Hirzebruch-Riemann-Roch Theorem in Dimension One via Mumford

September 13, 2016

The HRR Theorem

In all slides, X denotes a smooth complex projective curve in \mathbb{P}^{r}.
Definition : Let P_{X} be the Hilbert polynomial associated with X.
The arithmetic genus of X is $g_{a}(X):=(-1)\left(P_{X}(0)-1\right)$.
HRR Theorem : If g is the top. genus of X, then $g_{a}(X)=g$.
Notation : Let $e(X)$ be the Euler characteristic of X and $d:=$ $\operatorname{deg} X$. For all $x \in X, E_{x, X}^{*}$ is the tangent cone at x. For a linear space L and $x \in X \cap L, i(x ; X \cap L)$ is the intersection multiplicity.

For a linear space L or point x, let p_{L}, resp. p_{x}, denote the projection with center L, resp. $\{x\}$.

Idea of Proof

Step 1 : Consider projections $p_{k}:=p_{L}: X \rightarrow \mathbb{P}^{k}$ where L is of dimension $r-k-1$ and disjoint from X.

Claim : For a.e. L,
a) if $k \geq 3$, then $p_{k}(X)$ is birational to X and is smooth;
b) if $k=2$, then $p_{2}(X)$ is birational to X and smooth except for finitely many ordinary double points;
c) if $k=1$, then $p_{1}: X \rightarrow \mathbb{P}^{1}$ is a covering of degree d and smooth except for finitely many ordinary branch points.

Step 2 : If $p_{2}(X)$ has δ double points and p_{1} has β branch points, then:
a) $g_{a}(X)=\frac{1}{2}(d-1)(d-2)-\delta$;
b) $d(d-1)=\beta+2 \delta$;
c) $e(X)=2 d-\beta$.

As smooth curves are compact oriented 2-manifolds, we have $e(X)=2-2 g$. Then using these four formulas, we find that $g_{a}(X)=g$.

Step 1a: Projecting X to \mathbb{P}^{3}

We first show if $r>3$, then for a.e. $x \in \mathbb{P}^{r} \backslash X, p_{x}(X)$ is birational to X and smooth. It suffices to find an x s.th. $\forall u \in X$, $\overline{u x} \cap X=\{u\}$ and $\overline{u x} \neq E_{u, X}^{*}$. If so, then $p_{X}: X \rightarrow p_{x}(X)$ is bijective, hence birational, and by Corollaries 5.14 and $5.15, p_{x}(X)$ would be smooth. To find such an x, it suffices for $x \notin S:=$ $\left[\bigcup_{u \neq v ; u, v \in X} \overline{u v}\right] \cup\left[\bigcup_{u \in X} E_{u, X}^{*}\right]$. It now suffices to show S is a variety of dimension ≤ 3 as $r>3$.

Let $C:=\left\{(x, y, z) \in X \times X \times \mathbb{P}^{r}:\right.$ if $x \neq y$, then $z \in \overline{x y}$; if
$x=y$, then $\left.z \in E_{x, X}^{*}\right\} . C$ is the closure of $C \cap\left((X \times X-\Delta) \times \mathbb{P}^{r}\right)$
in the classical topology: if $x_{n}, y_{n} \rightarrow x$ as $n \rightarrow \infty$, then
$\overline{x_{n} y_{n}} \rightarrow E_{x, X}^{*}$. Thus C is algebraic. Let $\pi_{12}: C \rightarrow X \times X$ and
$\pi_{3}: C \rightarrow \mathbb{P}^{r}$ be the natural projections. By definition of C, the
fibres of π_{12} are lines, so irreducible 1-dimensional. As $X \times X$ is
irreducible 2-dimensional, then C is irreducible 3-dimensional. As
$S=p_{3}(C)$, then S is irreducible and ≤ 3-dimensional.

Step 1b: Projecting X to \mathbb{P}^{2}

By Step 1a, we may assume $X \subseteq \mathbb{P}^{3}$.
Definition : For $x, y \in X, \overline{x y}$ is a tri-secant of X if $\overline{x y}$ meets X
in a third point or $\overline{x y}$ is tangent to X at x or y.
To prove Step $1 b$, It suffices to find $x \in \mathbb{P}^{3}$ s.th.
i) $x \notin \bigcup_{u \in X} E_{u, X}^{*}$;
ii) x is in only finitely many secants $\overline{u_{i} v_{i}}$ of $X, 1 \leq i \leq \nu$;
iii) $\forall i, \overline{u_{i} v_{i}}$ is not a tri-secant of X;
iv) $\forall i$, the planes $\overline{x, E_{u_{i}, X}^{*}}$ and $\overline{x, E_{v_{i}, X}^{*}}$ are distinct.

