An Introduction to Degree of Smooth Maps

Mustazee Rahman

Professor Milman, MAT477, U of T

February 5, 2010

Motivation

$$
f: M \rightarrow N \text {, e.g } M=N=S^{n} \text {, is } C^{\infty} .
$$

What is $\# f^{-1}(y)$ for a regular value y ?

Counted properly, it is a constant called top. deg. of f.

Example: $P \in \mathbb{C}[z] \Rightarrow$ top. deg. $P=\operatorname{Deg}(P)$.

Notion of degree due to Brouwer.

Assumptions

- $M, N-C^{\infty}$ manifolds, no boundary, $\operatorname{dim}(M)=\operatorname{dim}(N)$.
- M is compact or f is proper; N is connected.
- $\forall f: M \rightarrow N$ are C^{∞}

$$
\operatorname{Cr}(f):=\left\{x \in M: d f_{x} \text { not onto }\right\}
$$

$y \notin f(\operatorname{Cr}(f))$ called regular value (reg. val.).

Note: y reg. val. $\Rightarrow d f_{x}: T M_{x} \rightarrow T N_{y}$ is isom. $\forall x \in f^{-1}(y)$.

Requirement: M and N oriented

Fact - Complex manifolds are orientable:
\mathbb{C}-linear $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$, then for $T_{\mathbb{R}}:=T$ as \mathbb{R}-linear map,

$$
\operatorname{det}\left(T_{\mathbb{R}}\right)=|\operatorname{det}(T)|^{2}
$$

Aside: For M and N not oriented, top. deg. of $f \in \mathbb{Z} / 2 \mathbb{Z} \ldots$..

Def: $f, g: X \rightarrow Y$ are homotopic if $\exists F: X \times[0,1] \rightarrow Y$ s.th.

$$
F(x, 0)=f(x) \text { and } F(x, 1)=g(x) .
$$

Homotopy $(f \sim g)$ is an equivalence relation.

Homotopy and Isotopy

Def: Diffeo. $f, g: X \rightarrow Y$ are isotopic $(f \simeq g)$ if \exists homotopy F
from f to g, s.th. $x \rightarrow F(x, t)$ are diffeo $\forall t \in[0,1]$.

Lemma (Milnor): $\forall y, z \in N, \exists$ diffeo. $h \simeq i d: N \rightarrow N$ s.th. $h(y)=z$.
E.g. for S^{n}, isotopy constructed via rotations.

Topological Degree

$f: M \rightarrow N$

$$
\operatorname{deg}(\mathbf{f}, \mathbf{y}):=\sum_{x \in f^{-1}(y)} \operatorname{sign}\left(\operatorname{det}\left(d f_{x}\right)\right) \quad \forall \text { reg. val. } y
$$

Note: by $\operatorname{Sard}, \operatorname{deg}(f, y)$ is defined almost everywhere.
$\operatorname{deg}(\mathbf{f}, \mathbf{y})<\infty: \quad$ Note that $f^{-1}(y)$ is compact.
$x \in f^{-1}(y) \Rightarrow d f_{x}$ isomorphism $\Rightarrow \exists U \ni x$ s.th. $\left.f\right|_{U}$ is $1: 1$.
$\therefore\{x\}$ open in $f^{-1}(y) \Rightarrow f^{-1}(y)$ finite.

$\operatorname{def}(f, y)$ is locally constant

Suppose $f^{-1}(y)=\left\{x_{1}, \ldots, x_{k}\right\}$.

By I.F.T, \exists disjoint $U_{i} \ni x_{i}$ s.t $\left.f\right|_{U_{i}}$ is diffeo. onto $V_{i} \ni y$.

$$
\Rightarrow \# f^{-1}\left(y^{\prime}\right)=k, \forall y^{\prime} \in V=\cap_{i=1}^{k} V_{i}-f\left(M-\cup_{i=1}^{k} U_{i}\right)
$$

$\left.f\right|_{U_{i}}$ diffeo. $\Rightarrow \operatorname{sign}\left(d f_{x}\right)$ const. on $U_{i} \Rightarrow \operatorname{deg}(f, y)$ const. on V.

Fundamental Theorems

Theorem A (Well-definedness): $\operatorname{deg}(f, y)$ doesn't depend on reg. val. y.

$$
\operatorname{deg}(\mathbf{f}):=\operatorname{deg}(\mathbf{f}, \mathbf{y}) \forall \text { reg. val. } \mathbf{y}
$$

Theorem B (Homotopy invariance): If $f \sim g$ then $\operatorname{deg}(f)=\operatorname{deg}(g)$.

