? — Q1 /Qr2, gives disc(f) — disc(f,) := disc,(f),
similarly €,(f) := €(fy) = [T, ;(ai, aj)v -

Fact 2. (sadly): Hilbert's Theorem: a, b € Q* = (a, b), =1 for all

but finitely many v and H(a, b), = 1.
veVv
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Hasse-Minkowski Theorem:
dxeQ"sthf(x)=0&VveVdx €Q)sthf(x)=0.
Lazy notation: Write a € Im(f) to mean " f represents 0.”

Pf. "=" is trivial. For the converse, write f = ale + ... a,,X,%,
Replacing f by a;f, we may assume a; = 1. Note we have a; € Q.
n=2: We have f = X2 — aX?, since 0 € Im(fy,), a > 0.

Write [, p**(2), 0 € Im(f,) = 2|vp(a) = a € Q*2 = 0 € Im(f).
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n=3:f=X?—aXj — bXZ. WLOG a, b are squarefree, |a| < |b|.
Put m=|a|+|b|. m=2= f = X2+ X3+ X2, since 0 € Im(fx),
the case f = X? + X3 + X3 is excluded, others are trivial.
m>2=|b| >2= b==+p;...pk, p; distinct primes, p := p;:
We show a € (Z/pZ)?. If a=0 (mod p) obvious. Else, a € Q} .
A(x,y,z) € Qf’, s.th 22 — ax? — by? = 0, WLOG (x, y, z) primitive.

= 72 — ax?> =0 (mod p), thus p|x = p|z = p?|by? = ply ?!
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Thus we have pt x = ais a square modulo p.
Z/bZ ~[]Z/piZ = ais a square modulo b = 3 t, b’ € Z s.th.
[t] < % and t2 = a+ bb'. Thus bb' € Nk(+/a)* := the group of
norms of elements of the extension k(1/a)/k , k = Q or Q,
= 0 ¢ Im(f) in k iff 0 € Im(f = X2 — aXZ — b'X2)

= 0¢€ Im(f)) Vv eV, but |b| =

t2—a
b

b
<Bli1<p

Finally, apply the induction hypothesis to the squarefree part of b'.
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n = 4: We will need:

Fact 3. Let a,b,c,d € Q*, let {€;}icr,vev € {£1}. Given that:

(1) all but finitely many €¢;, =1,

(2) for all i € I we have [] €, =1,

(3) forall ve VI x, € Qf sth. (aj,xv)y =€y Vv eV

then there exists x € Q* s.th (aj,x), =¢€;, foralliel,ve V.
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Back to n = 4: Let f = aX? + bX? — (cX2 + dX?). Pick v € V.
Prop. B = 3 x, € Q}, represented by aX? + bX3 and cX3 + dX?
< (xy,—ab), = (a,b), and (x,, —cd), = (c,d), forall ve V.

By Hilbert's Theorem: [] (a, b), =[], (c,d), =1 ; Fact 3. =

1 x € Q* s.th. (x,—ab), = (a, b), , (x,—cd), = (c,d), for all v .

= aX? + bYZ — xZ? represents 0 in each Q,, thus in Q by n = 3.

= x is represented by aX? + bX? and cX? + dX?

= f represents 0.
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n > 5: By induction on n. Write f = h+(—g) with
h:alX12+agX22 and g:a3X32—|—-~~+a+nX3.

Let S={2,00} U{p e V:vy(aj) #0 foronei>3}. LetveS.
f, represents 0 = 3 a, € Q] represented by h and g

= 3 xiy € Qu s.ith. h(xi,v,x0,v) = g(X3,v, -+, Xnv) = av.

Fact4.: T C V, |T| < oo = image of Qin [],.sQ, is dense.
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The square of Q} form an open set (last lecture) and Fact 4. =
3 x1,x € Qsth. if a:= h(x;,x) then £ € Q}2Vve V.

Put f; := aZ?4(—g). For v € S g represents a, in Q, =

g represents a in Q, = £ represents 0 in Q,.

V¢5:>33,"' 7an€Qtv :>dlscv(g)€<@>’\;:>Ev(g):]':>

fi represents 0 in all Q,, rank(fy) = n—1 = f; represents 0 in Q.

= g represents a in QQ, but h represents a = f represents 0 in Q.



Corollaries:

Cor. B1: a € Q. Then f represents a in Q iff it does in each Q,.

Cor. B2: (Meyer). A quadratic for of rank > 5 represents 0 in Q

iff it does so in R. (In such case 0 is represented in all Q,.)
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