C-infinity Preparation Theorem

OMAR RAMMO

University of Toronto Department of Mathematics

March 5, 2010

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ の < @

1. C^{∞} Preparation and Division Theorems

All functions below are C^{∞} near 0 with $x \in \mathbb{R}^n$ and $t \in \mathbb{R}$

Prep Thm: $f(x, t)_{x=0} = t^d h(t), h(0) \neq 0 \implies \exists q_f \text{ and } \lambda_i \text{ s.th.}$ $\lambda_i(0) = 0, \ q_f(0) \neq 0, \ f(x,t) = P^d(t,\lambda) \cdot (q_f(x,t))$ where $P^{d}(t,\lambda) = t^{d} + \sum_{i=1}^{d} \lambda_{i}(x)t^{d-i}$ **Div Thm**: $\forall f(x, t), d \in \mathbb{N}, \lambda \in \mathbb{R}^d \implies \exists Q_f \text{ and } r_{i,f} \text{ s.th.}$ $f(x,t) = P^{d}(t,\lambda) \cdot Q_{f}(x,t,\lambda) + \sum_{i=1}^{d} r_{i,f}(x,\lambda)t^{d-j}(\star)$ Div Thm \Rightarrow Prep Thm: solve $r_{i,f}(x, f(x)) = 0$ and $\lambda_i(0) = 0 \forall i$

2. Proof (Via Implicit Function Theorem)

Show 1. (i)
$$r_{i,f}(0,0) = 0$$
 (ii) $Q_f(0,0,0) \neq 0$ and

2.
$$D = det(\frac{\partial r_{i,f}}{\partial \lambda_j})_{1 \le i,j \le d} \neq 0$$

1. (i) Set x = 0, $\lambda = 0$ and compare orders of vanishing in t at 0.

$$f(0,t) = t^d h(t) \Rightarrow r_{j,f}(0,0) = 0 \ \forall j \text{ and } Q_f(0,t,0) = h(t)$$

$$\Rightarrow Q_f(0,0,0) = h(0) \neq 0$$

(ii) Apply $\left[\frac{\partial}{\partial \lambda_j}\right]_{x=0,\lambda=0}$ to (*) \Rightarrow upper triangular matrix with

diagonal entries= $Q_f(0,0,0) \Rightarrow D \neq 0$, Done.

3. Reduction of Division Theorem to Thm 1

 $V^d := \{(t,\lambda) : P^d(t,\lambda) = 0\}; \pi_d : V^d \ni (t,\lambda) \longmapsto \lambda \in \mathbb{R}^d$ Def: Let $C^{\infty}_{\pi}(V^d \times \mathbb{R}^n)$ be the subspace of $C^{\infty}(V^d \times \mathbb{R}^n)$ consisting of all functions constant on the fibers $\pi_d^{-1}(\lambda)$. **Theorem 1**: $\exists J : C^{\infty}_{\pi}(V^d \times \mathbb{R}^n) \longrightarrow C^{\infty}(\mathbb{R}^{d+n})$ s.th. $\forall (t,\lambda) \in V^d$, $x \in \mathbb{R}^n$: $(J\phi)(\lambda, x) = \phi(t,\lambda,x)$ Define λ^d by $P^d(z, \lambda^d(s, \mu)) = (z - s) \cdot P^{d-1}(z, \mu)$ $\implies \lambda_1 = -s + \mu_1$, $\lambda_i = -\mu_{i-1} \cdot s + \mu_i$, and $\lambda_d = -\mu_{d-1} \cdot s$ Note: $(s, \mu) \longmapsto (s, \tilde{\lambda}(s, \mu))$ is invertible change of coordinates

・ロト・西・・田・・田・・日・

4. Application: General C^{∞} Division of g(x,t) by f(x,t)

Gen. C^{∞} **Div. Thm** If f is s.th. $f(0, t) = t^d h(t)$, $h(0) \neq 0$ $\implies \exists G$ and R_j such that $g = G \cdot f + \sum_{j=1}^d R_j(x)t^{d-j}$ Proof: Prep Thm for f and Div. Thm for g with $d = d_f$ $\implies (t^d + \sum_{j=1}^d \lambda_i(x)t^{d-i}) = \frac{f(x,t)}{q_f(x,t)}$ Apply Div. Thm to g and plug in $\lambda_j = \lambda_j(x)$ from above.

$$g = f \cdot rac{Q_g(x,t,f(x))}{q_f(x,t)} + \sum_{j=1}^d r_{j,g}(x,f(x))t^{d-j}$$
 Done.