Auxiliary Lemma: Let $M=\partial X$ with X compact, oriented and M oriented as the boundary of X. If $f: M \rightarrow N$ extends to $F: X \rightarrow N$ then $\operatorname{deg}(f, y)=0 \forall$ reg. val. y.

Proof:

Suppose $f \sim g$ via $F: M \times[0,1] \rightarrow N$.
Lemma: $\operatorname{deg}(f, y)=\operatorname{deg}(g, y) \forall$ common reg. val. y.
Proof: Orient $M \times[0,1]$ as product manifold.

$$
\begin{gathered}
\partial(M \times[0,1])=(1 \times M)-(0 \times M) \\
\left.F\right|_{\partial(M \times[0,1)} ^{-1}(y)=\left(1 \times g^{-1}(y)\right) \sqcup\left(0 \times f^{-1}(y)\right) \\
(1, x) \in 1 \times g^{-1}(y) \Rightarrow \operatorname{sign}\left(d F_{(1, x)}\right)=\operatorname{sign}\left(d g_{x}\right) \\
(0, x) \in 0 \times f^{-1}(y) \Rightarrow \operatorname{sign}\left(d F_{(0, x)}\right)=-\operatorname{sign}\left(d f_{x}\right) \\
\operatorname{deg}(F \mid \partial(M \times[0,1]), y)=\operatorname{deg}(g, y)-\operatorname{deg}(f, y)=0 \text { (Aux. Lem.). }
\end{gathered}
$$

Proof of Fundamental Theorems

For $y, z \notin f(\operatorname{Cr}(f)) \exists h \simeq i d: N \rightarrow N$ with $h(y)=z$.

$$
\begin{aligned}
\operatorname{deg}(h \circ f, h(y)) & =\sum_{x \in f^{-1}(y)} \operatorname{sign}\left(d(h \circ f)_{x}\right) \\
& =\sum_{x \in f^{-1}(y)} \operatorname{sign}\left(d h_{y}\right) \operatorname{sign}\left(d f_{x}\right) \\
& =\sum_{x \in f^{-1}(y)} \operatorname{sign}\left(d f_{x}\right)=\operatorname{deg}(f, y)
\end{aligned}
$$

As $f \sim h \circ f \Rightarrow \operatorname{deg}(h \circ f, h(y))=\operatorname{deg}(f, z)$.

Examples

- $x \mapsto c \in N$ has degree 0 .
- id : $M \rightarrow M$ has degree 1 .
- If $f: M \rightarrow N, g: N \rightarrow X$, then $\operatorname{deg}(g \circ f)=\operatorname{deg}(g) \operatorname{deg}(f)$.
- The reflection $r_{i}: S^{n} \rightarrow S^{n}$ given by $r_{i}\left(x_{1}, \ldots, x_{n+1}\right)=\left(x_{1}, \ldots,-x_{i}, \ldots, x_{n+1}\right)$ has degree -1 .
- $a(x)=-x: S^{n} \rightarrow S^{n}$ is the composition $r_{1} \circ \ldots \circ r_{n+1}(x)$

$$
\therefore \operatorname{deg}(a(x))=(-1)^{n+1} \Rightarrow a(x) \nsim i d_{S^{n}}
$$

Degree on Complex Manifolds (Towards Application 1)

$f: M \rightarrow N$ holomorphic between complex manifolds.

Theorem: $\operatorname{deg}(f)=\# f^{-1}(y)$ for any regular value $y!$!

Proof : $x \in f^{-1}(y)$ for a reg. val. $y \Rightarrow d f_{x}$ as \mathbb{R}-linear map satisfies

$$
\operatorname{det}\left(d f_{x}\right)_{\mathbb{R}}=\left|\operatorname{det}\left(d f_{x}\right)\right|^{2} \geq 0
$$

Thus $\operatorname{sign}\left(d f_{x}\right)=1$ and $\operatorname{deg}(f)=\operatorname{deg}(f, y)=\# f^{-1}(y)$.

Mumford's Lemma

Lemma (Mumford): Let $f: X \rightarrow Y$ be continuous between a locally compact Hausdorff space X and a metric space Y.

If $f^{-1}(y)$ is compact for $y \in Y$ then \exists open sets $U \supseteq f^{-1}(y)$
and $V \ni y$ such that $f(U) \subseteq V$ and $\left.f\right|_{U}: U \rightarrow V$ is proper.

Proof: $\exists X_{0} \supseteq f^{-1}(y)$ open s.th. \bar{X}_{0} is compact.
For open $B \ni y$, res $f: \bar{X}_{0} \cap f^{-1}(B) \rightarrow B$ is proper.

