An Introduction to Degree of Smooth Maps

Mustazee Rahman

Professor Milman, MAT477, U of T

February 5, 2010

Mustazee Rahman (Professor Milman, MAT4 An Introduction to Degree of Smooth Maps

Motivation

 $f: M \to N$, e.g $M = N = S^n$, is C^{∞} .

What is $\#f^{-1}(y)$ for a regular value y?

Counted properly, it is a constant called top. deg. of f.

Example: $P \in \mathbb{C}[z] \Rightarrow \text{top. deg. } P = Deg(P)$.

Notion of degree due to Brouwer.

Assumptions

- $M, N C^{\infty}$ manifolds, no boundary, dim(M) = dim(N).
- *M* is compact or *f* is proper; *N* is connected.
- $\forall f: M \rightarrow N$ are C^{∞}

$$Cr(f) := \{x \in M : df_x \text{ not onto}\}$$

 $y \notin f(Cr(f))$ called regular value (reg. val.).

Note: y reg. val. $\Rightarrow df_x : TM_x \to TN_y$ is isom. $\forall x \in f^{-1}(y)$.

Requirement: M and N oriented

Fact – Complex manifolds are orientable:

 \mathbb{C} -linear $T:\mathbb{C}^n o\mathbb{C}^n$, then for $T_{\mathbb{R}}:=T$ as \mathbb{R} -linear map, $det(T_{\mathbb{R}})=|det(T)|^2$

Aside: For *M* and *N* not oriented, top. deg. of $f \in \mathbb{Z}/2\mathbb{Z} \dots$

Def: $f, g: X \to Y$ are homotopic if $\exists F: X \times [0,1] \to Y$ s.th.

$$F(x,0) = f(x)$$
 and $F(x,1) = g(x)$.

Homotopy $(f \sim g)$ is an equivalence relation.

◆□▶ ◆帰▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Homotopy and Isotopy

Def: Diffeo. $f, g: X \to Y$ are isotopic $(f \simeq g)$ if \exists homotopy F

from f to g, s.th. $x \to F(x, t)$ are diffeo $\forall t \in [0, 1]$.

Lemma (Milnor): $\forall y, z \in N, \exists$ diffeo. $h \simeq id : N \rightarrow N$ s.th. h(y) = z.

E.g. for S^n , isotopy constructed via rotations.

Topological Degree

 $f: M \to N$

$$\operatorname{deg}(\mathbf{f},\mathbf{y}) := \sum_{x \in f^{-1}(y)} \operatorname{sign}(\operatorname{det}(\operatorname{df}_x)) \quad \forall \text{ reg. val. } y$$

Note: by Sard, deg(f, y) is defined almost everywhere.

 $deg(f, y) < \infty$: Note that $f^{-1}(y)$ is compact.

 $x \in f^{-1}(y) \Rightarrow df_x$ isomorphism $\Rightarrow \exists U \ni x \text{ s.th. } f|_U \text{ is } 1:1.$

 \therefore {x} open in $f^{-1}(y) \Rightarrow f^{-1}(y)$ finite.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

def(f, y) is locally constant

Suppose $f^{-1}(y) = \{x_1, ..., x_k\}.$

By I.F.T, \exists disjoint $U_i \ni x_i$ s.t $f|_{U_i}$ is diffeo. onto $V_i \ni y$.

$$\Rightarrow \#f^{-1}(y') = k, \ \forall \ y' \in V = \cap_{i=1}^k V_i - f(M - \cup_{i=1}^k U_i)$$

 $f|_{U_i}$ diffeo. $\Rightarrow sign(df_x)$ const. on $U_i \Rightarrow deg(f, y)$ const. on V.