If so, then ii) $\Rightarrow p_{x}(X)$ is birational to X and i) \Rightarrow its only singular points are $w_{i}:=p_{x}\left(u_{i}\right)=p_{x}\left(v_{i}\right)$. By i) and iii), we have that the multiplicity of w_{i} on $p_{x}(X)$ is 2 . Finally by iv), these two branches have distinct tangent lines, namely $p_{x}\left(E_{u_{i}, X}^{*}\right)$ and $p_{x}\left(E_{v_{i}, X}^{*}\right)$. Thus w_{i} is an ordinary double point. To show such an x exists, consider $T:=\{(x, y) \in X \times X-\Delta: \overline{x y}$ meets X in a third point or $\overline{x y}$ is tangent to X at x or $y\}$ and $B:=\left\{(x, y) \in X \times X-\Delta: E_{x, X}^{*}\right.$ and $E_{y, x}^{*}$ lie in a plane $\}$.

Showing $T \cup B \subsetneq(X \times X-\Delta)$

T is the closure of $\{(x, y) \in X \times X-\Delta: \overline{x y}$ meets X in a third point $\}$ in $X \times X-\Delta$ and coplanarity is a closed property so T and B are algebraic. Let $x \in X$ and $I:=E_{x, X}^{*}$. Consider the projection $p_{l}: X \rightarrow \mathbb{P}^{1}$. Let $\alpha \in \mathbb{P}^{1}$ be a point where p_{l} is smooth and let $L:=p_{l}^{-1}(\alpha) \cup I, L \cap X=\left\{x, y_{1}, \ldots, y_{k}\right\}$ by Noether Normalization.

If $y \notin I$ and p_{I} is smooth at y, then by dimension, we have $p_{l}\left(E_{y, X}^{*}\right)=\mathbb{P}^{1}$. As $y_{i} \notin I \forall i$, then $E_{y_{i}, X}^{*} \nsubseteq L$ so $\left(x, y_{i}\right) \notin B$. Let $\phi:\{z:|z|<\epsilon\} \rightarrow X, \phi(0)=x$, be a chart on X near x.

Consider secants $\overline{y_{1} \phi(z)}$ as z varies. Since $\left(x, y_{1}\right) \notin B$, then $\left(\phi(z), y_{1}\right) \notin B$ for $|z|$ small. If $\left(\phi(z), y_{1}\right) \in T$ for all $|z|$ small, then $\exists i, 2 \leq i \leq k$ and sequences $z_{n} \rightarrow 0, y_{i}^{(n)} \rightarrow y_{i}, y_{i}^{(n)} \in X$, as $n \rightarrow \infty$ s.th. $\phi\left(z_{n}\right), y_{1}, y_{i}^{(n)}$ are collinear. Then $\overline{y_{i} y_{i}^{(n)}}$ would be in the plane $\overline{y_{1} \times \phi\left(z_{n}\right)}$. Taking $n \rightarrow \infty$, this plane approaches the join of y_{1} and $I=\lim \overline{x \phi\left(z_{n}\right)}$, which is L.

Thus the line $E_{y_{i}, X}=\lim \overline{y_{i}^{(n)}, y_{i}}$ lies in L, contradicting the fact that $\left(x, y_{i}\right) \notin B$. Thus $\left(\phi(z), y_{1}\right) \in X \times X-\Delta-B-T$ for $|z|$ small. Let C be as in Step 1a, $C^{*}:=C \cap\left[(\Delta \cup B \cup T) \times \mathbb{P}^{3}\right]$, and $S^{*}:=\pi_{3}\left(C^{*}\right)$. Then C^{*} is algebraic with all components having dimension ≤ 2, and so the same for S^{*}. Thus choose $x \notin S^{*}$ to satisfy i) - iv).

