Hirzebruch-Riemann-Roch Theorem in Dimension One via Mumford

September 13, 2016

The HRR Theorem

In all slides, X denotes a smooth complex projective curve in \mathbb{P}^r . **Definition :** Let P_X be the Hilbert polynomial associated with X. The arithmetic genus of X is $g_a(X) := (-1)(P_X(0) - 1)$. **HRR Theorem :** If g is the top. genus of X , then $g_a(X) = g$. **Notation :** Let e(X) be the Euler characteristic of X and d :=deg X . For all $x \in X$, $E^*_{x,X}$ is the tangent cone at x . For a linear space L and $x \in X \cap L$, $i(x; X \cap L)$ is the intersection multiplicity. For a linear space L or point x , let p_L , resp. p_x , denote the projection with center L, resp. $\{x\}$.

Idea of Proof

Step 1 : Consider projections $p_k := p_L : X \to \mathbb{P}^k$ where *L* is of

dimension r - k - 1 and disjoint from X.

Claim : For a.e. L ,

a) if $k \ge 3$, then $p_k(X)$ is birational to X and is smooth;

b) if k = 2, then $p_2(X)$ is birational to X and smooth except for

finitely many ordinary double points;

c) if k=1 , then $p_1:X o \mathbb{P}^1$ is a covering of degree d and

smooth except for finitely many ordinary branch points.

Step 2 : If $p_2(X)$ has δ double points and p_1 has β branch points,

then:

a)
$$g_a(X) = \frac{1}{2}(d-1)(d-2) - \delta$$
;
b) $d(d-1) = \beta + 2\delta$;
c) $e(X) = 2d - \beta$.

As smooth curves are compact oriented 2-manifolds, we have

e(X)=2-2g . Then using these four formulas, we find that $g_{a}(X)=g \ .$

Step 1a: Projecting X to \mathbb{P}^3

We first show if r>3 , then for a.e. $x\in \mathbb{P}^r\setminus X$, $p_x(X)$ is birational to X and smooth. It suffices to find an x s.th. $\forall u \in X$, $\overline{ux} \cap X = \{u\}$ and $\overline{ux} \neq E^*_{u,X}$. If so, then $p_x : X \to p_x(X)$ is bijective, hence birational, and by Corollaries 5.14 and 5.15, $p_x(X)$ would be smooth. To find such an x , it suffices for $x \notin S :=$ $[\bigcup_{u \neq v} \cdots \cup_{u \in X} \overline{uv}] \cup [\bigcup_{u \in X} E^*_{u,X}]$. It now suffices to show S is a variety of dimension ≤ 3 as r > 3.

Let $C := \{(x, y, z) \in X \times X \times \mathbb{P}^r : \text{if } x \neq y \text{, then } z \in \overline{xy} \text{ ; if } z = \overline{xy} \text{ ; if } z = \overline{xy} \text{ ; if } z \text{, then } z \in \overline{xy} \text{ ; if } z = \overline{xy} \text{ ; if } z = \overline{xy} \text{ ; if } z \text{, then } z \in \overline{xy} \text{ ; if } z = \overline{xy} \text{ ;$ x = y , then $z \in E^*_{x,X}$. C is the closure of $C \cap ((X imes X - \Delta) imes \mathbb{P}^r)$ in the classical topology: if x_n , $y_n \to x$ as $n \to \infty$, then $\overline{x_n y_n} \to E^*_{x X}$. Thus C is algebraic. Let $\pi_{12}: C \to X \times X$ and $\pi_3: \mathcal{C} \to \mathbb{P}^r$ be the natural projections. By definition of \mathcal{C} , the fibres of π_{12} are lines, so irreducible 1-dimensional. As $X \times X$ is irreducible 2-dimensional, then C is irreducible 3-dimensional. As $S = p_3(C)$, then S is irreducible and \leq 3-dimensional.

Step 1b: Projecting X to \mathbb{P}^2

By Step 1a, we may assume $X \subseteq \mathbb{P}^3$.

Definition : For $x, y \in X$, \overline{xy} is a tri-secant of X if \overline{xy} meets X

in a third point or \overline{xy} is tangent to X at x or y.

To prove Step 1b, It suffices to find $x \in \mathbb{P}^3$ s.th.

i) $x \notin \bigcup_{u \in X} E^*_{u,X}$;

ii) x is in only finitely many secants $\overline{u_i v_i}$ of X , $1 \le i \le \nu$;

iii) $\forall i$, $\overline{u_i v_i}$ is not a tri-secant of X ;

iv) $\forall i$, the planes $\overline{x, E^*_{u_i, X}}$ and $\overline{x, E^*_{v_i, X}}$ are distinct.

