Quadratic forms and the Hasse-Minkowski Theorem

Juraj Milcak
University of Toronto
MAT477
Instructor: Prof. Milman

March 13, 2012

Our goal is the Hasse-Minkowski Theorem:

Recall: for a prime $p \in \mathbb{Z}$ we have the field of p -adic numbers \mathbb{Q}_{p};
also, put $\mathbb{Q}_{\infty}:=\mathbb{R}$. We have the inclusion $\mathbb{Q} \hookrightarrow \mathbb{Q}_{v}, v$ prime or ∞.

Say $f:=\sum_{i=1}^{n} a_{i} X_{j}^{2}$ on \mathbb{Q}^{n}, we associate to this a form f_{v} on \mathbb{Q}_{v}.

Thm. H-M.: There is a nonzero element $X \in \mathbb{Q}^{n}$ s.th $f(X)=0$
iff for all v, there is a nonzero element $X_{v} \in \mathbb{Q}_{v}^{n}$ s.th $f\left(X_{v}\right)=0$.

Now, in more details and much more definitions:

Def. A quadratic module (shortly q.m.) (V, Q):

is a module V over a comm. ring A with a quadratic form Q on V,
i.e. a function $Q: V \rightarrow A$ that satisfies the assumptions:

1) $Q(a x)=a^{2} Q(x)$ for $a \in A$ and $x \in V$,
2) $(x, y) \mapsto Q(x+y)-Q(x)-Q(y)$ is a bilinear form.
$A=k$ field, $\operatorname{char}(k) \neq 2 \Rightarrow$ the A-module V is a k-vector space.

We assume the k-vector space is finite dimensional.

We set the scalar product associated to $Q:(x, y) \mapsto x . y$ where
$x . y:=\frac{1}{2}\{Q(x+y)-Q(x)-Q(y)\}$. So, $Q(x)=x . x$.

Thus symmetric bilinear forms on $V \longleftrightarrow$ quadratic forms on V.

For quad. modules $(V, Q),\left(V^{\prime}, Q^{\prime}\right)$, a map $f: V \rightarrow V^{\prime}$
s.th. $Q^{\prime} \circ f=Q$ is called a morphism $(V, Q) \rightarrow\left(V^{\prime}, Q^{\prime}\right)$.

Then $f(x) . f(y) \equiv x . y$.

Matrix of a quadratic form w.r.to a basis $\left(e_{i}\right)_{1 \leq i \leq n}$ of V,

is $A=\left(a_{i j}\right)$ where $a_{i j}=e_{i} \cdot e_{j}$, thus A is symmetric.

If $x=\sum x_{i} e_{i} \in V$, then $Q(x)=\sum_{i, j} a_{i j} x_{i} x_{j}$.

If $B \in G L(n, k)$, we can change the basis w.r.to B, the matrix A^{\prime} of
Q w.r.to the new basis is $B A B^{t}$. Thus $\operatorname{det}(A)$ is an invariant of Q
in $k^{*} / k^{* 2} \cup\{0\}: \operatorname{det}(A)=: \operatorname{disc}(Q)$ is the discriminant of Q.

Orthogonality: $x, y \in V$ are orthogonal iff $x \cdot y=0$.

$H \subset V$, set H^{0} to be the subspace of $x \in V$ s.th. $x . y=0, \forall y \in H$.
V_{1}, V_{2} subspaces of $V \Rightarrow V_{1}$ and V_{2} are orthogonal iff $V_{1} \subset V_{2}^{0}$.
$V^{0}=: \operatorname{rad}(V)$ is the radical of V, its codimension $=: \operatorname{rank}(Q)$.

If $\operatorname{rad}(V)=0$, then we say Q is nondegenerate $\Leftrightarrow \operatorname{disc}(Q) \neq 0$.

For $U \subset V, q_{U}: V \ni x \mapsto(U \ni y \mapsto x . y) \in U^{*}:=\operatorname{Hom}(U ; k)$.
ker $q_{U}=U^{0}$, so $\operatorname{disc}(Q) \neq 0 \Leftrightarrow q_{V}: V \rightarrow V^{*}$ is an isomorphism.

