Quadratic forms and the Hasse-Minkowski Theorem

Juraj Milcak University of Toronto MAT477 Instructor: Prof. Milman

March 13, 2012

Our goal is the Hasse-Minkowski Theorem:

Recall: for a prime $p \in \mathbb{Z}$ we have the field of p-adic numbers \mathbb{Q}_p ;

also, put $\mathbb{Q}_{\infty} := \mathbb{R}$. We have the inclusion $\mathbb{Q} \hookrightarrow \mathbb{Q}_{\nu}$, ν prime or ∞ .

Say
$$f := \sum_{i=1}^{n} a_i X_j^2$$
 on \mathbb{Q}^n , we associate to this a form f_v on \mathbb{Q}_v .

Thm. H-M.: There is a nonzero element $X \in \mathbb{Q}^n$ s.th f(X) = 0

iff for all v, there is a nonzero element $X_v \in \mathbb{Q}_v^n$ s.th $f(X_v) = 0$.

Now, in more details and much more definitions:

Def. A quadratic module (shortly q.m.) (V, Q):

is a module V over a comm. ring A with a quadratic form Q on V,

i.e. a function $Q: V \rightarrow A$ that satisfies the assumptions:

1)
$$Q(ax) = a^2 Q(x)$$
 for $a \in A$ and $x \in V$,

2)
$$(x, y) \mapsto Q(x + y) - Q(x) - Q(y)$$
 is a bilinear form.

A = k field, $char(k) \neq 2 \Rightarrow$ the A-module V is a k-vector space.

We assume the k-vector space is finite dimensional.

We set the scalar product associated to $Q: (x, y) \mapsto x.y$ where

$$x.y := \frac{1}{2} \{ Q(x+y) - Q(x) - Q(y) \}$$
. So, $Q(x) = x.x$.

Thus symmetric bilinear forms on $V \leftrightarrow quadratic$ forms on V.

For quad. modules (V, Q), (V', Q'), a map f: V o V'

s.th. $Q' \circ f = Q$ is called a *morphism* $(V, Q) \rightarrow (V', Q')$.

Then $f(x).f(y) \equiv x.y$.

Matrix of a quadratic form w.r.to a basis $(e_i)_{1 \le i \le n}$ of V,

is
$$A=(a_{ij})$$
 where $a_{ij}=e_i.e_j$, thus A is symmetric.

If
$$x = \sum x_i e_i \in V$$
, then $Q(x) = \sum_{i,j} a_{ij} x_i x_j$.

If $B \in GL(n, k)$, we can change the basis w.r.to B, the matrix A' of

Q w.r.to the new basis is BAB^t . Thus det(A) is an invariant of Q

in $k^*/k^{*2} \cup \{0\}$: det(A) =: disc(Q) is the discriminant of Q.

Orthogonality: $x, y \in V$ are orthogonal iff x.y = 0.

 $H \subset V$, set H^0 to be the subspace of $x \in V$ s.th. x.y = 0, $\forall y \in H$.

 V_1, V_2 subspaces of $V \Rightarrow V_1$ and V_2 are orthogonal iff $V_1 \subset V_2^0$.

 $V^0 =: rad(V)$ is the radical of V, its codimension =: rank(Q).

If rad(V) = 0, then we say Q is nondegenerate \Leftrightarrow $disc(Q) \neq 0$.

For
$$U \subset V$$
, $q_U : V \ni x \mapsto (U \ni y \mapsto x.y) \in U^* := Hom(U; k)$.

ker $q_U = U^0$, so $disc(Q) \neq 0 \Leftrightarrow q_V : V \to V^*$ is an isomorphism.

$V := U_1 \hat{\oplus} \dots \hat{\oplus} U_m$ iff U_1, \dots, U_m are pairwise

orthogonal subspaces of V and V is the sum of the U_i .

If x has components $x_i \in U_i$ then $Q(x) = \sum Q_i(x_i), \ Q_i := Q | U_i$.

Def. $x \in V$ is *isotropic* if Q(x) = 0; $U \subset V$ isotropic $\Leftrightarrow Q | U = 0$.

Q.m. with an isotropic basis x, y s.th. $x, y \neq 0 =:$ hyperbolic plane.

If (V, Q) is a hyperbolic plane, then disc(Q) = -1.

Prop. A: If $x \in V \setminus \{0\}$ is isotropic and $disc(Q) \neq 0$

 $\Rightarrow \exists$ a subspace $U \subset V$, s.th. $x \in U$ and U is a hyperbolic plane.