5. Proof of Thm 1 implies Div. Thm with assertion:

$$Q_f^d(t,\lambda^d(s,\mu)) = \frac{1}{t-s} \left[Q_f^{d-1}(t,\mu) - Q_f^{d-1}(s,\mu) \right] (\star\star)$$

Proof by induction on $d \ge 1$:

$$\begin{split} \underline{\text{Case } d = 1} &: f(x, t) = (t - \lambda) \cdot \frac{f(x, t) - f(x, \lambda)}{t - \lambda} + f(x, \lambda) \\ \frac{g(t) - g(0)}{t} &= \int_0^1 g'(st) ds; \ (\nabla f)(t) := \frac{f(t) - f(s)}{t - s} \\ P(t, \lambda) &:= P^d(t, \lambda) , \ P(t, \mu) := P^{d-1}(t, \mu), \ P(t, \nu) := P^{d-2}(t, \nu) \\ \text{Indexes of } \lambda^d(s, \mu) , \ \mu^{d-1}(\tau, \nu) \text{ we skip; } \tilde{\lambda} := (\lambda_1, ..., \lambda_{d-1}) \end{split}$$

6. Proof of the inductive 'step':

$$\underline{i.e.}: \text{ True for } 2, ..., d - 1 \implies \text{ for } d \ (\lambda \in \mathbb{R}^d, \ \mu \in \mathbb{R}^{d-1}, \ \nu \in \mathbb{R}^{d-2}).$$

$$P(z, \lambda(s, \mu(\tau, \nu))) = (z - s)(z - \tau) \cdot P(z, \nu)$$

$$\Rightarrow \lambda(s, \mu(\tau, \nu)) \text{ is symmetric in } (s, \tau)$$
Now, true for d-1 \Rightarrow formula ('almost' as required)
$$f(t) = \frac{Q_f^{d-1}(t, \mu) - Q_f^{d-1}(s, \mu)}{t - s} \cdot P(t, \lambda(s, \mu)) + \sum_{k=1}^d r_{k,f}(s, \mu) t^{d-k} \ (1)$$

$$(\nabla Q_f^{d-1})(t, s, \mu(\tau, \nu)) := \frac{\frac{Q_f^{d-2}(t, \nu) - Q_f^{d-2}(\tau, \nu)}{t - \tau} - \frac{Q_f^{d-2}(s, \nu) - Q_f^{d-2}(\tau, \nu)}{s - \tau}}{t - s}$$

$$\implies (\nabla Q_f^{d-1})(t, s, \mu(\tau, \nu)) = (\nabla Q_f^{d-1})(t, \tau, \mu(s, \nu))$$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶

7. Proof of the inductive 'step' (continued)

Therefore by (1) and the symmetry of $\lambda(s, \mu(\tau, \nu))$ in (s, τ) ,

$$\implies$$
 $r_{k,f}(s,\mu(\tau,
u)) = r_{k,f}(\tau,\mu(s,
u))$ for $1 \le k \le d$ (*)

Recall $(s, \mu) \longmapsto (s, \tilde{\lambda}(s, \mu))$ is invertible change of coordinates. Let $(s, \tilde{\lambda}) \longmapsto (s, \eta(s, \tilde{\lambda}))$ where $\mu = \eta(s, \tilde{\lambda})$ be the inverse.

