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The HRR Theorem

In all slides, X denotes a smooth complex projective curve in P".
Definition : Let Px be the Hilbert polynomial associated with X .
The arithmetic genus of X is ga(X) := (—1)(Px(0) — 1) .

HRR Theorem : If g is the top. genus of X , then g,(X) =g .
Notation : Let e(X) be the Euler characteristic of X and d :=
deg X . Forall x € X', EJ x is the tangent cone at x . For a linear
space L and x € X N L, i(x; X N L) is the intersection multiplicity.
For a linear space L or point x , let p; , resp. px , denote the

projection with center L, resp. {x} .



|dea of Proof

Step 1 : Consider projections px := p; : X — PX where L is of
dimension r — k — 1 and disjoint from X .

Claim : For ae. L,

a) if k > 3, then p,(X) is birational to X and is smooth;

b) if k =2, then py(X) is birational to X and smooth except for
finitely many ordinary double points;

c)if k=1, then p; : X — P! is a covering of degree d and

smooth except for finitely many ordinary branch points.



Step 2 : If pp(X) has § double points and p; has 3 branch points,
then:

2) ga(X) = 1(d —1)(d —2) 5 ;

b) d(d —1)=p+20;

c)e(X)=2d-0.

As smooth curves are compact oriented 2-manifolds, we have

e(X) =2 —2g . Then using these four formulas, we find that

8(X)=g.



Step la: Projecting X to P3

We first show if r > 3, then for a.e. x € P"\ X, pu(X) is
birational to X and smooth. It suffices to find an x s.th. Yu € X,
ox N X ={u} and ux # E; . If so, then p : X — px(X) is
bijective, hence birational, and by Corollaries 5.14 and 5.15, py(X)
would be smooth. To find such an x , it suffices for x ¢ S :=
[Uuzy wvex V] U [Uuex Ej x| - It now suffices to show S is a

variety of dimension <3 asr > 3.



Let C:={(x,y,z) e X x X xP":if x# y , then z e Xy ; if

x =y thenz € E;y}. Cisthe closure of CN((X xX—A)xP")
in the classical topology: if x, ,y, — x as n — oo, then

Xn¥n — E5 x . Thus C is algebraic. Let 112 : € — X x X and

w3 : C — P' be the natural projections. By definition of C , the
fibres of w15 are lines, so irreducible 1-dimensional. As X x X is
irreducible 2-dimensional, then C is irreducible 3-dimensional. As

S = p3(C) , then S is irreducible and < 3-dimensional.



Step 1b: Projecting X to P2

By Step la, we may assume X C P3 .

Definition : For x,y € X , Xy is a tri-secant of X if Xy meets X
in a third point or Xy is tangent to X at x or y .

To prove Step 1b, It suffices to find x € P3 s.th.

) x & Uuex Ejx

ii) x is in only finitely many secants T;v; of X , 1 </ <v;

iii) Vi, Tjv; is not a tri-secant of X ;

iv) Vi, the planes x , E}  and x , E}  are distinct.



If so, then ii) = p«(X) is birational to X and i) = its only singular
points are w; := px(u;) = px(vi) . By i) and iii), we have that the
multiplicity of w; on px(X) is 2. Finally by iv), these two branches
have distinct tangent lines, namely px(E; x) and px(E; x) . Thus
w; is an ordinary double point. To show such an x exists, consider
T :={(x,y) € X x X — A : Xy meets X in a third point or Xy is
tangent to X at x or y} and B := {(x,y) € X x X — A: E}

-
and E; x lie in a plane} .



Showing TUB C (X x X — A)

T is the closure of {(x,y) € X x X — A : Xy meets X in a third
point} in X x X — A and coplanarity is a closed property so T and
B are algebraic. Let x € X and | := E7 . Consider the projection
pr: X — P! . Let a € P! be a point where p; is smooth and let
L:=p/ Y (a)Ul, LNX = {x,y1,..., ¥k} by Noether Normalization.
If y ¢ | and p; is smooth at y , then by dimension, we have
pI(ESx) =P . Asy; ¢ IVi, then EX o & Lso(x,y;) ¢ B . Let

¢ :{z:|z| <e} - X, ¢(0) = x, be a chart on X near x .



Consider secants y1¢(z) as z varies. Since (x,y1) ¢ B, then

(¢(2),y1) ¢ B for |z| small. If (¢(z),y1) € T for all |z| small, then

Hi,2§i§kandsequencesz,,—>0,y-(")—>y,~,y,-(”)€X,as

1

n — oo s.th. (b(zn),yl,yi(") are collinear. Then y,-y,-(") would be in

the plane y1x¢(z,) . Taking n — oo , this plane approaches the

join of y; and | = lim x¢(z,) , which is L .



