Pierre-Grant's Chow-type Theorem for Coherent Ideals.

by Sacawa

MAT 477

April 4th, 2014

by Sacawa (2014)

Pierre-Grant's Chow-type Theorem for Cohere

■ ▶ < ■ ▶ ■ ∽ への April 4th, 2014 1 / 11

Introduction: Coherent Complex Analytic Ideals ${\cal I}$

refers to ideals in holomorphic functions f, shortly $f \in \mathcal{H}$, on open U in \mathbb{C} -analytic manifolds M and coherent means that the germs of functions of \mathcal{I} at a in M (shortly stalks \mathcal{I}_a and de facto finitely generated, say by $\{f_i\}_{1 \le i \le l}$, ideals in the rings of convergent power series $\mathcal{O}_{M,a}$ on M at a) generate by means of $\{f_i\}$ ideals $\mathcal{I}_b \hookrightarrow \mathcal{O}_{M,b}$ for all b nearby a. **Theorem:** U is a nbhd of $0 \in \mathbb{C}^r$, $M := U \times \mathbb{CP}^n$, \mathcal{I} coherent $\Rightarrow \mathcal{I}$ is **relatively algebraic**, i.e. after shrinking U it is generated by finitely many

homogeneous polynomials in \mathbb{CP}^n -coordinates with coefficients in $\mathcal{H}(U)$.

Remark: Chow Thm for $X \hookrightarrow \mathbb{CP}^n$ follows with U a singleton and \mathcal{I}_X in

 $\mathcal{O}_{\mathbb{CP}^n}$ with sections $\mathcal{S}(\mathcal{I}_X)(V)$ over nbhds V being the ideals of f in

 $\mathcal{S}(\mathcal{O}_{\mathbb{CP}^n})(V)$ vanishing on $X \cap V$, since \mathcal{I}_X is coherent by **Oka's Thm**.

For proper \mathbb{C} -analytic maps $F: M \to N$ of manifolds (as below !)

coherency of $\mathcal{I} \hookrightarrow \mathcal{O}_N$ implies the coherency of the **pull back** $F^*\mathcal{I} \hookrightarrow$

 \mathcal{O}_M whose sections over $F^{-1}(V)$ for nbhds V are generated by

 $f \circ F$, $f \in \mathcal{S}(\mathcal{I})(V)$. Let $x = (x_1, \dots, x_r)$ be coordinates on U .

Fact 1. For proper maps *F* as above coherency of $\mathcal{I} \hookrightarrow \mathcal{O}_M$ implies the coherency of the **direct image** $F_*\mathcal{I}$ whose sections $\mathcal{S}(F_*\mathcal{I})(V) :=$ $\mathcal{S}(\mathcal{I})(F^{-1}(V))$ on nbds V and $F_*\mathcal{I} \hookrightarrow \mathcal{O}_N$ for **blowings up**, e.g. for **blow-up** $\tilde{\mathbb{C}}^{n+1} := \{y_i \xi_i = y_i \xi_i\} \hookrightarrow \mathbb{C}^{n+1} \times \mathbb{CP}^n$ of \mathbb{C}^{n+1} at its 0, where $y = (y_0, \dots, y_n)$ and homogeneous $[\xi] = [\xi_0 : \dots : \xi_n]$ are coordinates on \mathbb{C}^{n+1} and \mathbb{CP}^n respectively. Holomorphic maps $\pi_1: \tilde{\mathbb{C}}^{n+1} \to \mathbb{C}^{n+1}$ and $\pi_2: \tilde{\mathbb{C}}^{n+1} \to \mathbb{P}^n$ are the restrictions to $\tilde{\mathbb{C}}^{n+1}$ of projections of $\mathbb{C}^{n+1} \times \mathbb{CP}^n$ to \mathbb{C}^{n+1} and, respectively, to \mathbb{CP}^n . Let maps $\sigma_j := \mathrm{id}_U \times \pi_j$, j = 1, 2.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Note:
$$\{(y, [\xi]) : \xi_j = 1, y_k = y_j \xi_k \ \forall k \neq j\} = \tilde{\mathbb{C}}^{n+1} \cap \{\xi_j \neq 0\} \cong \mathbb{C}^{n+1}$$

For our coherent ideal $\mathcal{I} \hookrightarrow \mathcal{O}_{U \times \mathbb{CP}^n}$ ideal $\tilde{\mathcal{I}} := \sigma_2^*(\mathcal{I}) \hookrightarrow \mathcal{O}_{U \times \tilde{\mathbb{C}}^{n+1}}$ is

generated by the restrictions to $U imes ilde{\mathbb{C}}^{n+1}$ of sections of $\mathcal I$ considered as

functions on $U imes \mathbb{C}^{n+1} imes \mathbb{P}^n$ constant along \mathbb{C}^{n+1} (and is coherent, as

well as the direct image $\mathcal{J} := (\sigma_1)_*(\tilde{\mathcal{I}}) \hookrightarrow \mathcal{O}_{U \times \mathbb{C}^{n+1}}$ and $\tilde{\mathcal{J}} := \sigma_1^*(\mathcal{J})$).

