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1.C* Preparation and Division Theorems

All functions below are C*° near 0 with xeR"” and teR

Prep Thm: f(x, t)x=0 = t?h(t), h(0) # 0 = Jgr and ); s.th.
Ai(0) =0, gr(0) # 0, F(x, t) = PI(t, A) - (qr(x. 1))

where P9(t,\) = t9 + 30 \i(x)td

Div Thm: Vf(x, t), deN, AeRY — JQr and rjf s.th.

Fx,t) = PI(t, A) - Qe(x, £, A) + 200y 1.0, A4 ()

Div Thm =Prep Thm: solve r; ¢(x, f(x)) = 0 and X;(0) =0 Vi



2. Proof (Via Implicit Function Theorem)

Show 1. (i) r; ¢(0,0) = 0 (ii) Q#(0,0,0) # 0 and
8r,-
2. D= det(a—)\’f)lg,',jgd 75 0
1. (i) Set x =0, A = 0 and compare orders of vanishing in t at 0.
f(0,t) = t?h(t) =r; £(0,0) = 0 V) and Qf(0,t,0) = h(t)
. i . . .
(ii) Apply L”‘J'L:o,)\:o to (x) = upper triangular matrix with

diagonal entries= Q¢(0,0,0) = D # 0, Done.



3. Reduction of Division Theorem to Thm 1

VI = {(t,\) : P4(t,\) = 0}; mg : VI > (t,A) — AeRY

Def: Let C°(V9 x R") be the subspace of C°(V9 x R")
consisting of all functions constant on the fibers ng(/\)'
Theorem 1: 3 J: C°(V9 x R") — C°°(RY*") s.th.

Y (t,\)eV?, xeR™ (Jo)(\, x) = ¢(t, A, x)

Define A? by P9(z,A\9(s, 1)) = (z — s) - P97 1(z, 1)

== M =-s+pu1, A\j=—pj—1-s+pj,and A\g = —pg-1-$

Note: (s, 1) — (s, A(s, 1)) is invertible change of coordinates



4. Application: General C* Division of g(x,t) by f(x,t)

Gen. C*® Div. Thm If f is s.th. f(0,t) = t?h(t), h(0) #0
— 3 G and Rj such that g = G - f + S0, Ri(x)t~
Proof: Prep Thm for f and Div. Thm for g with d = df
= (t9 4+ S5, Ai()ed ) = L

Apply Div. Thm to g and plug in A; = A;j(x) from above.

g=f SN £ L e(x F()t* Done.



5. Proof of Thm 1 implies Div. Thm with assertion:

QF(t, (s, 1)) = 5 | QF (£ ) — QF (s, 1) | ()
Proof by induction on d > 1:

f(x,t)—f(x,
Case d = 1: f(x,t) = (t — A) - DO 4 (5 )y

g(f)—tg(o) _ lg’(st)ds; (VF)(t) = f(t)—f(s)

P(t,\) :== PI(t,\), P(t,p) == P9=1(t, ), P(t,v) := P9=2(t,v)

Indexes of X9(s, ) , p?=(r,v) we skip; X := (A1,..., Ag—1)



6. Proof of the inductive 'step’:

i.e. : Truefor2,....d —1=— ford ()\e]Rd, pueRI—1 VeRd_2).
P(z,\(s,u(7,v))) = (z —s)(z—7) - P(z,v)
= (s, u(,v)) is symmetric in (s, 7)

Now, true for d-1 = formula (‘almost’ as required)

d—1 _pd-1
f(e) = LT Pl A(s. 1)) + S (s, )9+ (1)

Qf ()@ (rr)  Qf *(s)-@f P(rw)
t—1 S—T

(VQIN)(t, s, u(r,v)) =

t—s

= (VQf )(ts,u(r,v)) = (VQF1)(t, 7, u(s, v))



7. Proof of the inductive 'step’ (continued)

Therefore by (1) and the symmetry of A(s, u(7,v)) in (s, 7),
= 1 (s, u(7,v)) = re(r, (s, v)) for 1 < k < d (x)

Recall (s, 1) — (s, A(s, 1)) is invertible change of coordinates.
Let (s, ) — (s,7(s, X)) where 1 = n(s, \) be the inverse.

(s, 5\) are global polynomial coordinates on V¢, so functions
(s, \) = rir(s,m(s,\)) areon V¢ (and arein CX(V9) 1)

Now, suppose s # 7, (s,A) and (1, ) € 7} (\) n v¢



8. Thm 1 = Div. Thm (remainders € C>*(V9) 1)

FveRI2 sth. PA(t, \) = (t — s)(t — 7) - P9=2(t,v),

where A = A(s, (7, v)). Symmetry of A and (x) =

n(s,A\) = pu(r,v), n(m,\) = u(s,v) = remainders € C°(V9) :
(s, \) = rie(s, p(r,v)) = e (, u(s, v)) = Fer(, \) -

Now, Thml = rd ((X) = (i r)(\), where

rd ((A(s, 1)) = (JRir)(A(s, )T ¢) = Fror (5, A(s, 1)) = riee (s, 1)
PA(t,\) =0 = X\ = \(t, ) for some y, and (1) =

F(t) — Sy i (V) 197 = F() = 20y ne(t.p) - 197 = 0(0)



9. Completion of proof Thm 1 implies Div. Thm.

Let £(£, ) = (£) = Yf_y ré (£, X) - 97K

Applying change of coordinates: (t,\) — (t, A, PA(t,\)) gives
in new coordinates ¢(t, \, p) := f(t; \;p — t4 — 320_, A - t97K)
() = é(t,A,0) = 0. Therefore, ¢(t, \, p) is divisible by p, and
f(t, \) is divisible by P9(t,\) = (%) .