Inflexion Points

Definition : If $x \in X$ is a smooth point, we say x is an inflexion point if $i\left(x ; X \cap E_{x, X}^{*}\right) \geq 3$.

Proposition 1: 1) If $f\left(X_{0}, X_{1}, X_{2}\right)=0$ is the equation of X, then $\{$ inflexion points $\}=(X-\operatorname{Sing} X) \cap\left\{\right.$ zeroes of $\left.H=\operatorname{det}\left(\frac{\partial^{2} f}{\partial X_{i} \partial X_{j}}\right)\right\}$;
2) If X is described analytically in affine coordinates near a point P
by $X_{2}=f\left(X_{1}\right)$, then $\{$ inflexion points near $P\}=\{$ points $(a, f(a))$
where $\left.f^{\prime \prime}(a)=0\right\}$.

Proof : 1) As the Hessian transforms like a quadratic form under change of coordinates, the zeroes of H are unchanged. Then choose coordinates s.th. $x=(1,0,0) \in X$ is a smooth point and $E_{x, X}^{*}=V\left(X_{1}\right)$. Then $f=\alpha X_{1} X_{0}^{d-1}+\beta X_{2}^{2} X_{0}^{d-2}+\gamma X_{1} X_{2} X_{0}^{d-2}+$ $\delta X_{1}^{2} X_{0}^{d-2}+\left(\right.$ terms with X_{1}, X_{2} to powers $\left.>2\right)$ as $f(x)=0$. Then $H(x)=-2(d-1)^{2} \alpha^{2} \beta$. If $\alpha=0$, then the Jacobian of f at x is zero, but x is a smooth point. Thus $\alpha \neq 0$ so $H(x)=0$ iff $\beta=0$.

We have $X \cap E_{x, X}^{*}=$ zeroes of $f\left(X_{0}, 0, X_{2}\right)=$ zeroes of $\beta X_{2}^{2} X_{0}^{d-2}$ $+\left(\right.$ terms with X_{2} to power $\left.>2\right)$. Thus $\beta=0$ iff $i\left(x ; X \cap E_{x, X}^{*}\right)>2$.
2) This is a fact in undergraduate calculus.

Corollary 2: If $\operatorname{deg} X>1$, then X has only finitely many inflexion points.

Proof : Since X is not a line, $f^{\prime \prime} \not \equiv 0$ so by 2), not every point is an inflexion point. By 1), the set of inflexion points is algebraic, so its components have dimension $<\operatorname{dim} X=1$. \square

Step 1c: Projection X to \mathbb{P}^{1}

By Step 1 b, we may assume $X \subseteq \mathbb{P}^{2}$ is smooth except for finitely many ordinary double points. Choose $x \in \mathbb{P}^{2}$ s.th. $x \notin$
$\bigcup_{\{y \in X: y \text { a point of inflexion or a singular point }\}} E_{y, X}^{*} \cup X$. Consider $p_{x}: X \rightarrow \mathbb{P}^{1}$. If $y \in X$ is smooth and $x \notin E_{y, X}^{*}$, then p_{x} is smooth at y. If y is a double point, by choice of x, p_{x} is smooth on each branch. If y is smooth and $x \in E_{y, X}^{*}, y$ is not a point of inflexion.

Thus $2=i\left(y ; X \cap E_{y, x}^{*}\right)=i\left(y ; X \cap p_{x}^{-1}\left(p_{x}(y)\right)\right)=\operatorname{mult}_{y}\left(\operatorname{res}_{x} p_{x}\right)$.
Hence y is an ordinary branch point. By Cor. 5.6, $\operatorname{deg} p_{1}=d$.

Step 2a: $g_{a}(X)=\frac{1}{2}(d-1)(d-2)-\delta$

By Step 1 , we have $p_{2}: X \rightarrow X^{\prime}:=p_{2}(X)=V(F)$ for some polynomial F and X^{\prime} is smooth everywhere except at the $w_{i}, 1 \leq i \leq \delta$. Then $X-\left\{u_{1}, v_{1}, \ldots, u_{\delta}, v_{\delta}\right\}$ and $X^{\prime}-$ $\left\{w_{1}, \ldots, w_{\delta}\right\}$ correspond biregularly. Thus for $x \in X-\left\{u_{1}, \ldots, v_{\delta}\right\}$ and $x^{\prime}:=p_{2}(x)$, we can say $\mathcal{O}_{x, X}=\mathcal{O}_{x^{\prime}, X^{\prime}}$ by identifying $\mathbb{C}(X)$ with $\mathbb{C}\left(X^{\prime}\right)$.

