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The HRR Theorem

In all slides, X denotes a smooth complex projective curve in Pr .

Definition : Let PX be the Hilbert polynomial associated with X .

The arithmetic genus of X is ga(X ) := (−1)(PX (0)− 1) .

HRR Theorem : If g is the top. genus of X , then ga(X ) = g .

Notation : Let e(X ) be the Euler characteristic of X and d :=

degX . For all x ∈ X , E ∗x ,X is the tangent cone at x . For a linear

space L and x ∈ X ∩ L , i(x ;X ∩ L) is the intersection multiplicity.

For a linear space L or point x , let pL , resp. px , denote the

projection with center L , resp. {x} .



Idea of Proof

Step 1 : Consider projections pk := pL : X → Pk where L is of

dimension r − k − 1 and disjoint from X .

Claim : For a.e. L ,

a) if k ≥ 3 , then pk(X ) is birational to X and is smooth;

b) if k = 2 , then p2(X ) is birational to X and smooth except for

finitely many ordinary double points;

c) if k = 1 , then p1 : X → P1 is a covering of degree d and

smooth except for finitely many ordinary branch points.



Step 2 : If p2(X ) has δ double points and p1 has β branch points,

then:

a) ga(X ) = 1
2 (d − 1)(d − 2)− δ ;

b) d(d − 1) = β + 2δ ;

c) e(X ) = 2d − β .

As smooth curves are compact oriented 2-manifolds, we have

e(X ) = 2− 2g . Then using these four formulas, we find that

ga(X ) = g .



Step 1a: Projecting X to P3

We first show if r > 3 , then for a.e. x ∈ Pr \ X , px(X ) is

birational to X and smooth. It suffices to find an x s.th. ∀u ∈ X ,

ux ∩ X = {u} and ux 6= E ∗u,X . If so, then px : X → px(X ) is

bijective, hence birational, and by Corollaries 5.14 and 5.15, px(X )

would be smooth. To find such an x , it suffices for x /∈ S :=

[
⋃

u 6=v ;u,v∈X uv ] ∪ [
⋃

u∈X E ∗u,X ] . It now suffices to show S is a

variety of dimension ≤ 3 as r > 3 .



Let C := {(x , y , z) ∈ X × X × Pr : if x 6= y , then z ∈ xy ; if

x = y , then z ∈ E ∗x ,X}. C is the closure of C ∩ ((X ×X −∆)×Pr )

in the classical topology: if xn , yn → x as n→∞ , then

xnyn → E ∗x ,X . Thus C is algebraic. Let π12 : C → X × X and

π3 : C → Pr be the natural projections. By definition of C , the

fibres of π12 are lines, so irreducible 1-dimensional. As X × X is

irreducible 2-dimensional, then C is irreducible 3-dimensional. As

S = p3(C ) , then S is irreducible and ≤ 3-dimensional.



Step 1b: Projecting X to P2

By Step 1a, we may assume X ⊆ P3 .

Definition : For x , y ∈ X , xy is a tri-secant of X if xy meets X

in a third point or xy is tangent to X at x or y .

To prove Step 1b, It suffices to find x ∈ P3 s.th.

i) x /∈
⋃

u∈X E ∗u,X ;

ii) x is in only finitely many secants uivi of X , 1 ≤ i ≤ ν ;

iii) ∀i , uivi is not a tri-secant of X ;

iv) ∀i , the planes x ,E ∗ui ,X and x ,E ∗vi ,X are distinct.



If so, then ii) ⇒ px(X ) is birational to X and i) ⇒ its only singular

points are wi := px(ui ) = px(vi ) . By i) and iii), we have that the

multiplicity of wi on px(X ) is 2. Finally by iv), these two branches

have distinct tangent lines, namely px(E ∗ui ,X ) and px(E ∗vi ,X ) . Thus

wi is an ordinary double point. To show such an x exists, consider

T := {(x , y) ∈ X × X −∆ : xy meets X in a third point or xy is

tangent to X at x or y} and B := {(x , y) ∈ X × X −∆ : E ∗x ,X

and E ∗y ,X lie in a plane} .