Pf. $disc(Q) \neq 0 \Rightarrow \exists z \in V$ s.th. x.z = 1. Let y = 2z - (z.z)x,

 \Rightarrow y is isotropic and x.y = 2. Put $U = k\{x\} \oplus k\{y\}$. \Box

Cor. A1: $\exists x \in V \setminus \{0\}$ isotropic and $disc(Q) \neq 0 \Rightarrow Q(V) = k$.

Pf. If V is a hyperbolic plane with basis x, y with x.y = 1 and

 $a \in k \Rightarrow a = Q(x + \frac{a}{2}y)$. dim_k V > 2 case follows from Prop. A.

 $(e_i) \subset (V, Q)$ is an orthogonal basis when $V = \bigoplus_i k\{e_i\}$.

Theorem 1. Every quad. module (V, Q) has an orthogonal basis.

Def. Bases $(e_i), (e'_i)$ are *contiguous* if $e_i = e'_i$ for some i, j.

Fact 1. Given two orthogonal bases $(e_i), (e'_1)$ there is a finite

sequence of orthogonal bases starting with (e_i) ending with (e'_i)

s.th every two consecutive ones are contiguous.

Def. For two forms f, g let $f + g = f(x_1, \ldots, x_n) + g(x_{n+1}, \ldots, x_m)$.

Prop. B: g, h nondegen. of rank ≥ 1 , $f = g + (-h) \Rightarrow$ TFAE:

(a) f represents 0, i.e. $\exists x \in V \setminus \{0\}$ s.th. f(x) = 0.

(b) $\exists a \in k^*$ represented by both g and h.

(c) $\exists a \in k^*$ such that $g + (-aZ^2)$ and $h + (-aZ^2)$ represent 0.

Pf. (b)
$$\Leftrightarrow$$
 (c) and (b) \Rightarrow (a) are direct. $f(x, y) = 0 \Rightarrow$

g(x) = h(y) =: b . If $b \in k^*$ we are done, if b = 0, then

g(V) = h(V) = k by Cor. A1 \Rightarrow $g(x') = h(y') =: a \in k^*$ for some $x', y' \in V$. \Box

The Hilbert Symbol: let $a, b \in k^*$ put:

(a,b) := 1 if $z^2 - ax^2 - by^2 = 0$ has a nontrivial solution in k^3 ,

and (a, b) := -1 otherwise.

The Hilbert symbol is a bilinear map $k^*/k^{*2} \times k^*/k^{*2} \rightarrow \{\pm 1\}$.

For an orthogonal basis $\mathbf{e} = (e_i)$ of (V, Q) with $a_i := e_i \cdot e_i$:

$$\epsilon(\mathbf{e}) := \prod_{i < j} (a_i, a_j).$$

Theorem 3. $\epsilon(\mathbf{e})$ does not depend on the choice of \mathbf{e} .

Pf. Induction on rank n: $n = 1 \Rightarrow \epsilon(\mathbf{e}) = 1$. If $n = 2 \Rightarrow \epsilon(\mathbf{e}) = 1$

$$\Leftrightarrow Z^2 - a_1 X^2 - a_2 Y^2$$
 represents $0 \Leftrightarrow a_1 X^2 + a_2 Y^2$ represents 1

 $\Leftrightarrow \exists v \in V \text{ s.th. } Q(v) = 1$, which is independent of basis.

If $n \ge 3$, enough to show $\epsilon(\mathbf{e}) = \epsilon(\mathbf{e}')$ when \mathbf{e}, \mathbf{e}' are contiguous.

WLOG assume $e_1 = e'_1 \Rightarrow a_1 = a'_1$. Since $disc(Q) = a_1 \dots a_n$,

$$\epsilon(\mathbf{e}) = (a_1, a_2 \cdots a_3) \prod_{2 \leq i < j} (a_i, a_j) = (a_1, \operatorname{disc}(Q)a_1) \prod_{2 \leq i < j} (a_i, a_j)$$

Repeat:
$$\epsilon(\mathbf{e}) = (a_1, disc(Q)a_1) \prod_{2 \le i < j} (a_i, a_j)$$

Similarly,
$$\epsilon(\mathbf{e}') = (a_1, disc(Q)a_1) \prod_{2 \le i < j} (a'_i, a'_j).$$

Inductive hypothesis applied to the orthogonal complement of e_1

$$\Rightarrow \prod_{2 \le i < j} (a_i, a_j) = \prod_{2 \le i < j} (a'_i, a'_j) \Rightarrow \epsilon(\mathbf{e}) = \epsilon(\mathbf{e}'). \quad \Box$$

Thus we write $\epsilon(Q)$ instead of $\epsilon(\mathbf{e})$.