$V:=U_{1} \hat{\oplus} \ldots \hat{\oplus} U_{m}$ iff U_{1}, \ldots, U_{m} are pairwise

orthogonal subspaces of V and V is the sum of the U_{i}.

If x has components $x_{i} \in U_{i}$ then $Q(x)=\sum Q_{i}\left(x_{i}\right), Q_{i}:=Q \mid U_{i}$.

Def. $x \in V$ is isotropic if $Q(x)=0 ; U \subset V$ isotropic $\Leftrightarrow Q \mid U=0$.
Q.m. with an isotropic basis x, y s.th. $x . y \neq 0=$: hyperbolic plane.

If (V, Q) is a hyperbolic plane, then $\operatorname{disc}(Q)=-1$.

Prop. A: If $x \in V \backslash\{0\}$ is isotropic and $\operatorname{disc}(Q) \neq 0$

$\Rightarrow \exists$ a subspace $U \subset V$, s.th. $x \in U$ and U is a hyperbolic plane.

Pf. $\operatorname{disc}(Q) \neq 0 \Rightarrow \exists z \in V$ s.th. $x . z=1$. Let $y=2 z-(z . z) x$,
$\Rightarrow y$ is isotropic and $x . y=2$. Put $U=k\{x\} \oplus k\{y\} . \quad \square$

Cor. A1: $\exists x \in V \backslash\{0\}$ isotropic and $\operatorname{disc}(Q) \neq 0 \Rightarrow Q(V)=k$.

Pf. If V is a hyperbolic plane with basis x, y with $x . y=1$ and
$a \in k \Rightarrow a=Q\left(x+\frac{a}{2} y\right) . \operatorname{dim}_{k} V>2$ case follows from Prop. A. \square

$\left(e_{i}\right) \subset(V, Q)$ is an orthogonal basis when $V=\hat{\bigoplus}_{i} k\left\{e_{i}\right\}$.

Theorem 1. Every quad. module (V, Q) has an orthogonal basis.

Def. Bases $\left(e_{i}\right),\left(e_{i}^{\prime}\right)$ are contiguous if $e_{i}=e_{j}^{\prime}$ for some i, j.

Fact 1. Given two orthogonal bases $\left(e_{i}\right),\left(e_{1}^{\prime}\right)$ there is a finite
sequence of orthogonal bases starting with $\left(e_{i}\right)$ ending with $\left(e_{i}^{\prime}\right)$
s.th every two consecutive ones are contiguous.

Def. For two forms f, g let $f \dot{+} g=f\left(x_{1}, \ldots, x_{n}\right)+g\left(x_{n+1}, \ldots, x_{m}\right)$.

Prop. B: g, h nondegen. of rank $\geq 1, f=g \dot{+}(-h) \Rightarrow$

TFAE:
(a) f represents 0 , i.e. $\exists x \in V \backslash\{0\}$ s.th. $f(x)=0$.
(b) $\exists a \in k^{*}$ represented by both g and h.
(c) $\exists a \in k^{*}$ such that $g \dot{+}\left(-a Z^{2}\right)$ and $h \dot{+}\left(-a Z^{2}\right)$ represent 0 .

Pf. (b) $\Leftrightarrow(\mathrm{c})$ and (b) \Rightarrow (a) are direct. $f(x, y)=0 \Rightarrow$
$g(x)=h(y)=: b$. If $b \in k^{*}$ we are done, if $b=0$, then
$g(V)=h(V)=k$ by Cor. A1 $\Rightarrow g\left(x^{\prime}\right)=h\left(y^{\prime}\right)=: a \in k^{*}$ for some
$x^{\prime}, y^{\prime} \in V . \square$

The Hilbert Symbol: let $a, b \in k^{*}$ put:

$(a, b):=1$ if $z^{2}-a x^{2}-b y^{2}=0$ has a nontrivial solution in k^{3}, and $(a, b):=-1$ otherwise.

The Hilbert symbol is a bilinear map $k^{*} / k^{* 2} \times k^{*} / k^{* 2} \rightarrow\{ \pm 1\}$.

For an orthogonal basis $\mathbf{e}=\left(e_{i}\right)$ of (V, Q) with $a_{i}:=e_{i} \cdot e_{i}$:

$$
\epsilon(\mathbf{e}):=\prod_{i<j}\left(a_{i}, a_{j}\right) .
$$

Theorem 3. $\epsilon(\mathbf{e})$ does not depend on the choice of \mathbf{e}.