Mustazee Rahman (Professor Milman, MAT4 An Introduction to Degree of Smooth Maps

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Fundamental Theorems

Theorem A (Well-definedness): deg(f, y) doesn't depend on reg. val. y.

$$deg(f) := deg(f, y) \forall reg. val. y$$

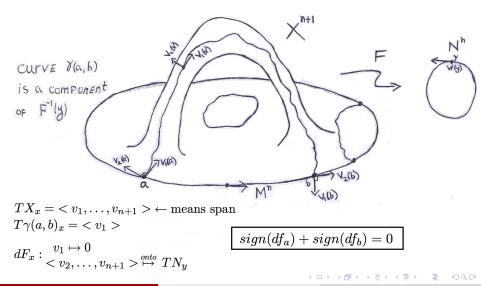
Theorem B (Homotopy invariance): If $f \sim g$ then deg(f) = deg(g).

Auxiliary Lemma: Let $M = \partial X$ with X compact, oriented and M oriented

as the boundary of X . If $f: M \to N$ extends to $F: X \to N$ then

 $deg(f, y) = 0 \forall reg. val. y.$

Proof:



Mustazee Rahman (Professor Milman, MAT4 An Introduction to Degree of Smooth Maps

Suppose $f \sim g$ via $F : M \times [0,1] \rightarrow N$.

Lemma: $deg(f, y) = deg(g, y) \forall$ common reg. val. y.

Proof : Orient $M \times [0, 1]$ as product manifold.

$$\partial(M \times [0,1]) = (1 \times M) - (0 \times M)$$

$$F|^{-1}_{\partial(M \times [0,1])}(y) = (1 \times g^{-1}(y)) \sqcup (0 \times f^{-1}(y))$$

$$(1,x) \in 1 \times g^{-1}(y) \Rightarrow sign(dF_{(1,x)}) = sign(dg_x)$$

$$(0,x) \in 0 \times f^{-1}(y) \Rightarrow sign(dF_{(0,x)}) = -sign(df_x)$$

 $deg(F|\partial(M\times[0,1]),y) = deg(g,y) - deg(f,y) = 0 \text{ (Aux. Lem.)}.$

・ロト ・ 戸 ・ イヨト ・ ヨー ・ つへぐ

Proof of Fundamental Theorems

For
$$y, z \notin f(Cr(f)) \exists h \simeq id : N \to N$$
 with $h(y) = z$.

$$deg(h \circ f, h(y)) = \sum_{x \in f^{-1}(y)} sign(d(h \circ f)_x)$$
$$= \sum_{x \in f^{-1}(y)} sign(dh_y)sign(df_x)$$
$$= \sum_{x \in f^{-1}(y)} sign(df_x) = deg(f, y)$$

As $f \sim h \circ f \Rightarrow deg(h \circ f, h(y)) = deg(f, z)$.

- 31

Image: A match a ma

Examples

- $x \mapsto c \in N$ has degree 0.
- $id: M \to M$ has degree 1.
- If $f: M \to N, g: N \to X$, then $deg(g \circ f) = deg(g)deg(f)$.
- The reflection $r_i : S^n \to S^n$ given by $r_i(x_1, \ldots, x_{n+1}) = (x_1, \ldots, -x_i, \ldots, x_{n+1})$ has degree -1.

• $a(x) = -x : S^n \to S^n$ is the composition $r_1 \circ \ldots \circ r_{n+1}(x)$ $\therefore deg(a(x)) = (-1)^{n+1} \Rightarrow a(x) \not\sim id_{S^n}$

Degree on Complex Manifolds (Towards Application 1)

 $f: M \rightarrow N$ holomorphic between complex manifolds.

Theorem: $deg(f) = #f^{-1}(y)$ for any regular value y!!

Proof : $x \in f^{-1}(y)$ for a reg. val. $y \Rightarrow df_x$ as \mathbb{R} -linear map satisfies

$$det(df_x)_{\mathbb{R}} = |det(df_x)|^2 \ge 0$$

Thus $sign(df_x) = 1$ and $deg(f) = deg(f, y) = #f^{-1}(y)$.

Lemma (Mumford): Let $f : X \to Y$ be continuous between a

locally compact Hausdorff space X and a metric space Y.

If $f^{-1}(y)$ is compact for $y \in Y$ then \exists open sets $U \supseteq f^{-1}(y)$

and $V \ni y$ such that $f(U) \subseteq V$ and $f|_U : U \to V$ is proper.