Fact 2. Forms f, g are equivalent iff rank(f) = rank(g),

$$disc(f) = disc(g), \ \epsilon(f) = \epsilon(g).$$

Quadratic forms over \mathbb{Q} , let $f(X) = a_1 X^2 + \cdots + a_n X_n^2$

We assume from now that forms are nondegenerate.

Let V be the set of prime numbers along with ∞ , we put $\mathbb{Q}_{\infty} = \mathbb{R}$.

For $v \in V$, $\mathbb{Q} \hookrightarrow \mathbb{Q}_v$ allows us to view f over \mathbb{Q}_v , denoted f_v ,

$$\mathbb{Q}^*/\mathbb{Q}^{*2} \hookrightarrow \mathbb{Q}^*_{v}/\mathbb{Q}^{*2}_{v}$$
, gives $\textit{disc}(f) \mapsto \textit{disc}(f_v) := \textit{disc}_v(f)$,

similarly $\epsilon_v(f) := \epsilon(f_v) = \prod_{i < j} (a_i, a_j)_v$.

Fact 2. (sadly): Hilbert's Theorem: $a, b \in \mathbb{Q}^* \Rightarrow (a, b)_v = 1$ for all

but finitely many v and $\prod_{v \in V} (a, b)_v = 1$.

Hasse-Minkowski Theorem:

 $\exists x \in \mathbb{Q}^n \text{ s.th } f(x) = 0 \Leftrightarrow \forall v \in V \exists x_v \in \mathbb{Q}^n_v \text{ s.th } f_v(x_v) = 0.$

Lazy notation: Write $a \in Im(f)$ to mean "f represents 0."

Pf. " \Rightarrow " is trivial. For the converse, write $f = a_1 X_1^2 + ... a_n X_n^2$,

Replacing f by $a_1 f$, we may assume $a_1 = 1$. Note we have $a_i \in \mathbb{Q}^*$.

$$\underline{n=2}$$
: We have $f=X_1^2-aX_2^2$, since $0\in Im(f_\infty)$, $a>0$.

Write $\prod_p p^{v_p(a)}$, $0 \in Im(f_p) \Rightarrow 2|v_p(a) \Rightarrow a \in \mathbb{Q}^{*2} \Rightarrow 0 \in Im(f)$.

$$\underline{n=3}$$
: $f = X_1^2 - aX_2^2 - bX_3^2$. WLOG a, b are squarefree, $|a| \le |b|$.

Put
$$m = |a| + |b|$$
. $m = 2 \Rightarrow f = X_1^2 \pm X_2^2 \pm X_3^2$, since $0 \in Im(f_{\infty})$,

the case $f = X_1^2 + X_2^2 + X_3^2$ is excluded, others are trivial.

 $m > 2 \Rightarrow |b| \ge 2 \Rightarrow b = \pm p_1 \dots p_k$, p_i distinct primes, $p := p_i$:

We show $a \in (\mathbb{Z}/p\mathbb{Z})^2$. If $a \equiv 0 \pmod{p}$ obvious. Else, $a \in \mathbb{Q}_p^*$.

$$\exists (x, y, z) \in \mathbb{Q}_p^3$$
 s.th $z^2 - ax^2 - by^2 = 0$, WLOG (x, y, z) primitive.

 $\Rightarrow z^2 - ax^2 \equiv 0 \pmod{p}, \text{ thus } p|x \Rightarrow p|z \Rightarrow p^2|by^2 \Rightarrow p|y ?!$

Thus we have $p \nmid x \Rightarrow a$ is a square modulo p.

 $\mathbb{Z}/b\mathbb{Z} \simeq \prod \mathbb{Z}/p_i\mathbb{Z} \Rightarrow a \text{ is a square modulo } b \Rightarrow \exists t, b' \in \mathbb{Z} \text{ s.th.}$

 $|t| \leq \frac{|b|}{2}$ and $t^2 = a + bb'$. Thus $bb' \in Nk(\sqrt{a})^* :=$ the group of

norms of elements of the extension $k(\sqrt{a})/k$, $k=\mathbb{Q}$ or \mathbb{Q}_{v}

$$\Rightarrow 0 \in \mathit{Im}(f) \text{ in } k \text{ iff } 0 \in \mathit{Im}(f' = X_1^2 - aX_2^2 - b'X_3^2)$$

$$\Rightarrow 0 \in \mathit{Im}(f_{v}') \ orall v \in V$$
, but $|b'| = \left|rac{t^2-a}{b}
ight| \leq rac{|b|}{4} + 1 < |b|.$

Finally, apply the induction hypothesis to the squarefree part of b'.

