C-infinity Preparation Theorem

OMAR RAMMO

University of Toronto
Department of Mathematics

March 5, 2010

1. C^{∞} Preparation and Division Theorems

All functions below are C^{∞} near 0 with $x \in \mathbb{R}^{n}$ and $t \in \mathbb{R}$
Prep Thm: $f(x, t)_{x=0}=t^{d} h(t), h(0) \neq 0 \Longrightarrow \exists q_{f}$ and λ_{i} s.th.
$\lambda_{i}(0)=0, q_{f}(0) \neq 0, f(x, t)=P^{d}(t, \lambda) \cdot\left(q_{f}(x, t)\right)$
where $P^{d}(t, \lambda)=t^{d}+\sum_{i=1}^{d} \lambda_{i}(x) t^{d-i}$
Div Thm: $\forall f(x, t), \mathrm{d} \in \mathbb{N}, \lambda \in \mathbb{R}^{d} \Longrightarrow \exists Q_{f}$ and $r_{j, f}$ s.th.
$f(x, t)=P^{d}(t, \lambda) \cdot Q_{f}(x, t, \lambda)+\sum_{j=1}^{d} r_{j, f}(x, \lambda) t^{d-j}(*)$
Div Thm \Rightarrow Prep Thm: solve $r_{i, f}(x, f(x))=0$ and $\lambda_{i}(0)=0 \forall i$

2. Proof (Via Implicit Function Theorem)

Show 1. (i) $r_{i, f}(0,0)=0$ (ii) $Q_{f}(0,0,0) \neq 0$ and
2. $D=\operatorname{det}\left(\frac{\partial r_{i, f}}{\partial \lambda_{j}}\right)_{1 \leq i, j \leq d} \neq 0$

1. (i) Set $x=0, \lambda=0$ and compare orders of vanishing in t at 0 .
$f(0, t)=t^{d} h(t) \Rightarrow r_{j, f}(0,0)=0 \forall j$ and $Q_{f}(0, t, 0)=h(t)$
$\Rightarrow Q_{f}(0,0,0)=h(0) \neq 0$
(ii) Apply $\left[\frac{\partial}{\partial \lambda_{j}}\right]_{x=0, \lambda=0}$ to $(\star) \Rightarrow$ upper triangular matrix with diagonal entries $=Q_{f}(0,0,0) \Rightarrow D \neq 0$, Done.

3. Reduction of Division Theorem to Thm 1

$$
V^{d}:=\left\{(t, \lambda): P^{d}(t, \lambda)=0\right\} ; \pi_{d}: V^{d} \ni(t, \lambda) \longmapsto \lambda \in \mathbb{R}^{d}
$$

Def: Let $C_{\pi}^{\infty}\left(V^{d} \times \mathbb{R}^{n}\right)$ be the subspace of $C^{\infty}\left(V^{d} \times \mathbb{R}^{n}\right)$ consisting of all functions constant on the fibers $\pi_{d}^{-1}(\lambda)$.

Theorem 1: $\exists J: C_{\pi}^{\infty}\left(V^{d} \times \mathbb{R}^{n}\right) \longrightarrow C^{\infty}\left(\mathbb{R}^{d+n}\right)$ s.th.
$\forall(t, \lambda) \epsilon V^{d}, x \in \mathbb{R}^{n}:(J \phi)(\lambda, x)=\phi(t, \lambda, x)$
Define λ^{d} by $P^{d}\left(z, \lambda^{d}(s, \mu)\right)=(z-s) \cdot P^{d-1}(z, \mu)$
$\Longrightarrow \lambda_{1}=-s+\mu_{1}, \lambda_{j}=-\mu_{j-1} \cdot s+\mu_{j}$, and $\lambda_{d}=-\mu_{d-1} \cdot s$
Note: $(s, \mu) \longmapsto(s, \tilde{\lambda}(s, \mu))$ is invertible change of coordinates
4. Application: General C^{∞} Division of $g(x, t)$ by $f(x, t)$

Gen. C^{∞} Div. Thm If f is s.th. $f(0, t)=t^{d} h(t), h(0) \neq 0$
$\Longrightarrow \exists G$ and R_{j} such that $g=G \cdot f+\sum_{j=1}^{d} R_{j}(x) t^{d-j}$
Proof: Prep Thm for f and Div. Thm for g with $d=d_{f}$
$\Longrightarrow\left(t^{d}+\sum_{j=1}^{d} \lambda_{i}(x) t^{d-i}\right)=\frac{f(x, t)}{q_{f}(x, t)}$
Apply Div. Thm to g and plug in $\lambda_{j}=\lambda_{j}(x)$ from above.
$g=f \cdot \frac{Q_{g}(x, t, f(x))}{q_{f}(x, t)}+\sum_{j=1}^{d} r_{j, g}(x, f(x)) t^{d-j} \quad$ Done.

