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Our goal is the Hasse-Minkowski Theorem:

Recall: for a prime p ∈ Z we have the field of p-adic numbers Qp;

also, put Q∞ := R. We have the inclusion Q ↪→ Qv , v prime or∞.

Say f :=
n∑

i=1

aiX
2
j on Qn, we associate to this a form fv on Qv .

Thm. H-M.: There is a nonzero element X ∈ Qn s.th f (X ) = 0

iff for all v , there is a nonzero element Xv ∈ Qn
v s.th f (Xv ) = 0.

Now, in more details and much more definitions:
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Def. A quadratic module (shortly q.m.) (V ,Q):

is a module V over a comm. ring A with a quadratic form Q on V ,

i.e. a function Q : V → A that satisfies the assumptions:

1) Q(ax) = a2Q(x) for a ∈ A and x ∈ V ,

2) (x , y) 7→ Q(x + y)− Q(x)− Q(y) is a bilinear form.

A = k field, char(k) 6= 2 ⇒ the A-module V is a k-vector space.

We assume the k-vector space is finite dimensional.
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We set the scalar product associated to Q: (x , y) 7→ x .y where

x .y := 1
2{Q(x + y)− Q(x)− Q(y)}. So, Q(x) = x .x .

Thus symmetric bilinear forms on V ←→ quadratic forms on V .

For quad. modules (V ,Q), (V ′,Q ′), a map f : V → V ′

s.th. Q ′ ◦ f = Q is called a morphism (V ,Q)→ (V ′,Q ′).

Then f (x).f (y) ≡ x .y .
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Matrix of a quadratic form w.r.to a basis (ei)1≤i≤n of V ,

is A = (aij) where aij = ei .ej , thus A is symmetric.

If x =
∑

xiei ∈ V , then Q(x) =
∑

i ,j aijxixj .

If B ∈ GL(n, k), we can change the basis w.r.to B, the matrix A′ of

Q w.r.to the new basis is BABt . Thus det(A) is an invariant of Q

in k∗/k∗2 ∪ {0}: det(A) =: disc(Q) is the discriminant of Q.
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Orthogonality: x , y ∈ V are orthogonal iff x .y = 0.

H ⊂ V , set H0 to be the subspace of x ∈ V s.th. x .y = 0, ∀y ∈ H.

V1,V2 subspaces of V ⇒ V1 and V2 are orthogonal iff V1 ⊂ V 0
2 .

V 0 =: rad(V ) is the radical of V , its codimension =: rank(Q) .

If rad(V ) = 0, then we say Q is nondegenerate ⇔ disc(Q) 6= 0 .

For U ⊂ V , qU : V 3 x 7→ (U 3 y 7→ x .y) ∈ U∗ := Hom(U; k).

ker qU = U0, so disc(Q) 6= 0 ⇔ qV : V → V ∗ is an isomorphism.
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V := U1⊕̂ . . . ⊕̂Um iff U1, . . . ,Um are pairwise

orthogonal subspaces of V and V is the sum of the Ui .

If x has components xi ∈ Ui then Q(x) =
∑

Qi (xi ), Qi := Q|Ui .

Def. x ∈ V is isotropic if Q(x) = 0 ; U ⊂ V isotropic ⇔ Q|U = 0.

Q.m. with an isotropic basis x , y s.th. x .y 6= 0 =: hyperbolic plane.

If (V ,Q) is a hyperbolic plane, then disc(Q) = −1 .
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Prop. A: If x ∈ V \ {0} is isotropic and disc(Q) 6= 0

⇒ ∃ a subspace U ⊂ V , s.th. x ∈ U and U is a hyperbolic plane.

Pf. disc(Q) 6= 0 ⇒ ∃ z ∈ V s.th. x .z = 1. Let y = 2z − (z .z)x ,

⇒ y is isotropic and x .y = 2. Put U = k{x} ⊕ k{y}. �

Cor. A1: ∃ x ∈ V \ {0} isotropic and disc(Q) 6= 0 ⇒ Q(V ) = k .

Pf. If V is a hyperbolic plane with basis x , y with x .y = 1 and

a ∈ k ⇒ a = Q(x + a
2y). dimk V > 2 case follows from Prop. A.�
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(ei) ⊂ (V ,Q) is an orthogonal basis when V = ⊕̂ik{ei}.

Theorem 1. Every quad. module (V ,Q) has an orthogonal basis.

Def. Bases (ei ), (e
′
i ) are contiguous if ei = e ′j for some i , j .

Fact 1. Given two orthogonal bases (ei ), (e
′
1) there is a finite

sequence of orthogonal bases starting with (ei ) ending with (e ′i )

s.th every two consecutive ones are contiguous.