If so, then ii) $\Rightarrow p_x(X)$ is birational to X and i) \Rightarrow its only singular points are $w_i := p_x(u_i) = p_x(v_i)$. By i) and iii), we have that the multiplicity of w_i on $p_x(X)$ is 2. Finally by iv), these two branches have distinct tangent lines, namely $p_x(E^*_{\mu,X})$ and $p_x(E^*_{\nu,X})$. Thus w_i is an ordinary double point. To show such an x exists, consider $\mathcal{T} := \{(x, y) \in X \times X - \Delta : \overline{xy} \text{ meets } X \text{ in a third point or } \overline{xy} \text{ is} \}$ tangent to X at x or y} and $B := \{(x, y) \in X \times X - \Delta : E^*_{\mathsf{v}} \mathsf{v}\}$ and $E_{v,X}^*$ lie in a plane $\}$.

Showing $T \cup B \subsetneq (X \times X - \Delta)$

T is the closure of $\{(x, y) \in X \times X - \Delta : \overline{xy} \text{ meets } X \text{ in a third} \}$ point} in $X \times X - \Delta$ and coplanarity is a closed property so T and B are algebraic. Let $x \in X$ and $I := E^*_{x,X}$. Consider the projection $p_l: X \to \mathbb{P}^1$. Let $\alpha \in \mathbb{P}^1$ be a point where p_l is smooth and let $L := p_{\iota}^{-1}(\alpha) \cup I$, $L \cap X = \{x, y_1, ..., y_k\}$ by Noether Normalization. If $y \notin I$ and p_I is smooth at y, then by dimension, we have $p_l(E^*_{v,X}) = \mathbb{P}^1$. As $y_i \notin I \ \forall i$, then $E^*_{v,X} \nsubseteq L$ so $(x, y_i) \notin B$. Let $\phi: \{z: |z| < \epsilon\}
ightarrow X$, $\phi(0) = x$, be a chart on X near x .

Consider secants $y_1\phi(z)$ as z varies. Since $(x, y_1) \notin B$, then $(\phi(z), y_1) \notin B$ for |z| small. If $(\phi(z), y_1) \in T$ for all |z| small, then $\exists i$, $2 \leq i \leq k$ and sequences $z_n
ightarrow 0$, $y_i^{(n)}
ightarrow y_i$, $y_i^{(n)} \in X$, as $n \to \infty$ s.th. $\phi(z_n), y_1, y_i^{(n)}$ are collinear. Then $y_i y_i^{(n)}$ would be in the plane $\overline{y_1 x \phi(z_n)}$. Taking $n \to \infty$, this plane approaches the join of y_1 and $l = \lim x \phi(z_n)$, which is L.

Thus the line $E_{y_i,X} = \lim \overline{y_i^{(n)}, y_i}$ lies in L, contradicting the fact that $(x, y_i) \notin B$. Thus $(\phi(z), y_1) \in X \times X - \Delta - B - T$ for |z|small. Let C be as in Step 1a, $C^* := C \cap [(\Delta \cup B \cup T) \times \mathbb{P}^3]$, and $S^* := \pi_3(C^*)$. Then C^* is algebraic with all components having dimension ≤ 2 , and so the same for S^* . Thus choose $x \notin S^*$ to satisfy i) - iv).

Inflexion Points

Definition : If $x \in X$ is a smooth point, we say x is an inflexion

point if $i(x; X \cap E^*_{x,X}) \geq 3$.

Proposition 1 : 1) If $f(X_0, X_1, X_2) = 0$ is the equation of X, then

$$\{\text{inflexion points}\} = (X - \text{Sing } X) \cap \{\text{zeroes of } H = \det(\frac{\partial^2 f}{\partial X_i \partial X_j})\};$$

2) If X is described analytically in affine coordinates near a point P

by $X_2 = f(X_1)$, then {inflexion points near P} = {points (a, f(a))where f''(a) = 0}.