Showing T ∪ B ( (X × X −∆)

T is the closure of {(x , y) ∈ X × X −∆ : xy meets X in a third

point} in X ×X −∆ and coplanarity is a closed property so T and

B are algebraic. Let x ∈ X and l := E ∗x ,X . Consider the projection

pl : X → P1 . Let α ∈ P1 be a point where pl is smooth and let

L := p−1
l (α)∪ l , L∩X = {x , y1, ..., yk} by Noether Normalization.

If y /∈ l and pl is smooth at y , then by dimension, we have

pl(E
∗
y ,X ) = P1 . As yi /∈ l ∀i , then E ∗yi ,X * L so (x , yi ) /∈ B . Let

φ : {z : |z | < ε} → X , φ(0) = x , be a chart on X near x .



Consider secants y1φ(z) as z varies. Since (x , y1) /∈ B , then

(φ(z), y1) /∈ B for |z | small. If (φ(z), y1) ∈ T for all |z | small, then

∃i , 2 ≤ i ≤ k and sequences zn → 0 , y
(n)
i → yi , y

(n)
i ∈ X , as

n→∞ s.th. φ(zn), y1, y
(n)
i are collinear. Then yiy

(n)
i would be in

the plane y1xφ(zn) . Taking n→∞ , this plane approaches the

join of y1 and l = lim xφ(zn) , which is L .



Thus the line Eyi ,X = lim y
(n)
i , yi lies in L , contradicting the fact

that (x , yi ) /∈ B . Thus (φ(z), y1) ∈ X × X −∆− B − T for |z |

small. Let C be as in Step 1a, C ∗ := C ∩ [(∆∪B ∪T )× P3] , and

S∗ := π3(C ∗) . Then C ∗ is algebraic with all components having

dimension ≤ 2 , and so the same for S∗ . Thus choose x /∈ S∗ to

satisfy i) - iv).



Inflexion Points

Definition : If x ∈ X is a smooth point, we say x is an inflexion

point if i(x ;X ∩ E ∗x ,X ) ≥ 3 .

Proposition 1 : 1) If f (X0,X1,X2) = 0 is the equation of X , then

{inflexion points} = (X−Sing X ) ∩ {zeroes of H = det( ∂2f
∂Xi∂Xj

)} ;

2) If X is described analytically in affine coordinates near a point P

by X2 = f (X1) , then {inflexion points near P} = {points (a, f (a))

where f ′′(a) = 0} .



Proof : 1) As the Hessian transforms like a quadratic form under

change of coordinates, the zeroes of H are unchanged. Then

choose coordinates s.th. x = (1, 0, 0) ∈ X is a smooth point and

E ∗x ,X = V (X1). Then f = αX1X
d−1
0 + βX 2

2 X
d−2
0 + γX1X2X

d−2
0 +

δX 2
1 X

d−2
0 + (terms with X1,X2 to powers > 2) as f (x) = 0. Then

H(x) = −2(d − 1)2α2β. If α = 0, then the Jacobian of f at x is

zero, but x is a smooth point. Thus α 6= 0 so H(x) = 0 iff β = 0.



We have X ∩ E ∗x ,X = zeroes of f (X0, 0,X2) = zeroes of βX 2
2 X

d−2
0

+(terms with X2 to power > 2). Thus β = 0 iff i(x ;X ∩E ∗x ,X ) > 2.

2) This is a fact in undergraduate calculus. �

Corollary 2 : If degX > 1 , then X has only finitely many inflexion

points.

Proof : Since X is not a line, f ′′ 6≡ 0 so by 2), not every point is

an inflexion point. By 1), the set of inflexion points is algebraic, so

its components have dimension < dimX = 1. �



Step 1c: Projection X to P1

By Step 1b, we may assume X ⊆ P2 is smooth except for finitely

many ordinary double points. Choose x ∈ P2 s.th. x /∈⋃
{y∈X :y a point of inflexion or a singular point} E

∗
y ,X ∪ X . Consider

px : X → P1. If y ∈ X is smooth and x /∈ E ∗y ,X , then px is smooth

at y . If y is a double point, by choice of x , px is smooth on each

branch. If y is smooth and x ∈ E ∗y ,X , y is not a point of inflexion.

Thus 2 = i(y ;X ∩ E ∗y ,X ) = i(y ;X ∩ p−1
x (px(y))) = multy (resXpx).

Hence y is an ordinary branch point. By Cor. 5.6, deg p1 = d .