Thus the line E,, x = limy{™, y; lies in L , contradicting the fact

that (x,y;) ¢ B . Thus (¢(z),y1) € X x X — A — B —T for |Z]
small. Let C be as in Step 1la, C*:= CN[(AUBUT) x P3] , and
S*:=m3(C*) . Then C* is algebraic with all components having
dimension < 2, and so the same for S* . Thus choose x ¢ S* to

satisfy i) - iv).



Inflexion Points

Definition : If x € X is a smooth point, we say x is an inflexion
point if i(x; X N E; x) >3 .

Proposition 1 : 1) If f(Xp, X1, X2) = 0 is the equation of X , then
{inflexion points} = (X—Sing X) N {zeroes of H = det( 8)?2(9fX )}
2) If X is described analytically in affine coordinates near a point P
by Xo = f(X1) , then {inflexion points near P} = {points (a, f(a))

where f”(a) =0} .



Proof : 1) As the Hessian transforms like a quadratic form under
change of coordinates, the zeroes of H are unchanged. Then
choose coordinates s.th. x = (1,0,0) € X is a smooth point and
Exx = V(X1). Then f = aXoX§ ™ + BXZXS 2 + v Xi Xo X§ 2+
SXZXE ™2 + (terms with X1, Xz to powers > 2) as f(x) = 0. Then
H(x) = —2(d — 1)?a28. If a = 0, then the Jacobian of f at x is

zero, but x is a smooth point. Thus o # 0 so H(x) = 0 iff 3 = 0.



We have X N Ef x = zeroes of f(Xo, 0, Xa2) = zeroes of BX;X;I_Q
+(terms with X5 to power > 2). Thus 8 = 0iff i(x; XN E] x) > 2.
2) This is a fact in undergraduate calculus. W

Corollary 2 : If deg X > 1, then X has only finitely many inflexion
points.

Proof : Since X is not a line, f” # 0 so by 2), not every point is
an inflexion point. By 1), the set of inflexion points is algebraic, so

its components have dimension < dimX =1. &



Step 1c: Projection X to P!

By Step 1b, we may assume X C P? is smooth except for finitely
many ordinary double points. Choose x € P2 s.th. x ¢

U{yEX:y a point of inflexion or a singular point} E;,X U X . Consider

px : X — P If y € X is smooth and x ¢ E;X , then p, is smooth
at y. If y is a double point, by choice of x , pyx is smooth on each
branch. If y is smooth and x € Ey*X , v is not a point of inflexion.

Thus 2 =i(y; XN EJ ) =i(y; XN px t(px(y))) = mult, (resx px).

Hence y is an ordinary branch point. By Cor. 5.6, degp; = d .



Step 2a: go(X) =2(d —1)(d —2) — ¢

By Step 1, we have pp : X — X' := po(X) = V(F) for some
polynomial F and X’ is smooth everywhere except at the

wi, 1<i<d. Then X —{u1,v1,..., us, vs} and X'—

{w1, ..., ws} correspond biregularly. Thus for x € X — {u1, ..., vs}
and X' := po(x) , we can say O, x = Oy x/ by identifying C(X)

with C(X").



Local Ring of w;

Lemma3: O, x ={ac O, xN0O,x:a(u)=ao(v)}

Proof : Let Y, Z be affine coordinates in P? s.th. w; = (0,0) and
the affine equation of F is of the form F = YZ + higher order
terms. This is possible as the branches meet transversely. Recall
that Vn, Vf € OW,.7[F>2 , we have an expansion f = Zi+j<n c,-jY"Zj
+ (remainder in ‘,JJT’JVI,PQ) (%) where 9, po is the maximal ideal in
O, p2 - Modulo F , we then have f = a + Syl

Py ! ¢;Z' + (remainder in Sﬁ'v’vhw).



As an analytic set near w;, X’ is the union of 2 smooth branches
with tangent lines Y =0 and Z =0 . On the branch with tangent
line Y =0, Z vanishes to 1st order and Y to higher order.
Suppose this branch corresponds to a neighborhood of u;j on X .
Then Z o py vanishes to 1st order at u; and Y o py vanishes to
higher order. The opposite at v; . Thus Vf € 9, x N9M,, x , we
have an expansion f = 7" b Y + S ¢; 7'+ (remainder

vanishing to order n at u; and v;) (xx).



Let f € Oy, x N Oy, x s.th. f(u;) =f(v;) =0 . Write f = g/h
where g, h € O,, x/ . Expanding f as in (xx), we have f =
fa(Y,Z) + R, where f, is a polynomial of degree n — 1 and R,
vanishes to order n at u; and v;. Then g = hf, + hR,. As g, hf, €
Ow, x' , so is hR, . Expanding hR, as in (), we have a = b; =

¢; = 0 Vi else hR,, would not vanish to order n at u; and v; . Thus
hR, € E)ﬁ’;vi’x,. Thus Vn, g € hO,, x/ +57)23th, . Then by Krull,

g € hOy, x» so f € Oy, x. The other direction is by definition. H



Continuing Proof of Step 2a

Consider R := C[Xo, X1, X2]/(F) € R := C[Xo, ..., X¢]/1(X) .
WLOG, assume X;(w;) #0,i=0,1,2,j=1,....,6 . Yk , consider
the sequence 0 — R} % R = 290_, C — 0 where off) =

(..., Xiok(u,-) - Xiok(v,-), ..). ByLemma3, aot=0.1fk>0,

3 hypersurfaces H; = V(G;) s.th. uj,v; € H; Vj # i, u; ¢ H;, and
vi € H; . Then a(G;) = c-(ith unit vector), so « is surjective. As
p> is birational, R and R’ have the same fraction field. Then by

the next lemma and Prop. 6.11, the sequence will be exact.