Pf. Induction on rank $n: n=1 \Rightarrow \epsilon(\mathbf{e})=1$. If $n=2 \Rightarrow \epsilon(\mathbf{e})=1$
$\Leftrightarrow Z^{2}-a_{1} X^{2}-a_{2} Y^{2}$ represents $0 \Leftrightarrow a_{1} X^{2}+a_{2} Y^{2}$ represents 1
$\Leftrightarrow \exists v \in V$ s.th. $Q(v)=1$, which is independent of basis.

If $n \geq 3$, enough to show $\epsilon(\mathbf{e})=\epsilon\left(\mathbf{e}^{\prime}\right)$ when $\mathbf{e}, \mathbf{e}^{\prime}$ are contiguous.

WLOG assume $e_{1}=e_{1}^{\prime} \Rightarrow a_{1}=a_{1}^{\prime}$. Since $\operatorname{disc}(Q)=a_{1} \ldots a_{n}$,
$\epsilon(\mathbf{e})=\left(a_{1}, a_{2} \cdots a_{3}\right) \prod_{2 \leq i<j}\left(a_{i}, a_{j}\right)=\left(a_{1}, \operatorname{disc}(Q) a_{1}\right) \prod_{2 \leq i<j}\left(a_{i}, a_{j}\right)$

Repeat: $\epsilon(\mathbf{e})=\left(a_{1}, \operatorname{disc}(Q) a_{1}\right) \prod_{2 \leq i<j}\left(a_{i}, a_{j}\right)$

Similarly, $\epsilon\left(\mathbf{e}^{\prime}\right)=\left(a_{1}, \operatorname{disc}(Q) a_{1}\right) \prod_{2 \leq i<j}\left(a_{i}^{\prime}, a_{j}^{\prime}\right)$.

Inductive hypothesis applied to the orthogonal complement of e_{1}

$$
\Rightarrow \prod_{2 \leq i<j}\left(a_{i}, a_{j}\right)=\prod_{2 \leq i<j}\left(a_{i}^{\prime}, a_{j}^{\prime}\right) \Rightarrow \epsilon(\mathbf{e})=\epsilon\left(\mathbf{e}^{\prime}\right) .
$$

\square

Thus we write $\epsilon(Q)$ instead of $\epsilon(\mathbf{e})$.

Fact 2. Forms f, g are equivalent iff $\operatorname{rank}(f)=\operatorname{rank}(g)$,
$\operatorname{disc}(f)=\operatorname{disc}(g), \epsilon(f)=\epsilon(g)$.

Quadratic forms over \mathbb{Q}, let $f(X)=a_{1} X^{2}+\cdots+a_{n} X_{n}^{2}$

We assume from now that forms are nondegenerate.

Let V be the set of prime numbers along with ∞, we put $\mathbb{Q}_{\infty}=\mathbb{R}$.

For $v \in V, \mathbb{Q} \hookrightarrow \mathbb{Q}_{v}$ allows us to view f over \mathbb{Q}_{v}, denoted f_{v},
$\mathbb{Q}^{*} / \mathbb{Q}^{* 2} \hookrightarrow \mathbb{Q}_{v}^{*} / \mathbb{Q}_{v}^{* 2}, \operatorname{gives} \operatorname{disc}(f) \mapsto \operatorname{disc}\left(f_{v}\right):=\operatorname{disc}_{v}(f)$,
similarly $\epsilon_{v}(f):=\epsilon\left(f_{v}\right)=\prod_{i<j}\left(a_{i}, a_{j}\right)_{v}$.

Fact 2. (sadly): Hilbert's Theorem: $a, b \in \mathbb{Q}^{*} \Rightarrow(a, b)_{v}=1$ for all but finitely many v and $\prod_{v \in V}(a, b)_{v}=1$.

Hasse-Minkowski Theorem:

$\exists x \in \mathbb{Q}^{n}$ s.th $f(x)=0 \Leftrightarrow \forall v \in V \exists x_{v} \in \mathbb{Q}_{v}^{n}$ s.th $f_{v}\left(x_{v}\right)=0$.