5. Proof of Thm 1 implies Div. Thm with assertion:

$Q_{f}^{d}\left(t, \lambda^{d}(s, \mu)\right)=\frac{1}{t-s}\left[Q_{f}^{d-1}(t, \mu)-Q_{f}^{d-1}(s, \mu)\right](\star \star)$
Proof by induction on $d \geq 1$:
Case $d=1: f(x, t)=(t-\lambda) \cdot \frac{f(x, t)-f(x, \lambda)}{t-\lambda}+f(x, \lambda)$
$\frac{g(t)-g(0)}{t}=\int_{0}^{1} g^{\prime}(s t) d s ;(\nabla f)(t):=\frac{f(t)-f(s)}{t-s}$
$P(t, \lambda):=P^{d}(t, \lambda), P(t, \mu):=P^{d-1}(t, \mu), P(t, \nu):=P^{d-2}(t, \nu)$
Indexes of $\lambda^{d}(s, \mu), \mu^{d-1}(\tau, \nu)$ we skip; $\tilde{\lambda}:=\left(\lambda_{1}, \ldots, \lambda_{d-1}\right)$

6. Proof of the inductive 'step':

i.e. : True for $2, \ldots, d-1 \Longrightarrow$ for $d\left(\lambda \in \mathbb{R}^{d}, \mu \in \mathbb{R}^{d-1}, \nu \in \mathbb{R}^{d-2}\right)$.
$P(z, \lambda(s, \mu(\tau, \nu)))=(z-s)(z-\tau) \cdot P(z, \nu)$
$\Rightarrow \lambda(s, \mu(\tau, \nu))$ is symmetric in (s, τ)
Now, true for $\mathrm{d}-1 \Rightarrow$ formula ('almost' as required)
$f(t)=\frac{Q_{f}^{d-1}(t, \mu)-Q_{f}^{d-1}(s, \mu)}{t-s} \cdot P(t, \lambda(s, \mu))+\sum_{k=1}^{d} r_{k, f}(s, \mu) t^{d-k}$
$\left(\nabla Q_{f}^{d-1}\right)(t, s, \mu(\tau, \nu)):=\frac{\frac{Q_{f}^{d-2}(t, \nu)-Q_{f}^{d-2}(\tau, \nu)}{t-\tau}-\frac{Q_{f}^{d-2}(s, \nu)-Q_{f}^{d-2}(\tau, \nu)}{s-\tau}}{t-s}$
$\Longrightarrow\left(\nabla Q_{f}^{d-1}\right)(t, s, \mu(\tau, \nu))=\left(\nabla Q_{f}^{d-1}\right)(t, \tau, \mu(s, \nu))$

7. Proof of the inductive 'step' (continued)

Therefore by (1) and the symmetry of $\lambda(s, \mu(\tau, \nu))$ in (s, τ),
$\Longrightarrow r_{k, f}(s, \mu(\tau, \nu))=r_{k, f}(\tau, \mu(s, \nu))$ for $1 \leq k \leq d(*)$
Recall $(s, \mu) \longmapsto(s, \tilde{\lambda}(s, \mu))$ is invertible change of coordinates.
Let $(s, \tilde{\lambda}) \longmapsto(s, \eta(s, \tilde{\lambda}))$ where $\mu=\eta(s, \tilde{\lambda})$ be the inverse.
$(s, \tilde{\lambda})$ are global polynomial coordinates on V^{d}, so functions
$\tilde{r}_{k, f}(s, \tilde{\lambda}):=r_{k, f}(s, \eta(s, \tilde{\lambda}))$ are on $V^{d} \quad\left(\right.$ and are in $\left.C_{\pi}^{\infty}\left(V^{d}\right)!\right)$
Now, suppose $s \neq \tau,(s, \tilde{\lambda})$ and $(\tau, \tilde{\lambda}) \in \pi_{d}^{-1}(\lambda) \cap V^{d}$