Local Ring of w_{i}

Lemma 3 : $\mathcal{O}_{w_{i}, X^{\prime}}=\left\{\alpha \in \mathcal{O}_{u_{i}, X} \cap \mathcal{O}_{v_{i}, X}: \alpha\left(u_{i}\right)=\alpha\left(v_{i}\right)\right\}$
Proof: Let Y, Z be affine coordinates in \mathbb{P}^{2} s.th. $w_{i}=(0,0)$ and the affine equation of F is of the form $F=Y Z+$ higher order terms. This is possible as the branches meet transversely. Recall that $\forall n, \forall f \in \mathcal{O}_{w_{i}, \mathbb{P}^{2}}$, we have an expansion $f=\sum_{i+j<n} c_{i j} Y^{i} Z^{j}$ $+\left(\right.$ remainder in $\left.\mathfrak{M}_{w_{i}, \mathbb{P}^{2}}^{n}\right)(*)$ where $\mathfrak{M}_{w_{i}, \mathbb{P}^{2}}$ is the maximal ideal in
$\mathcal{O}_{w_{i}, \mathbb{P}^{2}}$. Modulo F, we then have $f=a+\sum_{i=1}^{n-1} b_{i} Y^{i}+$ $\sum_{i=1}^{n-1} c_{i} Z^{i}+\left(\right.$ remainder in $\left.\mathfrak{M}_{w_{i}, \mathbb{P}^{2}}^{n}\right)$.

As an analytic set near w_{i}, X^{\prime} is the union of 2 smooth branches with tangent lines $Y=0$ and $Z=0$. On the branch with tangent line $Y=0, Z$ vanishes to 1 st order and Y to higher order.

Suppose this branch corresponds to a neighborhood of u_{i} on X.
Then $Z \circ p_{2}$ vanishes to 1 st order at u_{i} and $Y \circ p_{2}$ vanishes to
higher order. The opposite at v_{i}. Thus $\forall f \in \mathfrak{M}_{u_{i}, X} \cap \mathfrak{M}_{v_{i}, X}$, we have an expansion $f=\sum_{i=1}^{n-1} b_{i} Y^{i}+\sum_{i=1}^{n-1} c_{i} Z^{i}+$ (remainder vanishing to order n at u_{i} and $\left.v_{i}\right)(* *)$.

Let $f \in \mathcal{O}_{u_{i}, X} \cap \mathcal{O}_{v_{i}, X}$ s.th. $f\left(u_{i}\right)=f\left(v_{i}\right)=0$. Write $f=g / h$ where $g, h \in \mathcal{O}_{w_{i}, X^{\prime}}$. Expanding f as in ($* *$), we have $f=$ $f_{n}(Y, Z)+R_{n}$ where f_{n} is a polynomial of degree $n-1$ and R_{n} vanishes to order n at u_{i} and v_{i}. Then $g=h f_{n}+h R_{n}$. As $g, h f_{n} \in$ $\mathcal{O}_{w_{i}, X^{\prime}}$, so is $h R_{n}$. Expanding $h R_{n}$ as in $(*)$, we have $a=b_{i}=$ $c_{i}=0 \forall i$ else $h R_{n}$ would not vanish to order n at u_{i} and v_{i}. Thus $h R_{n} \in \mathfrak{M}_{w_{i}, X^{\prime}}^{n}$. Thus $\forall n, g \in h \mathcal{O}_{w_{i}, X^{\prime}}+\mathfrak{M}_{w_{i}, X^{\prime}}^{n}$. Then by Krull, $g \in h \mathcal{O}_{w_{i}, X^{\prime}}$ so $f \in \mathcal{O}_{w_{i}, X^{\prime}}$. The other direction is by definition.