Proof: 1) As the Hessian transforms like a quadratic form under change of coordinates, the zeroes of H are unchanged. Then choose coordinates s.th. $x = (1, 0, 0) \in X$ is a smooth point and $E_{x,X}^* = V(X_1)$. Then $f = \alpha X_1 X_0^{d-1} + \beta X_2^2 X_0^{d-2} + \gamma X_1 X_2 X_0^{d-2} + \gamma X_1 X_2 X_0^{d-2}$ $\delta X_1^2 X_0^{d-2} + (\text{terms with } X_1, X_2 \text{ to powers} > 2) \text{ as } f(x) = 0.$ Then $H(x) = -2(d-1)^2 \alpha^2 \beta$. If $\alpha = 0$, then the Jacobian of f at x is

zero, but x is a smooth point. Thus $\alpha \neq 0$ so H(x) = 0 iff $\beta = 0$.

We have $X \cap E_{x,X}^* = \text{zeroes of } f(X_0, 0, X_2) = \text{zeroes of } \beta X_2^2 X_0^{d-2}$ +(terms with X_2 to power > 2). Thus $\beta = 0$ iff $i(x; X \cap E_{x,X}^*) > 2$. 2) This is a fact in undergraduate calculus. **Corollary 2 :** If deg X > 1, then X has only finitely many inflexion

points.

Proof : Since X is not a line, $f'' \neq 0$ so by 2), not every point is

an inflexion point. By 1), the set of inflexion points is algebraic, so

its components have dimension $< \dim X = 1$.

Step 1c: Projection X to \mathbb{P}^1

By Step 1b, we may assume $X \subseteq \mathbb{P}^2$ is smooth except for finitely many ordinary double points. Choose $x \in \mathbb{P}^2$ s.th. $x \notin$ $\bigcup_{\{y\in X: y \text{ a point of inflexion or a singular point}\}} E^*_{v,X} \cup X$. Consider $p_x: X \to \mathbb{P}^1$. If $y \in X$ is smooth and $x \notin E^*_{y,X}$, then p_x is smooth at y. If y is a double point, by choice of x, p_x is smooth on each branch. If y is smooth and $x \in E^*_{v,X}$, y is not a point of inflexion. Thus $2 = i(y; X \cap E_{y,X}^*) = i(y; X \cap p_X^{-1}(p_X(y))) = \text{mult}_y(\text{res}_X p_X).$ Hence y is an ordinary branch point. By Cor. 5.6, deg $p_1 = d$.

Step 2a:
$$g_a(X) = \frac{1}{2}(d-1)(d-2) - \delta$$

By Step 1, we have $p_2: X \to X' := p_2(X) = V(F)$ for some polynomial F and X' is smooth everywhere except at the w_i , $1 \leq i \leq \delta$. Then $X - \{u_1, v_1, ..., u_{\delta}, v_{\delta}\}$ and $X' - \{u_1, v_1, ..., u_{\delta}, v_{\delta}\}$ $\{w_1, ..., w_{\delta}\}$ correspond biregularly. Thus for $x \in X - \{u_1, ..., v_{\delta}\}$ and $x' := p_2(x)$, we can say $\mathcal{O}_{x,X} = \mathcal{O}_{x',X'}$ by identifying $\mathbb{C}(X)$ with $\mathbb{C}(X')$.

Local Ring of w_i

Lemma 3 : $\mathcal{O}_{w_i,X'} = \{ \alpha \in \mathcal{O}_{u_i,X} \cap \mathcal{O}_{v_i,X} : \alpha(u_i) = \alpha(v_i) \}$ **Proof**: Let Y, Z be affine coordinates in \mathbb{P}^2 s.th. $w_i = (0, 0)$ and the affine equation of F is of the form F = YZ + higher order terms. This is possible as the branches meet transversely. Recall that $\forall n, \forall f \in \mathcal{O}_{w_i, \mathbb{P}^2}$, we have an expansion $f = \sum_{i+i < n} c_{ij} Y^i Z^j$ + (remainder in $\mathfrak{M}^n_{w_i,\mathbb{P}^2}$) (*) where $\mathfrak{M}_{w_i,\mathbb{P}^2}$ is the maximal ideal in $\mathcal{O}_{\mathsf{w}_i,\mathbb{P}^2}$. Modulo ${\sf F}$, we then have $f=\mathsf{a}+\sum_{i=1}^{n-1}b_iY^i$ + $\sum_{i=1}^{n-1} c_i Z^i$ + (remainder in $\mathfrak{M}^n_{w:\mathbb{P}^2}$).

