Resolution of Singularities I The Blow-Up Operation

Will Pazner

February 12, 2010

1. Set up.

$k:=$ field of characteristic 0
Defn. Algebraic variety $k^{n} \supset X:=$ zeros of $f_{1}, \ldots, f_{k} \in$ Pol
Defn. Multiplicity of f at a is
$\mu_{a}(f):=\min \left\{d: \frac{\partial^{d} f}{\partial x_{i_{1}}^{d_{1}} \ldots \partial x_{i_{k}}}(a) \neq 0\right.$ for $\left.d_{1}+\ldots+d_{k}=d\right\}$
Defn. $a \in \operatorname{Sing}(V(f)) \Longleftrightarrow \mu_{a}(f)>1$
e.g. Cone $=V\left(f=x^{2}-y^{2}-z^{2}\right) \quad \operatorname{Sing}($ Cone $)=\{0\} \quad \mu_{0}(f)=2$

For $(x, y) \in X, \quad(x, y) \mapsto(0,0)$ Slope $y^{\prime}=\frac{y}{x} \rightarrow 0 \Longleftrightarrow$ line $[x: y] \rightarrow x$-axis

2. Enticement.

Take "any" f on manifold M (f is in some fixed category, e.g. polynomials, or analytic functions)

Then \exists proper morphism $\phi: M^{\prime} \rightarrow M$
(ϕ is a composition of "quadratic" maps)
$f \circ \phi$ is locally a monomial (up to invertible factor) on M
Furthermore, even $J(\phi) \cdot(f \circ \phi)$ is locally a monomial

3. Blowing-up: key instrument.

$C \hookrightarrow M$ manifolds. $U \subset M$ coordinate chart.
$C=V(I)$, ideal $I=\left(f_{0}, \ldots, f_{m}\right)$ on U.

closure graph $[f]=\left\{(x,[\xi]): \xi_{j} f_{i}(x)=\xi_{i} f_{j}(x)\right\}_{i, j \leq m}$
So $\sigma: \mathrm{Bl}_{I} U \rightarrow U$ where $\sigma=\left.\pi\right|_{\mathrm{Bl}_{I} U}$.
4.

$$
U \times \mathbb{P}^{m}=\cup_{j} V_{j}^{\prime} \quad V_{j}^{\prime}:=\left\{\xi_{j} \neq 0\right\} . \quad U_{j}^{\prime}:=V_{j}^{\prime} \cap \mathrm{Bl}_{I} U .
$$

Say I $:=\left(x_{1}, \ldots, x_{m}\right)$ where $\left(x_{1}, \ldots, x_{n}\right)$ are coordinates on U. So $C=V(I)=\left\{(x): x_{1}=\ldots=x_{m}=0\right\}$.
$U_{j}^{\prime}=V_{j}^{\prime} \cap\left\{\mathcal{\xi}_{j} x_{i}=\xi_{i} x_{j}\right\}_{i, j \leq m} \quad$ So coordinates on U_{j}^{\prime} are:

$$
\begin{array}{ll}
y_{j}=x_{j} & \\
y_{i}=\xi_{i} / \xi_{j} & \\
y_{i}=x_{i} & \text { for } 1 \leq i \leq m, i \neq j \\
\text { otherwise }
\end{array}
$$

$$
\begin{aligned}
\text { e.g. on chart } U_{j}^{\prime} & U_{j}^{\prime} \backslash U_{i}^{\prime}=\left\{y_{i}=0\right\} \\
\text { and } & U_{j}^{\prime} \cap \sigma^{-1}(C)=\left\{y_{j}=0\right\}
\end{aligned}
$$

Furthermore

$$
\left.\sigma\right|_{u_{j}}: x_{j}=y_{j} \quad x_{i}=y_{j} y_{i}(1 \leq i \leq m, i \neq j) \quad x_{i}=y_{i}(\text { otherwise })
$$