Continuing Proof of Step 2a

Consider $R^{\prime}:=\mathbb{C}\left[X_{0}, X_{1}, X_{2}\right] /(F) \subseteq R:=\mathbb{C}\left[X_{0}, \ldots, X_{r}\right] / I(X)$.
WLOG, assume $X_{i}\left(w_{j}\right) \neq 0, i=0,1,2, j=1, \ldots, \delta . \forall k$, consider the sequence $0 \rightarrow R_{k}^{\prime} \xrightarrow{\iota} R_{k} \xrightarrow{\alpha} \sum_{i=1}^{\delta} \mathbb{C} \rightarrow 0$ where $\alpha(f)=$ $\left(\ldots, \frac{f}{X_{0}^{k}}\left(u_{i}\right)-\frac{f}{X_{0}^{k}}\left(v_{i}\right), \ldots\right)$. By Lemma 3, $\alpha \circ \iota=0$. If $k \gg 0$,
\exists hypersurfaces $H_{i}=V\left(G_{i}\right)$ s.th. $u_{j}, v_{j} \in H_{i} \forall j \neq i, u_{i} \notin H_{i}$, and $v_{i} \in H_{i}$. Then $\alpha\left(G_{i}\right)=c \cdot(i$ th unit vector), so α is surjective. As p_{2} is birational, R and R^{\prime} have the same fraction field. Then by the next lemma and Prop. 6.11, the sequence will be exact.

Lemma 4 : $\forall k$ and $\forall G \in R_{k}$ s.th. $\alpha(G)=0$, $\exists n$ s.th.
$X_{0}^{n} G, X_{1}^{n} G, X_{2}^{n} G \in R^{\prime}$.
Proof : It suffices to show $X_{0}^{n} G \in R^{\prime}$ by symmetry. Consider the affine rings $S^{\prime}:=\mathbb{C}\left[\frac{X_{1}}{X_{0}}, \frac{X_{2}}{X_{0}}\right] /\left(\frac{F}{X_{0}^{d}}\right) \subseteq S:=\mathbb{C}\left[\frac{X_{1}}{X_{0}}, \ldots, \frac{X_{r}}{X_{0}}\right] / I(X)$. Then it suffices to show if $g \in S$ is s.th. $g\left(u_{i}\right)=g\left(v_{i}\right) \forall i$, then $g \in S^{\prime}$. By Proposition 1.11, $S=\bigcap_{\left\{x \in X: x \notin \vee\left(X_{0}\right)\right\}} \mathcal{O}_{x, X}$ and $S^{\prime}=$ $\bigcap_{\left\{x \in X^{\prime}: x \notin V\left(X_{0}\right)\right\}} \mathcal{O}_{x, X^{\prime}}$. Then the result follows from Lemma 3 and biregularity of p_{2}. \square

Thus we have the sequence to be exact for $k \gg 0$. We have
$P_{X}(k)=\operatorname{dim} R_{k}$
$=\operatorname{dim} R_{k}^{\prime}+\operatorname{dim} \sum_{i=1}^{\delta} \mathbb{C}$
$=\operatorname{dim}\left[\mathbb{C}\left[X_{0}, X_{1}, X_{2}\right] /(F)\right]_{k}+\delta$
$=\operatorname{dim} \mathbb{C}\left[X_{0}, X_{1}, X_{2}\right]_{k}-\operatorname{dim} F \cdot \mathbb{C}\left[X_{0}, X_{1}, X_{2}\right]_{k-d}+\delta$
$=\binom{k+2}{2}-\binom{k-d+2}{2}+\delta$
$=k d+1-\frac{1}{2}(d-1)(d-2)+\delta$.
Thus $g_{a}(X)=\frac{1}{2}(d-1)(d-2)-\delta$.

Step 2b: $d(d-1)=\beta+2 \delta$

Let X_{0}, X_{1}, X_{2} be the coordinates of $\mathbb{P}^{2}, X_{0}, X_{1}$ be the coordinates in \mathbb{P}^{1} and $p_{x}: \mathbb{P}^{2}-\{x\} \rightarrow \mathbb{P}^{1}$ be the projection. Let F be the equation of $p_{2}(X)$. Consider the curve Y defined by $\partial F / \partial X_{0}=0$.

As $\operatorname{deg} Y=d-1$, by Bezout, $\operatorname{deg}\left(Y \cdot p_{2}(X)\right)=d(d-1)$. To prove $d(d-1)=2 \delta+\beta$, it suffices to show:
i) $Y \cap p_{2}(X)=\left(\right.$ double points of $p_{2}(X)$ and branch points of $\left.p_{X}\right)$;
ii) at each double point $y, i\left(y ; Y \cap p_{2}(X)\right)=2$;
iii) at each branch point $y, i\left(y ; Y \cap p_{2}(X)\right)=1$.