Note: $\tilde{\mathcal{J}} \subset \tilde{\mathcal{I}}$ and $\tilde{\mathcal{J}} = \tilde{\mathcal{I}}$ off $\sigma_1^{-1}(U \times \{0\})$ where σ_1 is biholomorphic.

Fact 2. $\mathbb C$ -analytic Nullstellensatz: For any G in the stalk $ilde{\mathcal I}_q$, $q\in$

$$\sigma_1^{-1}(U imes \{0\})=:\{z=0\}$$
 , exists integer $d>0$ s.th. $z^d\cdot {\cal G}\in ilde{{\cal J}}_q$.

Plan: Show stalk $\mathcal{J}_{(0,0)} \hookrightarrow \mathbb{C}\{x, y\}$ is generated by $P_i \in \mathbb{C}\{x\}[y]$ homog. in y. Then that with $y := [\xi]$ the latter generate \mathcal{I} near $\{0\} \times \mathbb{CP}^n$. **Lemma 1.** $F \in \mathcal{J}_{(0,0)}$, $F^{(\lambda)} := F(x, \lambda y) \Rightarrow F^{(\lambda)} \in \mathcal{J}_{(0,0)}$, $\forall \lambda \in \mathbb{C}^*$. **Proof.** Let $H \in \mathcal{H}$ in a nbhd of (0,0), then $H \in \mathcal{J}_{(0,0)}$ iff σ_1^*H is a section of $\tilde{\mathcal{I}}$ over some nbhd of $\sigma_1^{-1}(0,0) = \{0\} \times \mathbb{CP}^n$ iff $\sigma_1^* H \in$ $(\sigma_2^*\mathcal{I})_p$, $\forall \ p\in\sigma_1^{-1}(0,0)$, due to the def. of $(\sigma_1)_*$. Let $\ p\in\sigma_1^{-1}(0,0)$, $q := \sigma_2(p)$ and coordinates $[\xi]$ on \mathbb{CP}^n s.th. $q = (0, [1, 0, \dots, 0])$. Let $W := \{\xi_0 \neq 0\}$, then $w_i := \xi_i / \xi_0$ are nonhomogeneous coordinates on it.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Then, $\sigma_2^{-1}(U \times W) \cong U \times \mathbb{C} \times W$ is a nbhd of p in $U \times \tilde{\mathbb{C}}^{n+1}$ with coordinates (x, y_0, w) , $\sigma_1(x, y_0, w) = (x, y_0, y_0 \cdot w)$ and $\sigma_2(x, y_0, w) =$ (x, w). Coherency of $\mathcal{I} \Rightarrow \exists \{G_i\}$ generating \mathcal{I} over a nbhd of $q \Rightarrow$ $\{\sigma_2^*G_i\}$ generate $\tilde{\mathcal{I}}$ over nbhd of p = (0, 0, 0). Since $\sigma_1^*F \in \tilde{\mathcal{J}} \subset \tilde{\mathcal{I}} \Rightarrow$ $\exists \{A_i\} \subset \mathcal{H}$ on a nbhd of p s.th. $\sigma_1^* F(x, y_0, w) = \sum_i A_i \cdot \sigma_2^* G_i$. For $\lambda \in \mathbb{C}^*$ and y_0 small enough it follows $\sum_i A_j(x, \lambda y_0, w) \sigma_2^* G_j(x, y_0, w) =$ $\sum_{i} A_{j}(x, \lambda y_{0}, w) G_{j}(x, w) = \sum_{i} A_{j}(x, \lambda y_{0}, w) \sigma_{2}^{*} G_{i}(x, \lambda y_{0}, w) =$ $\sigma_1^*F^{(\lambda)}(x, y_0, w)$. So $\sigma_1^*F^{(\lambda)} \in (\tilde{\mathcal{I}})_p$, $\forall \ p \in \sigma_1^{-1}(0, 0)$ and $F^{(\lambda)} \in \mathcal{J}_{(0, 0)}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

For *F* holomorphic on a nbhd of (0,0) in $U \times \mathbb{C}^{n+1}$ write:

$$F(x,y) =: \sum_k \sum_{|\alpha|=k} a_{\alpha}(x) y^{\alpha} =: \sum_k F_k(x,y)$$
 , where $y^{\alpha} := y_0^{\alpha_0} ... y_n^{\alpha_n}$

Lemma 2. $F^{(\lambda)} \in \mathcal{J}_{(0,0)}$, $\forall \lambda \in \mathbb{C}^* \implies F_k \in \mathcal{J}_{(0,0)}$, $\forall k \in \mathbb{N}$.