8. Thm $1 \Longrightarrow$ Div. Thm (remainders $\in C_{\pi}^{\infty}\left(V^{d}\right)$!)

$\exists \nu \in \mathbb{R}^{d-2}$ s.th. $P^{d}(t, \lambda)=(t-s)(t-\tau) \cdot P^{d-2}(t, \nu)$,
where $\lambda=\lambda(s, \mu(\tau, \nu))$. Symmetry of λ and $(*) \Longrightarrow$
$\eta(s, \tilde{\lambda})=\mu(\tau, \nu), \eta(\tau, \tilde{\lambda})=\mu(s, \nu) \Longrightarrow$ remainders $\in C_{\pi}^{\infty}\left(V^{d}\right):$
$\tilde{r}_{k, f}(s, \tilde{\lambda})=r_{k, f}(s, \mu(\tau, \nu))=r_{k, f}(\tau, \mu(s, \nu))=\tilde{r}_{k, f}(\tau, \tilde{\lambda})$.
Now, Thm1 $\Longrightarrow r_{k, f}^{d}(\lambda)=\left(J \tilde{r}_{k, f}\right)(\lambda)$, where
$r_{k, f}^{d}(\lambda(s, \mu))=\left(J \tilde{r}_{k, f}\right)\left(\lambda(s, \mu)_{k, f}^{d}\right)=\tilde{r}_{k, f}(s, \tilde{\lambda}(s, \mu))=r_{k, f}(s, \mu)$
$P^{d}(t, \lambda)=0 \Rightarrow \lambda=\lambda(t, \mu)$ for some μ, and $(1) \Longrightarrow$
$f(t)-\sum_{k=1}^{d} r_{k, f}^{d}(\lambda) \cdot t^{d-k}=f(t)-\sum_{k=1}^{d} r_{k, f}(t, \mu) \cdot t^{d-k}=0(\diamond)$

9. Completion of proof Thm 1 implies Div. Thm.

Let $f(t, \lambda):=f(t)-\sum_{k=1}^{d} r_{k, f}^{d}(t, \lambda) \cdot t^{d-k}$
Applying change of coordinates: $(t, \lambda) \longmapsto\left(t, \tilde{\lambda}, P^{d}(t, \lambda)\right)$ gives in new coordinates $\phi(t, \tilde{\lambda}, p):=f\left(t ; \tilde{\lambda} ; p-t^{d}-\sum_{k=1}^{d} \lambda_{k} \cdot t^{d-k}\right)$
$(\diamond) \Rightarrow \phi(t, \tilde{\lambda}, 0)=0$. Therefore, $\phi(t, \tilde{\lambda}, p)$ is divisible by p, and $f(t, \lambda)$ is divisible by $P^{d}(t, \lambda) \Longrightarrow(\star)$.

Now, (1) with $P^{d}(t, \lambda(s, \mu)) \neq 0 \Longrightarrow(\star \star)$ (i.e. extra assertion) \square
Abusing notation, l'll skip indicating depencence on parameter x :

10. Sketch of Proof of Thm 1, i.e. $J \phi \in C^{\infty}\left(\mathbb{R}^{d}\right)_{\Gamma_{V d}}$

$\pi_{d}: V^{d} \rightarrow \mathbb{R}^{d}$ is proper and local diffeomorphism on set
$U:=\left\{(t, \lambda) \in V^{d}: \frac{\partial P(t, \lambda)}{\partial t} \neq 0\right\} \Longrightarrow J \phi \in C^{\infty}(\tilde{U}), \tilde{U}:=\pi_{d}(U)$.

Plan: Show all derivatives $D^{\alpha} J \phi$ extend to $\pi_{d}\left(V^{d}\right)$ as C^{0} via proving by induction on $|\alpha|$ that $\left(D^{\alpha} J \phi\right) \circ \pi_{d} \in C^{\infty}\left(V^{d}\right)$.

Suffices to show: 1. $J \phi \in C^{1}\left(\pi_{d}\left(V^{d}\right)\right)$ 2. $\left(d_{\lambda} J \phi\right) \circ \pi_{d} \epsilon C^{\infty}\left(V^{d}\right)$.
Note: $\pi_{2 k+1}\left(V^{2 k+1}\right)=\mathbb{R}^{2 k+1}$, and $\mathbb{R}^{2 k} \backslash \pi_{2 k}\left(V^{2 k}\right)$ is convex, $k \in \mathbb{N}$
\Longrightarrow would follow by Whitney C^{∞}-Extention Thm. that $J \phi$ extends to \mathbb{R}^{d} as a C^{∞} function, as required.