Lazy notation: Write $a \in \operatorname{Im}(f)$ to mean " f represents 0 ."

Pf. " \Rightarrow " is trivial. For the converse, write $f=a_{1} X_{1}^{2}+\ldots a_{n} X_{n}^{2}$,

Replacing f by $a_{1} f$, we may assume $a_{1}=1$. Note we have $a_{i} \in \mathbb{Q}^{*}$.
$\underline{n=2}$: We have $f=X_{1}^{2}-a X_{2}^{2}$, since $0 \in \operatorname{Im}\left(f_{\infty}\right), a>0$.

Write $\prod_{p} p^{v_{p}(a)}, 0 \in \operatorname{Im}\left(f_{p}\right) \Rightarrow 2 \mid v_{p}(a) \Rightarrow a \in \mathbb{Q}^{* 2} \Rightarrow 0 \in \operatorname{Im}(f)$.
$\underline{n=3:} f=X_{1}^{2}-a X_{2}^{2}-b X_{3}^{2}$. WLOG a, b are squarefree, $|a| \leq|b|$.

Put $m=|a|+|b| . m=2 \Rightarrow f=X_{1}^{2} \pm X_{2}^{2} \pm X_{3}^{2}$, since $0 \in \operatorname{Im}\left(f_{\infty}\right)$,
the case $f=X_{1}^{2}+X_{2}^{2}+X_{3}^{2}$ is excluded, others are trivial.
$m>2 \Rightarrow|b| \geq 2 \Rightarrow b= \pm p_{1} \ldots p_{k}, p_{i}$ distinct primes, $p:=p_{i}$:

We show $a \in(\mathbb{Z} / p \mathbb{Z})^{2}$. If $a \equiv 0(\bmod p)$ obvious. Else, $a \in \mathbb{Q}_{p}^{*}$.
$\exists(x, y, z) \in \mathbb{Q}_{p}^{3}$ s.th $z^{2}-a x^{2}-b y^{2}=0$, WLOG (x, y, z) primitive.
$\Rightarrow z^{2}-a x^{2} \equiv 0(\bmod p)$, thus $p|x \Rightarrow p| z \Rightarrow p^{2}\left|b y^{2} \Rightarrow p\right| y ?!$

Thus we have $p \nmid x \Rightarrow a$ is a square modulo p.
$\mathbb{Z} / b \mathbb{Z} \simeq \prod \mathbb{Z} / p_{i} \mathbb{Z} \Rightarrow a$ is a square modulo $b \Rightarrow \exists t, b^{\prime} \in \mathbb{Z}$ s.th.
$|t| \leq \frac{|b|}{2}$ and $t^{2}=a+b b^{\prime}$. Thus $b b^{\prime} \in N k(\sqrt{a})^{*}:=$ the group of
norms of elements of the extension $k(\sqrt{a}) / k, k=\mathbb{Q}$ or \mathbb{Q}_{V}
$\Rightarrow 0 \in \operatorname{Im}(f)$ in k iff $0 \in \operatorname{Im}\left(f^{\prime}=X_{1}^{2}-a X_{2}^{2}-b^{\prime} X_{3}^{2}\right)$
$\Rightarrow 0 \in \operatorname{Im}\left(f_{v}^{\prime}\right) \forall v \in V$, but $\left|b^{\prime}\right|=\left|\frac{t^{2}-a}{b}\right| \leq \frac{|b|}{4}+1<|b|$.

Finally, apply the induction hypothesis to the squarefree part of b^{\prime}.
$n=4$: We will need:

Fact 3. Let $a, b, c, d \in \mathbb{Q}^{*}$, let $\left\{\epsilon_{i, v}\right\}_{i \in I, v \in V} \in\{ \pm 1\}$. Given that:
(1) all but finitely many $\epsilon_{i, v}=1$,
(2) for all $i \in I$ we have $\prod_{v} \epsilon_{i, v}=1$,
(3) for all $v \in V \exists x_{v} \in \mathbb{Q}_{v}^{*}$ s.th. $\left(a_{i}, x_{v}\right)_{v}=\epsilon_{i, v} \forall v \in V$; then there exists $x \in \mathbb{Q}^{*}$ s.th $\left(a_{i}, x\right)_{v}=\epsilon_{i, v}$ for all $i \in I, v \in V$.