Def. For two forms f , g let f +̇g = f (x1, . . . , xn) + g(xn+1, . . . , xm).

10 / 23



Prop. B: g , h nondegen. of rank ≥ 1, f = g+̇(−h) ⇒

TFAE:

(a) f represents 0, i.e. ∃ x ∈ V \ {0} s.th. f (x) = 0.

(b) ∃ a ∈ k∗ represented by both g and h.

(c) ∃ a ∈ k∗ such that g+̇(−aZ 2) and h+̇(−aZ 2) represent 0.

Pf. (b) ⇔ (c) and (b) ⇒ (a) are direct. f (x , y) = 0 ⇒

g(x) = h(y) =: b . If b ∈ k∗ we are done, if b = 0, then

g(V ) = h(V ) = k by Cor. A1 ⇒ g(x ′) = h(y ′) =: a ∈ k∗ for some

x ′, y ′ ∈ V . �
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The Hilbert Symbol: let a, b ∈ k∗ put:

(a, b) := 1 if z2 − ax2 − by2 = 0 has a nontrivial solution in k3,

and (a, b) := −1 otherwise.

The Hilbert symbol is a bilinear map k∗/k∗2 × k∗/k∗2 → {±1}.

For an orthogonal basis e = (ei ) of (V ,Q) with ai := ei .ei :

ε(e) :=
∏
i<j

(ai , aj).

Theorem 3. ε(e) does not depend on the choice of e.
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Pf. Induction on rank n: n = 1 ⇒ ε(e) = 1. If n = 2 ⇒ ε(e) = 1

⇔ Z 2 − a1X
2 − a2Y

2 represents 0 ⇔ a1X
2 + a2Y

2 represents 1

⇔ ∃v ∈ V s.th. Q(v) = 1, which is independent of basis.

If n ≥ 3, enough to show ε(e) = ε(e′) when e, e′ are contiguous.

WLOG assume e1 = e ′1 ⇒ a1 = a′1. Since disc(Q) = a1 . . . an,

ε(e) = (a1, a2 · · · a3)
∏

2≤i<j

(ai , aj) = (a1, disc(Q)a1)
∏

2≤i<j

(ai , aj)
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Repeat: ε(e) = (a1, disc(Q)a1)
∏

2≤i<j

(ai , aj)

Similarly, ε(e′) = (a1, disc(Q)a1)
∏

2≤i<j

(a′i , a
′
j).

Inductive hypothesis applied to the orthogonal complement of e1

⇒
∏

2≤i<j

(ai , aj) =
∏

2≤i<j

(a′i , a
′
j) ⇒ ε(e) = ε(e′). �

Thus we write ε(Q) instead of ε(e).

Fact 2. Forms f , g are equivalent iff rank(f ) = rank(g),

disc(f ) = disc(g), ε(f ) = ε(g).
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Quadratic forms over Q, let f (X ) = a1X
2 + · · ·+ anX

2
n

We assume from now that forms are nondegenerate.

Let V be the set of prime numbers along with ∞, we put Q∞ = R.

For v ∈ V , Q ↪→ Qv allows us to view f over Qv , denoted fv ,

Q∗/Q∗2 ↪→ Q∗v/Q∗2v , gives disc(f ) 7→ disc(fv ) := discv (f ),

similarly εv (f ) := ε(fv ) =
∏

i<j(ai , aj)v .

Fact 2. (sadly): Hilbert’s Theorem: a, b ∈ Q∗ ⇒ (a, b)v = 1 for all

but finitely many v and
∏
v∈V

(a, b)v = 1.
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Hasse-Minkowski Theorem:

∃ x ∈ Qn s.th f (x) = 0 ⇔ ∀v ∈ V ∃ xv ∈ Qn
v s.th fv (xv ) = 0.

Lazy notation: Write a ∈ Im(f ) to mean ”f represents 0.”

Pf. ”⇒” is trivial. For the converse, write f = a1X
2
1 + . . . anX

2
n ,

Replacing f by a1f , we may assume a1 = 1. Note we have ai ∈ Q∗.

n = 2: We have f = X 2
1 − aX 2

2 , since 0 ∈ Im(f∞), a > 0.

Write
∏

p p
vp(a), 0 ∈ Im(fp) ⇒ 2|vp(a) ⇒ a ∈ Q∗2 ⇒ 0 ∈ Im(f ).
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n = 3: f = X 2
1 − aX 2

2 − bX 2
3 . WLOG a, b are squarefree, |a| ≤ |b|.