11. Proofs of 1 . and 2 .

$$
\begin{aligned}
& \psi(t, \tilde{\lambda}):=J \phi\left(\pi_{d}(t, \tilde{\lambda})\right) \Longrightarrow\left(d_{\lambda} J \phi\right)(\lambda) \cdot \frac{\partial\left(\lambda_{1}, \ldots, \lambda_{d}\right)}{\partial\left(t, \lambda_{1}, \ldots, \lambda_{d-1}\right)}=d_{(t, \tilde{\lambda})} \psi \\
& \Longleftrightarrow\left(d_{\lambda} J \phi\right)\left(\pi_{d}(t, \lambda)\right) \cdot \\
& \left(\begin{array}{cccccc}
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & 1 & 0 \\
0 & 0 & 0 & \ldots & 0 & 1 \\
-\frac{\partial P(t, \lambda)}{\partial t} & -t^{d-1} & -t^{d-2} & \ldots & -t^{2} & -t
\end{array}\right)=\left(\begin{array}{c}
\frac{\partial \psi(t, \tilde{\lambda})}{\partial t} \\
\frac{\partial \psi(t, \tilde{\lambda})}{\partial \lambda_{1}} \\
\ldots \\
\ldots \\
\ldots \\
\frac{\partial \psi(t, \tilde{\lambda})}{\partial \lambda_{d-1}}
\end{array}\right)
\end{aligned}
$$

2 things to show: (i) The function $\phi^{\text {new }}(t, \lambda):=\left(d_{\lambda} J \phi\right)\left(\pi_{d}(t, \lambda)\right)$
as a function on V^{d} coincides with a d-tuple of C^{∞} functions, for which solving the system above suffices to show that
12. $\frac{\partial \psi}{\partial t}(t, \tilde{\lambda}) / \frac{\partial P}{\partial t}(t, \tilde{\lambda})$ is C^{∞}. With $(t, \lambda) \in V^{d}$:
$\frac{\partial P(t, \lambda)}{\partial t}=0 \Rightarrow \exists$ sequences $\left\{V^{d} \ni\left(s_{j n}, \lambda_{n}\right) \longrightarrow(t, \lambda)\right\}_{j=1,2}$
with $s_{1 n} \neq s_{2 n} \Longrightarrow \frac{\partial \psi(t, \tilde{)}}{\partial t}=\lim _{n \rightarrow \infty} \frac{\psi\left(s_{1 n}, \tilde{\lambda}_{(n)}-\psi\left(s_{2 n}, \tilde{X}_{(n)}\right)\right.}{s_{1 n}-s_{2 n}}=0$.
Now coord change $\left(t, \lambda_{1}, \ldots, \lambda_{d-1}\right) \mapsto\left(t, \lambda_{1}, \ldots, \lambda_{d-2}, p_{1}=\frac{\partial P}{\partial t}\right)$
and let $\theta\left(t, \lambda_{1}, \ldots, \lambda_{d-2}, p_{1}\right):=\frac{\partial}{\partial t} \psi\left(t, \lambda_{1}, \ldots, \lambda_{d-1}\right)$. Now,
$\theta\left(t, \lambda_{1}, \ldots, \lambda_{d-2}, 0\right)=0 \Rightarrow \theta\left(t, \lambda_{1}, \ldots, \lambda_{d-2}, p_{1}\right)$ is divisible by p_{1},
$\Rightarrow \frac{\partial \psi}{\partial t}(t, \tilde{\lambda}) / \frac{\partial P}{\partial t}(t, \tilde{\lambda})$ is C^{∞}, which completes the proof of (i)