If res $f: X_{0} \cap f^{-1}(B) \rightarrow B$ is not proper then

$$
x_{0} \cap f^{-1}(B) \subset \bar{X}_{0} \cap f^{-1}(B)
$$

If this holds \forall open $B_{\alpha} \ni y$ then \exists infinitely many distinct
$x_{\alpha} \in \bar{X}_{0} \backslash X_{0}$ with $f\left(x_{\alpha}\right) \in B_{\alpha}$.
$B_{\alpha} \downarrow y \quad \Rightarrow \quad f\left(x_{\alpha}\right) \rightarrow y$

The x_{α} 's have a limit point $x_{\infty} \in \bar{X}_{0} \backslash X_{0}$.

But by continuity, $f\left(x_{\infty}\right)=y \Rightarrow x_{\infty} \in f^{-1}(y) \subseteq X_{0}$.

Multiplicity (Application 1)

$P: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ polynomial map with $a \in P^{-1}(0)$ isolated.
By Mumford's lemma, $\exists U \ni a$ and $V \ni 0$ s.th. $\left.P\right|_{U}: U \rightarrow V$ is proper and $(P \mid U)^{-1}(0)=a$.

Note $\operatorname{deg}\left(\left.P\right|_{U}\right)=\left.\# P\right|_{U} ^{-1}(y) \quad \forall$ reg. val. y. Recall that

$$
a \text { isolated zero } \Leftrightarrow \operatorname{dim} \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]_{\mathrm{a}} /(\mathrm{P})_{\mathrm{a}}<\infty
$$

$\operatorname{deg}(P \mid U)=\operatorname{dim}$ above and one defines multiplicity of P at a

$$
\mu_{\mathbf{P}, \mathrm{a}}:=\operatorname{deg}\left(\left.P\right|_{U}\right)=\operatorname{dim} \mathbb{C}\left[\mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{n}}\right]_{\mathrm{a}} /(\mathrm{P})_{\mathrm{a}}
$$

Brouwer Fixed Point Theorem (Application 2)

Any continuous $f: D^{n+1} \rightarrow D^{n+1}$ has a fixed point.

If $C^{\infty} f$ has no fixed points then $\forall x \in D^{n+1}$, let $g(x) \in S^{n}$ be point lying closer to x on the line segment joining x to $f(x)$.

$$
g(x)=x+t u, u=\frac{f(x)-x}{\|f(x)-x\|}, t=-x \cdot u+\sqrt{1-\|x\|^{2}+(x \cdot u)^{2}}
$$

$g: D^{n+1} \rightarrow S^{n}$ is smooth retraction of D^{n+1} onto S^{n}.
$g(0) \sim i d S^{n}$ via $F(x, t)=g(t x): S^{n} \times[0,1] \rightarrow S^{n}$. Not possible.
$f \in C^{0} \Rightarrow \exists$ uniform C^{∞} approximation of f via $P: D^{n+1} \rightarrow \mathbb{R}^{n+1}$

$$
\|f-P\|_{\text {sup }}<\epsilon \Rightarrow\|P\|_{\text {sup }}<1+\epsilon
$$

Then $Q(x):=\frac{P(x)}{1+\epsilon}$ is C^{∞} from $D^{n+1} \rightarrow D^{n+1}$ with

$$
\|f-Q\|_{\text {sup }}<2 \epsilon
$$

If \min of $\|f(x)-x\|$ on D^{n+1} is $m>0$ then \min of
$\|Q(x)-x\| \geq m-2 \epsilon>0$ for small ϵ.
This is not possible by the first case.

Smooth Hairy Ball Theorem (Application 3)

A smooth tangent vector field $v: S^{n} \rightarrow \mathbb{R}^{n}$ is map satisfying

$$
v(x) \cdot x=0 \quad \forall x \in S^{n}
$$

If v is a smooth tangent vector field on S^{n} with $v(x) \neq 0$ on S^{n}
then normalize i.e. $v(x) \in S^{n}$.
v defines homotopy $F: S^{n} \times[0, \pi] \rightarrow S^{n}$ via

$$
F(x, t)=x \cos (t)+v(x) \sin (t) ; F(x, 0)=x, F(x, \pi)=-x
$$

$\operatorname{deg}(F(x, \pi))=(-1)^{n+1}$ and $\operatorname{deg}(F(x, 0))=1 \Rightarrow n$ is odd.
$\Rightarrow \nexists$ smooth non-vanishing tangent vector field on $S^{2 n}$.