As an analytic set near w_i , X' is the union of 2 smooth branches with tangent lines Y = 0 and Z = 0. On the branch with tangent line Y = 0, Z vanishes to 1st order and Y to higher order. Suppose this branch corresponds to a neighborhood of u_i on X. Then $Z \circ p_2$ vanishes to 1st order at u_i and $Y \circ p_2$ vanishes to higher order. The opposite at v_i . Thus $\forall f \in \mathfrak{M}_{u_i,X} \cap \mathfrak{M}_{v_i,X}$, we have an expansion $f = \sum_{i=1}^{n-1} b_i Y^i + \sum_{i=1}^{n-1} c_i Z^i + (\text{remainder})$ vanishing to order *n* at u_i and v_i) (**).

Let $f \in \mathcal{O}_{u_i,X} \cap \mathcal{O}_{v_i,X}$ s.th. $f(u_i) = f(v_i) = 0$. Write f = g/hwhere $g, h \in \mathcal{O}_{w_i, X'}$. Expanding f as in (**), we have f = $f_n(Y,Z) + R_n$ where f_n is a polynomial of degree n-1 and R_n vanishes to order *n* at u_i and v_i . Then $g = hf_n + hR_n$. As $g, hf_n \in$ $\mathcal{O}_{w_i,X'}$, so is hR_n . Expanding hR_n as in (*), we have $a = b_i = b_i$ $c_i = 0 \forall i$ else hR_n would not vanish to order n at u_i and v_i . Thus $hR_n \in \mathfrak{M}^n_{w_i, X'}$. Thus $\forall n$, $g \in h\mathcal{O}_{w_i, X'} + \mathfrak{M}^n_{w_i, X'}$. Then by Krull, $g \in h\mathcal{O}_{w_i,X'}$ so $f \in \mathcal{O}_{w_i,X'}$. The other direction is by definition.

Continuing Proof of Step 2a

Consider $R' := \mathbb{C}[X_0, X_1, X_2]/(F) \subseteq R := \mathbb{C}[X_0, ..., X_r]/I(X)$. WLOG, assume $X_i(w_i) \neq 0, i = 0, 1, 2, j = 1, ..., \delta$. $\forall k$, consider the sequence $0 \to R'_k \xrightarrow{\iota} R_k \xrightarrow{\alpha} \sum_{i=1}^{\delta} \mathbb{C} \to 0$ where $\alpha(f) =$ $(..., \frac{f}{X_{k}^{k}}(u_{i}) - \frac{f}{X_{k}^{k}}(v_{i}), ...)$. By Lemma 3, $\alpha \circ \iota = 0$. If $k \gg 0$, \exists hypersurfaces $H_i = V(G_i)$ s.th. $u_i, v_i \in H_i \ \forall j \neq i, u_i \notin H_i$, and $v_i \in H_i$. Then $\alpha(G_i) = c \cdot (i$ th unit vector), so α is surjective. As p_2 is birational, R and R' have the same fraction field. Then by the next lemma and Prop. 6.11, the sequence will be exact.

Lemma 4 : $\forall k \text{ and } \forall G \in R_k \text{ s.th. } \alpha(G) = 0$, $\exists n \text{ s.th.}$ $X_0^n G, X_1^n G, X_2^n G \in R'$. Proof : It suffices to show $X_0^n G \in R'$ by symmetry. Consider the

affine rings $S' := \mathbb{C}[\frac{X_1}{X_0}, \frac{X_2}{X_0}] / (\frac{F}{X_0^d}) \subseteq S := \mathbb{C}[\frac{X_1}{X_0}, ..., \frac{X_r}{X_0}] / I(X)$. Then

it suffices to show if $g \in S$ is s.th. $g(u_i) = g(v_i) \; orall i$, then $g \in S'$.

By Proposition 1.11,
$$S = \bigcap_{\{x \in X: x \notin V(X_0)\}} \mathcal{O}_{x,X}$$
 and $S' =$

 $\bigcap_{\{x \in X': x \notin V(X_0)\}} \mathcal{O}_{x,X'}$. Then the result follows from Lemma 3 and biregularity of p_2 .

Thus we have the sequence to be exact for $k \gg 0$. We have

$$P_X(k) = \dim R_k$$

= dim R'_k + dim $\sum_{i=1}^{\delta} \mathbb{C}$
= dim $[\mathbb{C}[X_0, X_1, X_2]/(F)]_k + \delta$
= dim $\mathbb{C}[X_0, X_1, X_2]_k - \dim F \cdot \mathbb{C}[X_0, X_1, X_2]_{k-d} + \delta$
= $\binom{k+2}{2} - \binom{k-d+2}{2} + \delta$
= $kd + 1 - \frac{1}{2}(d-1)(d-2) + \delta$.
Thus $g_a(X) = \frac{1}{2}(d-1)(d-2) - \delta$.