Step 2a: ga(X ) = 1
2(d − 1)(d − 2)− δ

By Step 1, we have p2 : X → X ′ := p2(X ) = V (F ) for some

polynomial F and X ′ is smooth everywhere except at the

wi , 1 ≤ i ≤ δ . Then X − {u1, v1, ..., uδ, vδ} and X ′−

{w1, ...,wδ} correspond biregularly. Thus for x ∈ X − {u1, ..., vδ}

and x ′ := p2(x) , we can say Ox ,X = Ox ′,X ′ by identifying C(X )

with C(X ′).



Local Ring of wi

Lemma 3 : Owi ,X ′ = {α ∈ Oui ,X ∩ Ovi ,X : α(ui ) = α(vi )}

Proof : Let Y ,Z be affine coordinates in P2 s.th. wi = (0, 0) and

the affine equation of F is of the form F = YZ + higher order

terms. This is possible as the branches meet transversely. Recall

that ∀n, ∀f ∈ Owi ,P2 , we have an expansion f =
∑

i+j<n cijY
iZ j

+ (remainder in Mn
wi ,P2) (∗) where Mwi ,P2 is the maximal ideal in

Owi ,P2 . Modulo F , we then have f = a +
∑n−1

i=1 biY
i +∑n−1

i=1 ciZ
i + (remainder in Mn

wi ,P2).



As an analytic set near wi , X
′ is the union of 2 smooth branches

with tangent lines Y = 0 and Z = 0 . On the branch with tangent

line Y = 0 , Z vanishes to 1st order and Y to higher order.

Suppose this branch corresponds to a neighborhood of ui on X .

Then Z ◦ p2 vanishes to 1st order at ui and Y ◦ p2 vanishes to

higher order. The opposite at vi . Thus ∀f ∈Mui ,X ∩Mvi ,X , we

have an expansion f =
∑n−1

i=1 biY
i +
∑n−1

i=1 ciZ
i+ (remainder

vanishing to order n at ui and vi ) (∗∗).



Let f ∈ Oui ,X ∩ Ovi ,X s.th. f (ui ) = f (vi ) = 0 . Write f = g/h

where g , h ∈ Owi ,X ′ . Expanding f as in (∗∗), we have f =

fn(Y ,Z ) + Rn where fn is a polynomial of degree n − 1 and Rn

vanishes to order n at ui and vi . Then g = hfn + hRn. As g , hfn ∈

Owi ,X ′ , so is hRn . Expanding hRn as in (∗), we have a = bi =

ci = 0 ∀i else hRn would not vanish to order n at ui and vi . Thus

hRn ∈Mn
wi ,X ′ . Thus ∀n , g ∈ hOwi ,X ′ + Mn

wi ,X ′ . Then by Krull,

g ∈ hOwi ,X ′ so f ∈ Owi ,X ′ . The other direction is by definition. �



Continuing Proof of Step 2a

Consider R ′ := C[X0,X1,X2]/(F ) ⊆ R := C[X0, ...,Xr ]/I (X ) .

WLOG, assume Xi (wj) 6= 0, i = 0, 1, 2, j = 1, ..., δ . ∀k , consider

the sequence 0→ R ′k
ι→ Rk

α→
∑δ

i=1 C→ 0 where α(f ) =

(..., f
X k

0
(ui )− f

X k
0

(vi ), ...) . By Lemma 3, α ◦ ι = 0 . If k � 0 ,

∃ hypersurfaces Hi = V (Gi ) s.th. uj , vj ∈ Hi ∀j 6= i , ui /∈ Hi , and

vi ∈ Hi . Then α(Gi ) = c ·(ith unit vector), so α is surjective. As

p2 is birational, R and R ′ have the same fraction field. Then by

the next lemma and Prop. 6.11, the sequence will be exact.



Lemma 4 : ∀k and ∀G ∈ Rk s.th. α(G ) = 0 , ∃n s.th.

X n
0 G ,X

n
1 G ,X

n
2 G ∈ R ′.

Proof : It suffices to show X n
0 G ∈ R ′ by symmetry. Consider the

affine rings S ′ := C[X1
X0
, X2
X0

]/( F
X d

0
) ⊆ S := C[X1

X0
, ..., Xr

X0
]/I (X ). Then

it suffices to show if g ∈ S is s.th. g(ui ) = g(vi ) ∀i , then g ∈ S ′ .