Proof : $\exists X_0 \supseteq f^{-1}(y)$ open s.th. $\overline{X_0}$ is compact.

For open $B \ni y$, res $f : \overline{X}_0 \cap f^{-1}(B) \to B$ is proper.

If res $f: X_0 \cap f^{-1}(B) \to B$ is not proper then

$$X_0 \cap f^{-1}(B) \subset ar{X_0} \cap f^{-1}(B)$$

If this holds \forall open $B_{\alpha} \ni y$ then \exists infinitely many distinct

$$x_lpha\inar{X_0}\setminus X_0$$
 with $f(x_lpha)\in B_lpha.$

$$B_{lpha} \downarrow y \quad \Rightarrow \quad f(x_{lpha})
ightarrow y$$

The x_{α} 's have a limit point $x_{\infty} \in \overline{X}_0 \setminus X_0$.

But by continuity,
$$f(x_{\infty}) = y \Rightarrow x_{\infty} \in f^{-1}(y) \subseteq X_0$$
.

E 990

Multiplicity (Application 1)

 $P: \mathbb{C}^n \to \mathbb{C}^n$ polynomial map with $a \in P^{-1}(0)$ isolated.

By Mumford's lemma, $\exists U \ni a$ and $V \ni 0$ s.th. $P|_U : U \to V$

is proper and $(P|_U)^{-1}(0) = a$.

Note $deg(P|_U) = \#P|_U^{-1}(y) \quad \forall \text{ reg. val. } y$. Recall that

a isolated zero $\Leftrightarrow \dim \mathbb{C}[z_1, \dots, z_n]_a / (P)_a < \infty$

 $deg(P|_U) = dim$ above and one defines multiplicity of P at a

$$\mu_{\mathsf{P},\mathsf{a}} := deg(P|_U) = \dim \mathbb{C}[z_1, \dots, z_n]_a / (P)_a$$

Brouwer Fixed Point Theorem (Application 2)

Any continuous $f: D^{n+1} \rightarrow D^{n+1}$ has a fixed point.

If C^{∞} f has no fixed points then $\forall x \in D^{n+1}$, let $g(x) \in S^n$ be

point lying closer to x on the line segment joining x to f(x).

$$g(x) = x + tu, \ u = \frac{f(x) - x}{||f(x) - x||}, \ t = -x \cdot u + \sqrt{1 - ||x||^2 + (x \cdot u)^2}$$

 $g: D^{n+1} \to S^n$ is smooth retraction of D^{n+1} onto S^n .

 $g(0) \sim id_{S^n}$ via F(x,t) = g(tx): $S^n \times [0,1] \rightarrow S^n$. Not possible.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

 $f \in C^0 \Rightarrow \exists$ uniform C^{∞} approximation of f via $P: D^{n+1} \to \mathbb{R}^{n+1}$

$$||f - P||_{sup} < \epsilon \Rightarrow ||P||_{sup} < 1 + \epsilon$$

Then
$$Q(x):=rac{P(x)}{1+\epsilon}$$
 is C^∞ from $D^{n+1} o D^{n+1}$ with

$$||f - Q||_{sup} < 2\epsilon$$

If min of ||f(x) - x|| on D^{n+1} is m > 0 then min of

 $||Q(x) - x|| \ge m - 2\epsilon > 0$ for small ϵ .

This is not possible by the first case.

Smooth Hairy Ball Theorem (Application 3)

A smooth tangent vector field $v: S^n \to \mathbb{R}^n$ is map satisfying

$$v(x) \cdot x = 0 \quad \forall \ x \in S^n$$

If v is a smooth tangent vector field on S^n with $v(x) \neq 0$ on S^n

then normalize i.e. $v(x) \in S^n$.

v defines homotopy $F:S^n\times [0,\pi]\to S^n$ via

$$F(x, t) = xcos(t) + v(x)sin(t); F(x, 0) = x, F(x, \pi) = -x$$

 $deg(F(x,\pi)) = (-1)^{n+1}$ and $deg(F(x,0)) = 1 \Rightarrow n$ is odd.

 $\Rightarrow \exists$ smooth non-vanishing tangent vector field on S^{2n} .