Step 2bi)

We have $p_{2}(X)$ covered by affine pieces $X_{1} \neq 0$ and $X_{2} \neq 0$ so look in the first piece and let $u=X_{0} / X_{1}, v=X_{2} / X_{1}$ be affine coordinates. Then p_{x} is the projection of the (u, v)-plane to the u-line, $p_{2}(X)$ has affine equation $f(u, v):=F(u, 1, v)$ and Y has affine equation $\frac{\partial F}{\partial X_{0}}(u, 1, v)=\partial f / \partial u$. Then $\forall y \in p_{2}(X), \frac{\partial f}{\partial u}(y)$ $\neq 0$ iff y is a smooth point of $p_{2}(X)$ and $E_{y, p_{2}(X)}^{*}$ projects onto the u-line so i) follows.

Step 2bii)

If y is a double point and coordinates (u, v) are chosen with $y=(0,0)$, then because neither branch of $p_{2}(X)$ at y is parallel to the v-axis, $f=(a u+b v)(c u+d v)+\operatorname{deg} \geq 3$ terms, $a d-b c \neq 0$, $a \neq 0, c \neq 0$ so $\frac{\partial f}{\partial u}=2 a c u+(a d+b c) v+(\operatorname{deg} \geq 2$ terms $)$. As $a d-b c \neq 0$, we have $\frac{a d+b c}{2 a c} \neq b / a$ or d / c. Then y is a smooth point for Y with tangent line unequal to either tangent line to $p_{2}(X)$ at y so ii) follows.

Step 2biii)

If y is a branch point of $p_{x}: p_{2}(X) \rightarrow \mathbb{P}^{1}$, and coordinates (u, v) are chosen s.th. $y=(0,0)$, then as y is smooth and the branching is ordinary, we have $f=a v+b u^{2}+c u v+d v^{2}+(\operatorname{deg} \geq 3$ terms $)$, $a \neq 0, b \neq 0$ so $\frac{\partial f}{\partial u}=2 b u+c v+(\operatorname{deg} \geq 2$ terms $)$. Thus y is a smooth point of Y. Also, Y and $p_{2}(X)$ meet transversely at y, proving iii).

Step 2c: $e(X)=2 d-\beta$

Consider the covering $p_{1}: X \rightarrow \mathbb{P}^{1}$. Let $x_{1}, \ldots, x_{\beta} \in X$ be the branch points of p_{1} and let $t_{i}=p_{1}\left(x_{i}\right)$. Triangulate $\mathbb{P}^{1} \mathrm{~s}$.th. the t_{i} are vertices. Take all points of X over vertices of \mathbb{P}^{1} to be vertices of X. For all edges $f: \Delta^{1} \rightarrow \mathbb{P}^{1}$ in the triangulation, the covering X is unramified over $f\left(\operatorname{Int}\left(\Delta^{1}\right)\right)$. Since $\operatorname{Int}\left(\Delta^{1}\right)$ is simply connected, f lifts to d distinct maps $f_{0}^{(i)}: \operatorname{Int}\left(\Delta^{1}\right) \rightarrow X$ with disjoint images. As $p_{1}: X \rightarrow \mathbb{P}^{1}$ is proper, we can extend the $f_{0}^{(i)}$ to maps $f^{(i)}: \Delta^{1} \rightarrow X$ lifting f.

Let these be the edges of X and repeat the process for faces to have a triangulation of X. Suppose \mathbb{P}^{1} has s_{0} vertices, s_{1} edges, and s_{2} faces, so X has $d s_{1}$ edges and $d s_{2}$ faces. Among the $d s_{0}$ potential vertices of X over the t_{i}, β are branch points so there are $d s_{0}-\beta$ vertices. Thus
$e(X)=\left(d s_{0}-\beta\right)-\left(d s_{1}\right)+\left(d s_{2}\right)$
$=d\left(s_{0}-s_{1}+s_{2}\right)-\beta$
$=d\left(e\left(\mathbb{P}^{1}\right)\right)-\beta=2 d-\beta$.