Now, (1) with P9(t, A(s, 1)) # 0 = (%) (i.e. extra assertion) [J

Abusing notation, I'll skip indicating depencence on parameter x:



10. Sketch of Proof of Thm 1, i.e. Jp € C*(RY); ,

g : V9 — R is proper and local diffeomorphism on set

U= {(t.A) e vI: 2PN Loy — Jp e (D), U = mq(U) .

Plan: Show all derivatives D“J¢ extend to mg(V9) as C° via
proving by induction on |a| that (DYJ¢) o Ty € C®(VY) .
Suffices to show: 1. Jo e Cl(mg(V9)) 2. (drJg)omgeC=(VY).
Note: moxy1(V2KF1) = R2k+1 and R2k\ 7y, (V2K) is convex, keN
= would follow by Whitney C°°-Extention Thm. that

J¢ extends to RY asa C* function, as required.



11. Proofs of 1. and 2.

¥, 3) = Jo(ra(t, X)) = (hJO)(N) - pigi=ds = d, 50

= (d\J9)(ma(t, N)) -

O (t,\
0 1 0 .. 0 0 wgif)
Ip(t,\)
0 0 1 .. 0 0 e
0 0 0 .1 o |~
0 0 0 .. 0 1
__OP(t,\) _4d-1  _4d-2 —$2 ¢ ou(t,)
ot Oha—1

2 things to show: (i) The function ¢™"(t, \) := (d\J¢)(7a(t, A))
as a function on V9 coincides with a d-tuple of C* functions,

for which solving the system above suffices to show that



12. 290, 0)/2E(¢, \) is C . With (£, \) ¢ V9
ot ot

8Pg;’)‘) =0 = 3 sequences {V9 > S (Sjps An) — (£, A)}j=1,2

"Z}(Slny n)) "Z}(Sznv n)) -0

S1n~52n

OY(t,\
WD) — fim, .

with s;, # s,, =

Now coord change (t, A1,...,Ag—1) — (t, A1, ..., \g—2, p1 = P

and let O(t, A1, ..., A\g—2, p1) == Z1(t, A1, ..., Aa—1). Now,
O(t, A1, ..., Ag—2,0) =0 = O(t, A1, ..., \g—_2, p1) is divisible by p,

= %(t, X) %—f(t, X) is C>, which completes the proof of (i)



13. Pair (J¢, J¢™") is a Whitney C!-function on R

(dyJo) o mg is C* on V¥ and with 74 proper =

dyJ¢ extends as CO from U to my(V9) , and is Jp"" .

Let v := {Xemg(V9) : s.th. acR, PY(z,\) = (z — a)9} .
Claim: (Jg)eCH(mg(VI)\Y) .

Proof: Induction on d using 'resultants’ (details in Baxter's talk)
Consider (t',\') s.th. P9(z,\') = (z — t') - P9~ !(z,1") ,

where | < d, t' € R, M'eRY, n'eRI~" | and PI=/(t',n') £ 0



14. Proof of Claim (induction on / < d)

= P9(z,\(&,n)) = P!(z,€) - P9=!(z,n) defines the map

(£,m) — A(&,m), a loc. diffeo. near (¢',7') s.th. PI=!(t' ') # 0
and P/(z,¢') :== (z — t')' (due to resultants theory...).

With this change of variables (t,&,n) — (t,A\(&,7n)) in
neighbourhoods of (t',¢',n') € V! x R?~" and of (¢',\') € V¢
= PII(t' ') # 0= P9/(t,n) # 0 near (t',7') and,

0= PI(t, A& m) = P'(t,€) - P4(t,n) = PI(t,§)=0.



15. End of proof of Claim (summed up in a diagram)

Vin — Vi X BT

R{ — R xRy

By the inductive hypothesis (/ < d) claim follows.

It remains to show J¢ is C* on mg(V9) including curve 7 ,
i.e. when P9(z,\) = (z—a)d foracR.

Pd(z,\;) :== P9((z — a), \) defines a diffeomorphism \, — A

— Enough to prove differentiability at 0 € R



16. Proof of Theorem 1 (conclusion)

Given )\ € m4(V9), 3 smooth path connecting A and 0 s.th.

A(s) € mg(V9)\y Vs € (0,1) with length < const. -y/>0_; A2 .
lims—.1(JO)(A(s)) — (JO)A(L = 5)) = [i_(drJ@)(A(T)) - G (r)dT

— (J)(N) = (J)(0) = [y (hJB)(A(7)) - R (7)dT
With estimate on the length of the path differentiability of

(Jp)(A) at A =0 follows, which completes the proofs.