Put m = |a|+ |b|. m = 2 ⇒ f = X 2
1 ±X 2

2 ±X 2
3 , since 0 ∈ Im(f∞),

the case f = X 2
1 + X 2

2 + X 2
3 is excluded, others are trivial.

m > 2 ⇒ |b| ≥ 2 ⇒ b = ±p1 . . . pk , pi distinct primes, p := pi :

We show a ∈ (Z/pZ)2. If a ≡ 0 (mod p) obvious. Else, a ∈ Q∗p .

∃(x , y , z) ∈ Q3
p s.th z2 − ax2 − by2 = 0, WLOG (x , y , z) primitive.

⇒ z2 − ax2 ≡ 0 (mod p), thus p|x ⇒ p|z ⇒ p2|by2 ⇒ p|y ?!
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Thus we have p - x ⇒ a is a square modulo p.

Z/bZ '
∏

Z/piZ ⇒ a is a square modulo b ⇒ ∃ t, b′ ∈ Z s.th.

|t| ≤ |b|2 and t2 = a + bb′. Thus bb′ ∈ Nk(
√
a)∗ := the group of

norms of elements of the extension k(
√
a)/k , k = Q or Qv

⇒ 0 ∈ Im(f ) in k iff 0 ∈ Im(f ′ = X 2
1 − aX 2

2 − b′X 2
3 )

⇒ 0 ∈ Im(f ′v ) ∀v ∈ V , but |b′| =
∣∣∣ t2−ab

∣∣∣ ≤ |b|4 + 1 < |b|.

Finally, apply the induction hypothesis to the squarefree part of b′.
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n = 4: We will need:

Fact 3. Let a, b, c , d ∈ Q∗, let {εi ,v}i∈I ,v∈V ∈ {±1}. Given that:

(1) all but finitely many εi ,v = 1 ,

(2) for all i ∈ I we have
∏

v εi ,v = 1 ,

(3) for all v ∈ V ∃ xv ∈ Q∗v s.th. (ai , xv )v = εi ,v ∀v ∈ V ;

then there exists x ∈ Q∗ s.th (ai , x)v = εi ,v for all i ∈ I , v ∈ V .
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Back to n = 4: Let f = aX 2
1 + bX 2

2 − (cX 2
3 + dX 2

4 ). Pick v ∈ V .

Prop. B ⇒ ∃ xv ∈ Q∗v represented by aX 2
1 + bX 2

2 and cX 2
3 + dX 2

4

⇔ (xv ,−ab)v = (a, b)v and (xv ,−cd)v = (c , d)v for all v ∈ V .

By Hilbert’s Theorem:
∏

v (a, b)v =
∏

v (c , d)v = 1 ; Fact 3. ⇒

∃ x ∈ Q∗ s.th. (x ,−ab)v = (a, b)v , (x ,−cd)v = (c , d)v for all v .

⇒ aX 2
1 + bY 2

2 − xZ 2 represents 0 in each Qv , thus in Q by n = 3.

⇒ x is represented by aX 2
1 + bX 2

2 and cX 2
3 + dX 2

4

⇒ f represents 0.
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n ≥ 5: By induction on n. Write f = h+̇(−g) with

h = a1X
2
1 + a2X

2
2 and g = a3X

2
3 + · · ·+ a + nX 2

n .

Let S = {2,∞} ∪ {p ∈ V : vp(ai ) 6= 0 for one i ≥ 3}. Let v ∈ S .

fv represents 0 ⇒ ∃ av ∈ Q∗v represented by h and g

⇒ ∃ xi ,v ∈ Qv s.th. h(x1,v , x2,v ) = g(x3,v , · · · , xn,v ) = av .

Fact 4.: T ⊂ V , |T | <∞ ⇒ image of Q in
∏

v∈S Qv is dense.
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The square of Q∗v form an open set (last lecture) and Fact 4. ⇒

∃ x1, x2 ∈ Q s.th. if a := h(x1, x2) then a
av
∈ Q∗2v ∀ v ∈ V .

Put f1 := aZ 2+̇(−g). For v ∈ S g represents av in Qv ⇒

g represents a in Qv ⇒ f1 represents 0 in Qv .

v 6∈ S ⇒ a3, · · · , an ∈ Q∗v , ⇒ discv (g) ∈ Q∗v ⇒ εv (g) = 1 ⇒

f1 represents 0 in all Qv , rank(f1) = n − 1 ⇒ f1 represents 0 in Q.

⇒ g represents a in Q, but h represents a ⇒ f represents 0 in Q.
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Corollaries:

Cor. B1: a ∈ Q. Then f represents a in Q iff it does in each Qv .

Cor. B2: (Meyer). A quadratic for of rank ≥ 5 represents 0 in Q

iff it does so in R. (In such case 0 is represented in all Qv .)
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