By Proposition 1.11, S =
⋂
{x∈X :x /∈V (X0)}Ox ,X and S ′ =⋂

{x∈X ′:x /∈V (X0)}Ox ,X ′ . Then the result follows from Lemma 3 and

biregularity of p2 . �



Thus we have the sequence to be exact for k � 0. We have

PX (k) = dimRk

= dimR ′k + dim
∑δ

i=1 C

= dim[C[X0,X1,X2]/(F )]k + δ

= dimC[X0,X1,X2]k − dimF · C[X0,X1,X2]k−d + δ

=
(k+2

2

)
−
(k−d+2

2

)
+ δ

= kd + 1− 1
2 (d − 1)(d − 2) + δ.

Thus ga(X ) = 1
2 (d − 1)(d − 2)− δ.



Step 2b: d(d − 1) = β + 2δ

Let X0,X1,X2 be the coordinates of P2 , X0,X1 be the coordinates

in P1 and px : P2 − {x} → P1 be the projection. Let F be the

equation of p2(X ) . Consider the curve Y defined by ∂F/∂X0 = 0 .

As degY = d − 1 , by Bezout, deg(Y · p2(X )) = d(d − 1) . To

prove d(d − 1) = 2δ + β , it suffices to show:

i) Y ∩ p2(X ) = (double points of p2(X ) and branch points of px) ;

ii) at each double point y , i(y ;Y ∩ p2(X )) = 2 ;

iii) at each branch point y , i(y ;Y ∩ p2(X )) = 1 .



Step 2bi)

We have p2(X ) covered by affine pieces X1 6= 0 and X2 6= 0 so

look in the first piece and let u = X0/X1, v = X2/X1 be affine

coordinates. Then px is the projection of the (u, v)-plane to the

u-line, p2(X ) has affine equation f (u, v) := F (u, 1, v) and Y has

affine equation ∂F
∂X0

(u, 1, v) = ∂f /∂u . Then ∀y ∈ p2(X ) , ∂f
∂u (y)

6= 0 iff y is a smooth point of p2(X ) and E ∗y ,p2(X ) projects onto the

u-line so i) follows.



Step 2bii)

If y is a double point and coordinates (u, v) are chosen with

y = (0, 0) , then because neither branch of p2(X ) at y is parallel to

the v -axis, f = (au + bv)(cu + dv) + deg ≥ 3 terms, ad − bc 6= 0 ,

a 6= 0 , c 6= 0 so ∂f
∂u = 2acu + (ad + bc)v + (deg ≥ 2 terms). As

ad − bc 6= 0 , we have ad+bc
2ac 6= b/a or d/c . Then y is a smooth

point for Y with tangent line unequal to either tangent line to

p2(X ) at y so ii) follows.



Step 2biii)

If y is a branch point of px : p2(X )→ P1 , and coordinates (u, v)

are chosen s.th. y = (0, 0) , then as y is smooth and the branching

is ordinary, we have f = av + bu2 + cuv + dv2 + (deg ≥ 3 terms),

a 6= 0 , b 6= 0 so ∂f
∂u = 2bu + cv + (deg ≥ 2 terms). Thus y is a

smooth point of Y . Also, Y and p2(X ) meet transversely at y ,

proving iii).



Step 2c: e(X ) = 2d − β

Consider the covering p1 : X → P1 . Let x1, ..., xβ ∈ X be the

branch points of p1 and let ti = p1(xi ) . Triangulate P1 s.th. the ti

are vertices. Take all points of X over vertices of P1 to be vertices

of X . For all edges f : ∆1 → P1 in the triangulation, the covering

X is unramified over f (Int(∆1)) . Since Int(∆1) is simply

connected, f lifts to d distinct maps f
(i)

0 : Int(∆1)→ X with

disjoint images. As p1 : X → P1 is proper, we can extend the f
(i)

0

to maps f (i) : ∆1 → X lifting f .



Let these be the edges of X and repeat the process for faces to

have a triangulation of X . Suppose P1 has s0 vertices, s1 edges,

and s2 faces, so X has ds1 edges and ds2 faces. Among the ds0

potential vertices of X over the ti , β are branch points so there are

ds0 − β vertices. Thus

e(X ) = (ds0 − β)− (ds1) + (ds2)

= d(s0 − s1 + s2)− β

= d(e(P1))− β = 2d − β.