 $\underline{n=4}$: We will need:

Fact 3. Let $a, b, c, d \in \mathbb{Q}^*$, let $\{\epsilon_{i,v}\}_{i \in I, v \in V} \in \{\pm 1\}$. Given that:

(1) all but finitely many $\epsilon_{i, \mathbf{v}} = 1$,

(2) for all $i \in I$ we have $\prod_{v} \epsilon_{i,v} = 1$,

(3) for all $v \in V \exists x_v \in \mathbb{Q}_v^*$ s.th. $(a_i, x_v)_v = \epsilon_{i,v} \ \forall v \in V$;

then there exists $x \in \mathbb{Q}^*$ s.th $(a_i, x)_v = \epsilon_{i,v}$ for all $i \in I, v \in V$.

Back to
$$\underline{n = 4}$$
: Let $f = aX_1^2 + bX_2^2 - (cX_3^2 + dX_4^2)$. Pick $v \in V$.

Prop. B $\Rightarrow \exists x_v \in \mathbb{Q}_v^*$ represented by $aX_1^2 + bX_2^2$ and $cX_3^2 + dX_4^2$

$$\Leftrightarrow (x_v, -ab)_v = (a, b)_v$$
 and $(x_v, -cd)_v = (c, d)_v$ for all $v \in V$.

By Hilbert's Theorem: $\prod_{
u} (a,b)_{
u} = \prod_{
u} (c,d)_{
u} = 1$; Fact 3. \Rightarrow

$$\exists \ x \in \mathbb{Q}^* \text{ s.th. } (x,-ab)_{v} = (a,b)_{v}$$
 , $(x,-cd)_{v} = (c,d)_{v}$ for all v .

 $\Rightarrow aX_1^2 + bY_2^2 - xZ^2$ represents 0 in each \mathbb{Q}_v , thus in \mathbb{Q} by n = 3.

 \Rightarrow x is represented by $aX_1^2 + bX_2^2$ and $cX_3^2 + dX_4^2$

 \Rightarrow *f* represents 0.

 $n \ge 5$: By induction on *n*. Write f = h + (-g) with

$$h = a_1 X_1^2 + a_2 X_2^2$$
 and $g = a_3 X_3^2 + \dots + a + n X_n^2$.

Let $S = \{2, \infty\} \cup \{p \in V : v_p(a_i) \neq 0 \text{ for one } i \geq 3\}$. Let $v \in S$.

 f_v represents $0 \Rightarrow \exists a_v \in \mathbb{Q}_v^*$ represented by h and g

$$\Rightarrow \exists x_{i,v} \in \mathbb{Q}_v \text{ s.th. } h(x_{1,v}, x_{2,v}) = g(x_{3,v}, \cdots, x_{n,v}) = a_v.$$

Fact 4.: $T \subset V$, $|T| < \infty \Rightarrow$ image of \mathbb{Q} in $\prod_{v \in S} \mathbb{Q}_v$ is dense.

The square of \mathbb{Q}_{ν}^{*} form an open set (last lecture) and Fact 4. \Rightarrow

$$\exists x_1, x_2 \in \mathbb{Q}$$
 s.th. if $a := h(x_1, x_2)$ then $\frac{a}{a_v} \in \mathbb{Q}_v^{*2} \ \forall \ v \in V$

Put $f_1 := aZ^2 + (-g)$. For $v \in S \ g$ represents a_v in $\mathbb{Q}_v \Rightarrow$

g represents a in $\mathbb{Q}_{\nu} \Rightarrow f_1$ represents 0 in \mathbb{Q}_{ν} .

$$v
ot\in S \Rightarrow a_3, \cdots, a_n \in \mathbb{Q}_v^*, \Rightarrow \textit{disc}_v(g) \in \mathbb{Q}_v^* \Rightarrow \epsilon_v(g) = 1 \Rightarrow$$

 f_1 represents 0 in all \mathbb{Q}_v , $rank(f_1) = n - 1 \Rightarrow f_1$ represents 0 in \mathbb{Q} .

 \Rightarrow g represents a in \mathbb{Q} , but h represents a \Rightarrow f represents 0 in \mathbb{Q} .

Corollaries:

Cor. B1: $a \in \mathbb{Q}$. Then f represents a in \mathbb{Q} iff it does in each \mathbb{Q}_{ν} .

Cor. B2: (Meyer). A quadratic for of rank \geq 5 represents 0 in \mathbb{Q}

iff it does so in \mathbb{R} . (In such case 0 is represented in all \mathbb{Q}_{ν} .)