Proof. Let $A := (\mathcal{O}_{U \times \mathbb{C}^{n+1}})_{(0,0)}$. It is a Noetherian local ring. Set

 $(y):=(y_0,\ldots,y_n)$ and $J:=\mathcal{J}_{(0,0)}$ as two ideals of A . For $\lambda\in\mathbb{C}^*$ let

 $\operatorname{Jet}_m(F^{(\lambda)}) := \sum_{k=0}^m \lambda^k F_k$. Note that $F^{(\lambda)} - \operatorname{Jet}_m(F^{(\lambda)}) \in (y)^{m+1}$.

Fact 3. Krull's Theorem: $J = \bigcap_{m \ge m_0} (J + (y)^m)$, $\forall m_0 \ge 0$.

Since $\operatorname{Jet}_m(F^{(\lambda)})\in J+(y)^{m+1}$ for all $\lambda\in\mathbb{C}^*$, and by taking m+1

different values for $\lambda \ \Rightarrow \ F_k \in J + (y)^{m+1}$ for $k \leq m$. Fix $k \in \mathbb{N}$,

then $F_k \in \bigcap_{m \geq k+1} (J + (y)^m) = J$.

Therefore $\mathcal{J}_{(0,0)}$ is generated by elements of $A = \mathbb{C}\{x, y\}$ homogeneneous

in y. Since A is Noetherian, $\mathcal{J}_{(0,0)}$ is generated by a finite number of

these. They generate $\mathcal J$ over a nbhd of (0,0) due to the coherency of

 ${\mathcal J}\,$ and it remains to prove:

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ● 日 ● ● ○ ○ ○ ○

Lemma 3. If $\{F_i\} \subset \mathbb{C}\{x\}[y]$, are homogeneous in y and generate \mathcal{J} over a nbhd of (0,0), then they generate \mathcal{I} over a nbhd of $\{0\} \times \mathbb{CP}^n$, i.e. that $\{F_i\}$ generate the stalk \mathcal{I}_q for any $q \in \{0\} \times \mathbb{CP}^n$. **Proof.** Say $q \in \{0\} \times \mathbb{CP}^n$ and $[\xi]$ are homogeneous coordinates on \mathbb{CP}^n s.th. $q = (0, [1:0:\ldots:0])$; that the respective nonhomogeneous w and local (x, y_0, w) coordinates are on $W := \{\xi_0 \neq 0\}$ and on $\sigma_2^{-1}(U \times W)$ $\Rightarrow \sigma_1(x, y_0, w) = (x, y_0, y_0 \cdot w)$, $\sigma_2(x, y_0, w) = (x, w)$. Say $G \in \mathcal{I}_a \Rightarrow$ σ_2^*G is a section of $\tilde{\mathcal{I}} = \sigma_2^*\mathcal{I}$ on a nbhd of $\sigma_2^{-1}(q) = \{(0, y_0, 0)\}_{v_0 \in \mathbb{C}}$.

 $\{F_j\}$ generate $\mathcal{J}_{(0,0)} \Rightarrow \{\sigma_1^*F_j\}$ generate $\tilde{\mathcal{J}}$ on a nbhd $V \subset U \times \tilde{\mathbb{C}}^{n+1}$ of $\sigma_1^{-1}(0,0) = \{0\} \times \mathbb{CP}^n$. Using $\sigma_1^{-1}(U \times \{0\}) = \{y_0 = 0\}$, Fact 2 and preceding it Note $\Rightarrow \exists d \in \mathbb{N}$ s.th. $y_0^d \sigma_2^* G \in \tilde{\mathcal{J}}_q$, i.e. $y_0^d \sigma_2^* G(x, y_0, w) =$ $\sum_{j} A_j(x, y_0, w) \cdot \sigma_1^* F_j(x, y_0, w)$ with $\{A_j\} \subset \mathcal{H}$ on a nbhd of q. But $\sigma_2^* G(x, y_0, w) = G(x, w)$ and $\sigma_1^* F_i(x, y_0, w) = y_0^{d_j} F_i(x, 1, w)$ since the F_i are homogeneous in y of degrees d_i . Let $\mathbb{A}_i(x, w)$ be the coefficients at y_0^d in expansions of $y_0^{d_j}A_i(x, y_0, w)$. Then $\sum_i \mathbb{A}_i(x, w)F_i(x, 1, w) =$ $G(x, w) \Rightarrow \{F_i(x, \xi)\}$ generate \mathcal{I} on a nbhd of q, as required.