Back to $n=4$: Let $f=a X_{1}^{2}+b X_{2}^{2}-\left(c X_{3}^{2}+d X_{4}^{2}\right)$. Pick $v \in V$.

Prop. $\mathrm{B} \Rightarrow \exists x_{v} \in \mathbb{Q}_{v}^{*}$ represented by $a X_{1}^{2}+b X_{2}^{2}$ and $c X_{3}^{2}+d X_{4}^{2}$
$\Leftrightarrow\left(x_{v},-a b\right)_{v}=(a, b)_{v}$ and $\left(x_{v},-c d\right)_{v}=(c, d)_{v}$ for all $v \in V$.

By Hilbert's Theorem: $\prod_{v}(a, b)_{v}=\prod_{v}(c, d)_{v}=1$; Fact 3. \Rightarrow
$\exists x \in \mathbb{Q}^{*}$ s.th. $(x,-a b)_{v}=(a, b)_{v},(x,-c d)_{v}=(c, d)_{v}$ for all v.
$\Rightarrow a X_{1}^{2}+b Y_{2}^{2}-x Z^{2}$ represents 0 in each \mathbb{Q}_{V}, thus in \mathbb{Q} by $n=3$.
$\Rightarrow x$ is represented by $a X_{1}^{2}+b X_{2}^{2}$ and $c X_{3}^{2}+d X_{4}^{2}$
$\Rightarrow f$ represents 0 .
$\underline{n \geq 5}$: By induction on n. Write $f=h \dot{+}(-g)$ with

$$
h=a_{1} X_{1}^{2}+a_{2} X_{2}^{2} \text { and } g=a_{3} X_{3}^{2}+\cdots+a+n X_{n}^{2}
$$

Let $S=\{2, \infty\} \cup\left\{p \in V: v_{p}\left(a_{i}\right) \neq 0\right.$ for one $\left.i \geq 3\right\}$. Let $v \in S$.
f_{v} represents $0 \Rightarrow \exists a_{v} \in \mathbb{Q}_{v}^{*}$ represented by h and g
$\Rightarrow \exists x_{i, v} \in \mathbb{Q}_{v}$ s.th. $h\left(x_{1, v}, x_{2, v}\right)=g\left(x_{3, v}, \cdots, x_{n, v}\right)=a_{v}$.

Fact 4.: $T \subset V,|T|<\infty \Rightarrow$ image of \mathbb{Q} in $\prod_{v \in S} \mathbb{Q}_{v}$ is dense.

The square of \mathbb{Q}_{v}^{*} form an open set (last lecture) and Fact 4. \Rightarrow
$\exists x_{1}, x_{2} \in \mathbb{Q}$ s.th. if $a:=h\left(x_{1}, x_{2}\right)$ then $\frac{a}{a_{v}} \in \mathbb{Q}_{v}^{* 2} \forall v \in V$.

Put $f_{1}:=a Z^{2} \dot{+}(-g)$. For $v \in S g$ represents a_{v} in $\mathbb{Q}_{v} \Rightarrow$
g represents a in $\mathbb{Q}_{v} \Rightarrow f_{1}$ represents 0 in \mathbb{Q}_{v}.
$v \notin S \Rightarrow a_{3}, \cdots, a_{n} \in \mathbb{Q}_{v}^{*}, \Rightarrow \operatorname{disc}_{v}(g) \in \mathbb{Q}_{v}^{*} \Rightarrow \epsilon_{v}(g)=1 \Rightarrow$
f_{1} represents 0 in all $\mathbb{Q}_{v}, \operatorname{rank}\left(f_{1}\right)=n-1 \Rightarrow f_{1}$ represents 0 in \mathbb{Q}.
$\Rightarrow g$ represents a in \mathbb{Q}, but h represents $a \Rightarrow f$ represents 0 in \mathbb{Q}.

Corollaries:

Cor. B1: $a \in \mathbb{Q}$. Then f represents a in \mathbb{Q} iff it does in each \mathbb{Q}_{V}.

Cor. B2: (Meyer). A quadratic for of rank ≥ 5 represents 0 in \mathbb{Q}
iff it does so in \mathbb{R}. (In such case 0 is represented in all \mathbb{Q}_{v}.)