Step 2b: $d(d-1) = \beta + 2\delta$

Let X_0, X_1, X_2 be the coordinates of \mathbb{P}^2 , X_0, X_1 be the coordinates in \mathbb{P}^1 and $p_x: \mathbb{P}^2 - \{x\} \to \mathbb{P}^1$ be the projection. Let F be the equation of $p_2(X)$. Consider the curve Y defined by $\partial F/\partial X_0 = 0$. As deg Y = d - 1, by Bezout, deg $(Y \cdot p_2(X)) = d(d - 1)$. To prove $d(d-1) = 2\delta + \beta$, it suffices to show: i) $Y \cap p_2(X) = ($ double points of $p_2(X)$ and branch points of $p_x)$; ii) at each double point y, $i(y; Y \cap p_2(X)) = 2$; iii) at each branch point y, $i(y; Y \cap p_2(X)) = 1$.

Step 2bi)

We have $p_2(X)$ covered by affine pieces $X_1 \neq 0$ and $X_2 \neq 0$ so look in the first piece and let $u = X_0/X_1$, $v = X_2/X_1$ be affine coordinates. Then p_x is the projection of the (u, v)-plane to the u-line, $p_2(X)$ has affine equation f(u, v) := F(u, 1, v) and Y has affine equation $\frac{\partial F}{\partial X_0}(u, 1, v) = \partial f / \partial u$. Then $\forall y \in p_2(X)$, $\frac{\partial f}{\partial u}(y)$ $\neq 0$ iff y is a smooth point of $p_2(X)$ and $E^*_{y,p_2(X)}$ projects onto the *u*-line so i) follows.

Step 2bii)

If y is a double point and coordinates (u, v) are chosen with y = (0,0), then because neither branch of $p_2(X)$ at y is parallel to the v-axis, $f = (au + bv)(cu + dv) + \text{deg} \ge 3$ terms, $ad - bc \ne 0$, $a \neq 0$, $c \neq 0$ so $\frac{\partial f}{\partial u} = 2acu + (ad + bc)v + (deg \geq 2 \text{ terms})$. As $ad - bc \neq 0$, we have $\frac{ad+bc}{2ac} \neq b/a$ or d/c. Then y is a smooth point for Y with tangent line unequal to either tangent line to $p_2(X)$ at y so ii) follows.

Step 2biii)

If y is a branch point of $p_x: p_2(X) \to \mathbb{P}^1$, and coordinates (u, v)are chosen s.th. y = (0,0), then as y is smooth and the branching is ordinary, we have $f = av + bu^2 + cuv + dv^2 + (deg \ge 3 \text{ terms})$, $a \neq 0$, $b \neq 0$ so $\frac{\partial f}{\partial u} = 2bu + cv + (\text{deg} \ge 2 \text{ terms})$. Thus y is a smooth point of Y. Also, Y and $p_2(X)$ meet transversely at y, proving iii).

Step 2c: $e(X) = 2d - \beta$

Consider the covering $p_1: X \to \mathbb{P}^1$. Let $x_1, ..., x_\beta \in X$ be the branch points of p_1 and let $t_i = p_1(x_i)$. Triangulate \mathbb{P}^1 s.th. the t_i are vertices. Take all points of X over vertices of \mathbb{P}^1 to be vertices of X. For all edges $f : \Delta^1 \to \mathbb{P}^1$ in the triangulation, the covering X is unramified over $f(Int(\Delta^1))$. Since $Int(\Delta^1)$ is simply connected, f lifts to d distinct maps $f_{\Omega}^{(i)}$: $Int(\Delta^1) \rightarrow X$ with disjoint images. As $p_1:X o \mathbb{P}^1$ is proper, we can extend the $f_n^{(i)}$ to maps $f^{(i)}: \Delta^1 \to X$ lifting f.

Let these be the edges of X and repeat the process for faces to have a triangulation of X. Suppose \mathbb{P}^1 has s_0 vertices, s_1 edges, and s_2 faces, so X has ds_1 edges and ds_2 faces. Among the ds_0 potential vertices of X over the t_i , β are branch points so there are $ds_0 - \beta$ vertices. Thus

$$e(X)=(ds_0-\beta)-(ds_1)+(ds_2)$$

$$= d(s_0 - s_1 + s_2) - \beta$$

 $= d(e(\mathbb{P}^1)) - \beta = 2d - \beta.$