Lemma 4 : Yk and VG € Ry s.th. a(G) =0, 3n s.th.
X{G,X[G, X3G e R.

Proof : It suffices to show X§G € R’ by symmetry. Consider the
affine rings S’ := C[XO, Xo]/(Xd) CS:= (C[ o %]//(X) Then
it suffices to show if g € S is s.th. g(u;) = g(v;) Vi , then g € S’ .
By Proposition 1.11, § = (e x.xg v(xo)1 Ox.x and S =
ﬂ{xeX/:xng(Xo)} Oy, x' . Then the result follows from Lemma 3 and

biregularity of p, . B



Thus we have the sequence to be exact for k > 0. We have
Px (k) = dim Ry

= dim R} +dimY?_, C

= dim[C[Xo, X1, X2]/(F)]x + ¢

= dim C[Xp, X1, Xo]x — dim F - C[Xo, X1, X2]k—q + I

= () - () +0

=kd +1—3(d—1)(d —2)+34.

Thus g,(X) = 3(d —1)(d — 2) — 6.



Step 2b: d(d —1) =5 +29

Let Xp, X1, Xo be the coordinates of P? | Xy, Xi be the coordinates
in P! and py : P2 — {x} — P! be the projection. Let F be the
equation of pa(X) . Consider the curve Y defined by 9F /0Xy =0 .
As degY =d — 1, by Bezout, deg(Y - p2(X)) =d(d—1) . To
prove d(d — 1) = 20 + [, it suffices to show:

i) Y N p2(X) = (double points of po(X) and branch points of py) ;
ii) at each double point y , i(y; Y N pa(X)) =2 ;

i) at each branch point y , i(y; Y Np2(X))=1.



Step 2bi)

We have py(X) covered by affine pieces X1 # 0 and X, # 0 so
look in the first piece and let u = Xy/ X1, v = X5/ Xy be affine
coordinates. Then py is the projection of the (u, v)-plane to the
u-line, pa(X) has affine equation f(u,v) := F(u,1,v) and Y has
affine equation g—)g(u, 1,v) =90f/0u . Then Yy € pa(X), %(y)
# 0 iff y is a smooth point of pa(X) and E;,pz(X) projects onto the

u-line so i) follows.



Step 2bii)

If y is a double point and coordinates (u, v) are chosen with

= (0,0) , then because neither branch of px(X) at y is parallel to
the v-axis, f = (au+ bv)(cu + dv) + deg > 3 terms, ad — bc # 0 ,
a#0,c#0so % = 2acu + (ad + bc)v + (deg > 2 terms). As
ad — bc # 0, we have 24tb< = b /3 or d/c. Then y is a smooth

point for Y with tangent line unequal to either tangent line to

p2(X) at y so ii) follows.



Step 2biii)

If y is a branch point of p, : po(X) — P!, and coordinates (u, v)
are chosen s.th. y = (0,0) , then as y is smooth and the branching
is ordinary, we have f = av + bu? + cuv + dv? + (deg > 3 terms),
a#0,b#0so0 %:2bu+cv+(deg22terms). Thus y is a
smooth point of Y . Also, Y and p2(X) meet transversely at y ,

proving iii).



Step 2c: e(X) =2d — f3

Consider the covering p; : X — P! . Let xq, ...,xg € X be the
branch points of p; and let t; = p1(x;) . Triangulate P! s.th. the t;
are vertices. Take all points of X over vertices of P! to be vertices
of X. For all edges f : A — P! in the triangulation, the covering
X is unramified over f(Int(Al)) . Since Int(Al) is simply
connected, f lifts to d distinct maps ﬁ)(i) - Int(Al) — X with

disjoint images. As p; : X — P! is proper, we can extend the fé”

to maps ()ALl 5 X lifting f .



Let these be the edges of X and repeat the process for faces to
have a triangulation of X. Suppose P! has sp vertices, s; edges,
and s, faces, so X has ds; edges and ds, faces. Among the dsy
potential vertices of X over the t; , 8 are branch points so there are
dsg — 3 vertices. Thus

e(X) = (dsp — ) — (ds1) + (ds2)

=d(ss—s1+s)—p

= d(e(P')) - 8 =2d - B.