 $(s, \tilde{\lambda})$ are global polynomial coordinates on V^d , so functions

 $\tilde{r}_{k,f}(s,\tilde{\lambda}) := r_{k,f}(s,\eta(s,\tilde{\lambda})) \text{ are on } V^d \quad (\text{and are in } C^{\infty}_{\pi}(V^d) !)$ Now, suppose $s \neq \tau$, $(s,\tilde{\lambda})$ and $(\tau,\tilde{\lambda}) \in \pi_d^{-1}(\lambda) \cap V^d$ 8. Thm 1 \implies Div. Thm (remainders $\in C^{\infty}_{\pi}(V^d)$!)

$$\exists \nu \in \mathbb{R}^{d-2} \text{ s.th. } P^d(t,\lambda) = (t-s)(t-\tau) \cdot P^{d-2}(t,\nu),$$

where $\lambda = \lambda(s,\mu(\tau,\nu))$. Symmetry of λ and $(*) \Longrightarrow$
 $\eta(s,\tilde{\lambda}) = \mu(\tau,\nu), \ \eta(\tau,\tilde{\lambda}) = \mu(s,\nu) \Longrightarrow$ remainders $\in C^{\infty}_{\pi}(V^d)$:
 $\tilde{r}_{k,f}(s,\tilde{\lambda}) = r_{k,f}(s,\mu(\tau,\nu)) = r_{k,f}(\tau,\mu(s,\nu)) = \tilde{r}_{k,f}(\tau,\tilde{\lambda})$.
Now, Thm1 \Longrightarrow $r^d_{k,f}(\lambda) = (J\tilde{r}_{k,f})(\lambda),$ where
 $r^d_{k,f}(\lambda(s,\mu)) = (J\tilde{r}_{k,f})(\lambda(s,\mu)^d_{k,f}) = \tilde{r}_{k,f}(s,\tilde{\lambda}(s,\mu)) = r_{k,f}(s,\mu)$
 $P^d(t,\lambda) = 0 \Rightarrow \lambda = \lambda(t,\mu)$ for some μ , and $(1) \Longrightarrow$
 $f(t) - \sum_{k=1}^d r^d_{k,f}(\lambda) \cdot t^{d-k} = f(t) - \sum_{k=1}^d r_{k,f}(t,\mu) \cdot t^{d-k} = 0(\diamondsuit)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

9. Completion of proof Thm 1 implies Div. Thm.

Let
$$f(t,\lambda) := f(t) - \sum_{k=1}^{d} r_{k,f}^{d}(t,\lambda) \cdot t^{d-k}$$

Applying change of coordinates: $(t, \lambda) \longmapsto (t, \tilde{\lambda}, P^d(t, \lambda))$ gives in new coordinates $\phi(t, \tilde{\lambda}, p) := f(t; \tilde{\lambda}; p - t^d - \sum_{k=1}^d \lambda_k \cdot t^{d-k})$ $(\diamondsuit) \Rightarrow \phi(t, \tilde{\lambda}, 0) = 0$. Therefore, $\phi(t, \tilde{\lambda}, p)$ is divisible by p, and $f(t,\lambda)$ is divisible by $P^d(t,\lambda) \Longrightarrow (\star)$. Now, (1) with $P^d(t, \lambda(s, \mu)) \neq 0 \Longrightarrow (\star\star)$ (i.e. extra assertion) Abusing notation, I'll skip indicating dependence on parameter x:

10. Sketch of Proof of Thm 1, i.e. $J\phi \in C^{\infty}(\mathbb{R}^d)_{{\restriction_{v^d}}}$

$$\pi_d: V^d \to \mathbb{R}^d$$
 is proper and local diffeomorphism on set
 $U := \{(t, \lambda) \in V^d : \frac{\partial P(t, \lambda)}{\partial t} \neq 0\} \Longrightarrow J\phi \in C^{\infty}(\tilde{U}) , \tilde{U} := \pi_d(U) .$

Plan: Show all derivatives $D^{\alpha}J\phi$ extend to $\pi_d(V^d)$ as C^0 via proving by induction on $|\alpha|$ that $(D^{\alpha}J\phi) \circ \pi_d \in C^{\infty}(V^d)$. Suffices to show: **1**. $J\phi \in C^1(\pi_d(V^d))$ **2**. $(d_\lambda J\phi) \circ \pi_d \in C^\infty(V^d)$. Note: $\pi_{2k+1}(V^{2k+1}) = \mathbb{R}^{2k+1}$, and $\mathbb{R}^{2k} \setminus \pi_{2k}(V^{2k})$ is convex, $k \in \mathbb{N}$ \implies would follow by Whitney C^{∞} -Extention Thm. that $J\phi$ extends to \mathbb{R}^d as a C^{∞} function, as required.