13. Pair $\left(J \phi, J \phi^{\text {new }}\right)$ is a Whitney C^{1}-function on \mathbb{R}^{d}

$\left(d_{\lambda} J \phi\right) \circ \pi_{d}$ is C^{∞} on V^{d} and with π_{d} proper \Longrightarrow
$d_{\lambda} J \phi$ extends as C^{0} from \tilde{U} to $\pi_{d}\left(V^{d}\right)$, and is $J \phi^{\text {new }}$.
Let $\gamma:=\left\{\lambda \epsilon \pi_{d}\left(V^{d}\right)\right.$: s.th. $\left.\exists a \in \mathbb{R}, P^{d}(z, \lambda)=(z-a)^{d}\right\}$.
Claim: $(J \phi) \epsilon C^{1}\left(\pi_{d}\left(V^{d}\right) \backslash \gamma\right)$.
Proof: Induction on d using 'resultants' (details in Baxter's talk)
Consider $\left(t^{!}, \lambda^{!}\right)$s.th. $P^{d}\left(z, \lambda^{!}\right)=\left(z-t^{!}\right)^{\prime} \cdot P^{d-1}\left(z, \eta^{!}\right)$,
where $I<d, t^{!} \in \mathbb{R}, \lambda^{\prime} \in \mathbb{R}^{d}, \eta^{!} \in \mathbb{R}^{d-1}$, and $P^{d-1}\left(t^{!}, \eta^{!}\right) \neq 0$

14. Proof of Claim (induction on $I<d$)

$\Longrightarrow P^{d}(z, \lambda(\xi, \eta))=P^{\prime}(z, \xi) \cdot P^{d-I}(z, \eta)$ defines the map
$(\xi, \eta) \longmapsto \lambda(\xi, \eta)$, a loc. diffeo. near $\left(\xi^{!}, \eta^{!}\right)$s.th. $P^{d-I}\left(t^{!}, \eta^{!}\right) \neq 0$ and $P^{\prime}\left(z, \xi^{!}\right):=\left(z-t^{!}\right)^{\prime} \quad$ (due to resultants theory...).

With this change of variables $(t, \xi, \eta) \longmapsto(t, \lambda(\xi, \eta))$ in neighbourhoods of $\left(t^{!}, \xi^{!}, \eta^{!}\right) \in V^{\prime} \times \mathbb{R}^{d-I}$ and of $\left(t^{!}, \lambda^{!}\right) \in V^{d}$ $\Longrightarrow P^{d-I}\left(t^{!}, \eta^{!}\right) \neq 0 \Longrightarrow P^{d-1}(t, \eta) \neq 0$ near $\left(t^{!}, \eta^{!}\right)$and, $0=P^{d}(t, \lambda(\xi, \eta))=P^{\prime}(t, \xi) \cdot P^{d-I}(t, \eta) \Longrightarrow P^{\prime}(t, \xi)=0$.

15. End of proof of Claim (summed up in a diagram)

$\begin{array}{ccc}V_{(t, \lambda)}^{d} & \longrightarrow & V_{(t, \xi)}^{\prime} \times \mathbb{R}_{\eta}^{d-1} \\ \underset{\mathbb{R}_{\lambda}^{d}}{l} & \longrightarrow & \mathbb{R}_{\xi}^{\prime} \times \mathbb{R}_{\eta}^{d-1}\end{array}$
By the inductive hypothesis $(I<d)$ claim follows.
It remains to show $J \phi$ is C^{1} on $\pi_{d}\left(V^{d}\right)$ including curve γ,
i.e. when $P^{d}(z, \lambda)=(z-a)^{d}$ for $a \in \mathbb{R}$.
$P^{d}\left(z, \lambda_{a}\right):=P^{d}((z-a), \lambda)$ defines a diffeomorphism $\lambda_{a} \mapsto \lambda$
\Longrightarrow Enough to prove differentiability at $0 \in \mathbb{R}^{d}$

16. Proof of Theorem 1 (conclusion)

Given $\lambda \in \pi_{d}\left(V^{d}\right), \exists$ smooth path connecting λ and 0 s.th.
$\lambda(s) \in \pi_{d}\left(V^{d}\right) \backslash \gamma \forall s \in(0,1)$ with length \leq const. $\cdot \sqrt{\sum_{k=1}^{d} \lambda_{k}^{2}}$.
$\lim _{s \rightarrow 1}(J \phi)(\lambda(s))-(J \phi)(\lambda(1-s))=\int_{1-s}^{s}\left(d_{\lambda} J \phi\right)(\lambda(\tau)) \cdot \frac{d \lambda}{d \tau}(\tau) d \tau$
$\Longrightarrow(J \phi)(\lambda)-(J \phi)(0)=\int_{0}^{1}\left(d_{\lambda} J \phi\right)(\lambda(\tau)) \cdot \frac{d \lambda}{d \tau}(\tau) d \tau$
With estimate on the length of the path differentiability of
$(J \phi)(\lambda)$ at $\lambda=0$ follows, which completes the proofs.