11. Proofs of 1. and 2.

$$\begin{split} \psi(t,\tilde{\lambda}) &:= J\phi(\pi_d(t,\tilde{\lambda})) \Longrightarrow (d_{\lambda}J\phi)(\lambda) \cdot \frac{\partial(\lambda_1,...,\lambda_d)}{\partial(t,\lambda_1,...,\lambda_{d-1})} = d_{(t,\tilde{\lambda})}\psi \\ & \iff (d_{\lambda}J\phi)(\pi_d(t,\lambda)) \cdot \\ \begin{pmatrix} 0 & 1 & 0 & ... & 0 & 0 \\ 0 & 0 & 1 & ... & 0 & 0 \\ ... & ... & ... & ... & ... & ... \\ 0 & 0 & 0 & ... & 1 & 0 \\ 0 & 0 & 0 & ... & 0 & 1 \\ -\frac{\partial P(t,\lambda)}{\partial t} & -t^{d-1} & -t^{d-2} & ... & -t^2 & -t \end{pmatrix} = \begin{pmatrix} \frac{\partial \psi(t,\tilde{\lambda})}{\partial t} \\ \frac{\partial \psi(t,\tilde{\lambda})}{\partial \lambda_1} \\ ... \\ \frac{\partial \psi(t,\tilde{\lambda})}{\partial \lambda_{d-1}} \end{pmatrix} \end{split}$$

2 things to show: (i) The function $\phi^{new}(t,\lambda) := (d_{\lambda}J\phi)(\pi_d(t,\lambda))$ as a function on V^d coincides with a d-tuple of C^{∞} functions, for which solving the system above suffices to show that 12. $\frac{\partial \psi}{\partial t}(t,\tilde{\lambda})/\frac{\partial P}{\partial t}(t,\tilde{\lambda})$ is C^{∞} . With $(t,\lambda) \in V^d$:

$$\frac{\partial P(t,\lambda)}{\partial t} = 0 \Rightarrow \exists \text{ sequences } \{V^d \ni (s_{j_n},\lambda_n) \longrightarrow (t,\lambda)\}_{j=1,2}$$

with
$$s_{1n} \neq s_{2n} \Longrightarrow \frac{\partial \psi(t,\tilde{\lambda})}{\partial t} = \lim_{n \to \infty} \frac{\psi(s_{1n},\tilde{\lambda}_{(n)}) - \psi(s_{2n},\tilde{\lambda}_{(n)})}{s_{1n} - s_{2n}} = 0$$
.

Now coord change
$$(t, \lambda_1, ..., \lambda_{d-1}) \mapsto (t, \lambda_1, ..., \lambda_{d-2}, p_1 = \frac{\partial P}{\partial t})$$

and let
$$\theta(t, \lambda_1, ..., \lambda_{d-2}, p_1) := \frac{\partial}{\partial t} \psi(t, \lambda_1, ..., \lambda_{d-1})$$
. Now,

$$\theta(t, \lambda_1, ..., \lambda_{d-2}, 0) = 0 \Rightarrow \theta(t, \lambda_1, ..., \lambda_{d-2}, p_1)$$
 is divisible by p_1 ,
 $\Rightarrow \frac{\partial \psi}{\partial t}(t, \tilde{\lambda}) / \frac{\partial P}{\partial t}(t, \tilde{\lambda})$ is C^{∞} , which completes the proof of (i)

13. Pair $(J\phi, J\phi^{new})$ is a Whitney C^1 -function on \mathbb{R}^d

$$(d_{\lambda}J\phi) \circ \pi_{d}$$
 is C^{∞} on V^{d} and with π_{d} proper \Longrightarrow
 $d_{\lambda}J\phi$ extends as C^{0} from \tilde{U} to $\pi_{d}(V^{d})$, and is $J\phi^{new}$.
Let $\gamma := \{\lambda \epsilon \pi_{d}(V^{d}) : s.th. \exists a \epsilon \mathbb{R}, P^{d}(z,\lambda) = (z-a)^{d}\}$.
Claim: $(J\phi) \epsilon C^{1}(\pi_{d}(V^{d}) \setminus \gamma)$.

Proof: Induction on d using 'resultants' (details in Baxter's talk)

Consider $(t^{!}, \lambda^{!})$ s.th. $P^{d}(z, \lambda^{!}) = (z - t^{!})^{l} \cdot P^{d-l}(z, \eta^{!})$, where $l < d, t^{!} \in \mathbb{R}, \lambda^{!} \epsilon \mathbb{R}^{d}, \eta^{!} \epsilon \mathbb{R}^{d-l}$, and $P^{d-l}(t^{!}, \eta^{!}) \neq 0$

・ロト・西ト・ヨト・ヨト・ 中 ・ シック

14. Proof of Claim (induction on l < d)

$$\implies P^{d}(z,\lambda(\xi,\eta)) = P^{I}(z,\xi) \cdot P^{d-I}(z,\eta) \text{ defines the map}$$

$$(\xi,\eta) \longmapsto \lambda(\xi,\eta), \text{ a loc. diffeo. near } (\xi^{!},\eta^{!}) \text{ s.th. } P^{d-I}(t^{!},\eta^{!}) \neq 0$$
and $P^{I}(z,\xi^{!}) := (z-t^{!})^{I}$ (due to resultants theory...).
With this change of variables $(t,\xi,\eta) \longmapsto (t,\lambda(\xi,\eta))$ in
neighbourhoods of $(t^{!},\xi^{!},\eta^{!}) \in V^{I} \times \mathbb{R}^{d-I}$ and of $(t^{!},\lambda^{!}) \in V^{d}$
 $\implies P^{d-I}(t^{!},\eta^{!}) \neq 0 \implies P^{d-I}(t,\eta) \neq 0$ near $(t^{!},\eta^{!})$ and,
 $0 = P^{d}(t,\lambda(\xi,\eta)) = P^{I}(t,\xi) \cdot P^{d-I}(t,\eta) \implies P^{I}(t,\xi) = 0$.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 - の��

15. End of proof of Claim (summed up in a diagram)

$$egin{array}{cccc} V^d_{(t,\lambda)} & \longrightarrow & V'_{(t,\xi)} imes \mathbb{R}^{d-l}_\eta \ & \downarrow & \downarrow \ \mathbb{R}^d_\lambda & \longrightarrow & \mathbb{R}^l_\xi imes \mathbb{R}^{d-l}_\eta \end{array}$$

By the inductive hypothesis (l < d) claim follows.

It remains to show $J\phi\,$ is ${\cal C}^1\,$ on $\pi_d(V^d)\,$ including curve γ ,

i.e. when
$${\sf P}^d(z,\lambda)=(z-a)^d$$
 for $a\in\mathbb{R}$.

 $P^d(z, \lambda_a) := P^d((z - a), \lambda)$ defines a diffeomorphism $\lambda_a \mapsto \lambda$

 \implies Enough to prove differentiability at $0 \in \mathbb{R}^d$

16. Proof of Theorem 1 (conclusion)

Given $\lambda \in \pi_d(V^d)$, \exists smooth path connecting λ and 0 s.th.

$$\lambda(s) \in \pi_d(V^d) \setminus \gamma \ \forall s \in (0,1) \text{ with length } \leq \text{ const. } \sqrt{\sum_{k=1}^d \lambda_k^2} \ .$$

 $\lim_{s \to 1} (J\phi)(\lambda(s)) - (J\phi)(\lambda(1-s)) = \int_{1-s}^s (d_\lambda J\phi)(\lambda(\tau)) \cdot \frac{d\lambda}{d\tau}(\tau) d\tau$

$$\implies (J\phi)(\lambda) - (J\phi)(0) = \int_0^1 (d_\lambda J\phi)(\lambda(\tau)) \cdot \frac{d\lambda}{d\tau}(\tau) d\tau$$

With estimate on the length of the path differentiability of

 $(J\phi)(\lambda)$ at $\lambda = 0$ follows, which completes the proofs.