5. Example: $f:=x^{n}-y^{m}=0, \quad X=\{f=0\} \subset k^{2}$

Assume $\operatorname{gcd}(n, m)=1, n>m$.
$I=(x, y), \quad C=\{0\}=\operatorname{Sing}(X)$
Fact: $\left.\overline{\sigma^{-1}(X \backslash C)} \subset U_{x}^{\prime} \quad \sigma\right|_{U_{x}^{\prime}}:\left(x_{0}, y_{0}\right) \mapsto\left(x_{0}, x_{0} y_{0}\right)$
$f \circ \sigma\left(x_{0}, y_{0}\right)=x_{0}^{n}-\left(x_{0} y_{0}\right)^{m}=x_{0}^{m}\left(x_{0}^{n-m}-y_{0}^{m}\right)$ for $\left(x_{0}, y_{0}\right) \in U_{x}^{\prime}$
$f^{\prime}:=x_{0}^{-m}(f \circ \sigma)=x_{0}^{n-m}-y_{0}^{m}, \quad \sigma^{-1}(C)=\left\{x_{0}=0\right\}$.
Summarizing. $\sigma^{-1}(X) \cap U_{x}^{\prime}=\left\{x_{0}=0\right\} \cup\left\{f^{\prime}=0\right\}$
Repeat. By Euclidean Algorithm:
Finitely many blowups $\Longrightarrow X_{n}$ has no singularities.

6. Effect of blowing up.

$M \supset X:=\{x: f(x)=0\} \quad a \in X \quad d:=\mu_{a}(f)$
Linear coordinate change $\Longrightarrow a=0$ and $\frac{\partial^{d} f}{\partial x_{n}^{d}}(a) \neq 0 \quad$ Why:
$f=\sum_{|\alpha| \geq d} c_{\alpha} x^{\alpha} \Longrightarrow \sum_{|\alpha|=d} c_{\alpha} x^{\alpha} \neq 0, x \in \xi$ for some line ξ Make ξ into the x_{n}-axis.
$\tilde{x}:=\left(x_{1}, \ldots, x_{n-1}\right)$. Near a can write

$$
f(x)=c_{0}(\tilde{x})+c_{1}(\tilde{x}) x_{n}+\ldots+c_{d-1}(\tilde{x}) x_{n}^{d-1}+c_{d}(x) x_{n}^{d}
$$

$c_{d}(x) \neq 0$. Im.F.T. $\Longrightarrow \frac{\partial^{d-1} f}{\partial x_{n}^{d-1}}(x) \sim\left(x_{n}-h(\tilde{x})\right)=: x_{n}^{\prime}$ new coord.
$N:=\left\{x: \frac{\partial^{d-1} f}{\partial x_{n}^{d-1}}(x)=0\right\}, \quad c_{i}:=\left.\frac{1}{i!} \cdot \frac{\partial^{i} f}{\partial x_{n}^{i}}\right|_{N}, \quad i<d$

7. Blowing-up with $C=\left\{x_{1}=\ldots=x_{m}=x_{n}=0\right\}$

Two types of charts: U_{n}^{\prime} and all the others.
On $U_{n}^{\prime} \backslash \bigcup_{j=1}^{m} U_{j}^{\prime}=\left\{y_{1}=\ldots=y_{m}=0\right\}$ we show later $f^{\prime} \neq 0$.
In coordinate chart U_{j}^{\prime} for $1 \leq j \leq m$. Say $j=1$.
$\sigma^{-1}(C) \cap U_{1}^{\prime}=\left\{y_{1}=0\right\}$.
$c_{i}^{\prime}:=y_{1}^{i-d}\left(c_{i} \circ \sigma\right) \Longrightarrow c_{i}^{\prime}=c_{i}^{\prime}(\tilde{y})$, for $i<d$ $\tilde{y}:=\left(y_{1}, \ldots, y_{n-1}\right)$

$$
f^{\prime}:=y_{1}^{-d}(f \circ \sigma)=c_{0}^{\prime}(\tilde{y})+\ldots+c_{d-2}^{\prime}(\tilde{y}) y_{n}^{d-2}+c_{d}^{\prime}(y) y_{n}^{d}
$$

$c_{d}^{\prime}(y) \neq 0 \forall y \in \sigma^{-1}(C) \cap U_{1}^{\prime}$ since $\frac{\partial \sigma_{n}}{\partial y_{n}}(y)=y_{1}=0$ In particular $\mu_{y}\left(f^{\prime}\right) \leq d$.
8. On $U_{n}^{\prime} \backslash \bigcup_{j=1}^{m} U_{j}^{\prime}=\left\{y_{1}=\ldots=y_{m}=0\right\} \ni y$
$f^{\prime}(y):=y_{n}^{-d}(f \circ \sigma)(y)=c_{0}^{\prime}(y)+c_{1}^{\prime}(y)+\ldots+c_{d}^{\prime}(y)$, where $c_{i}^{\prime}:=y_{n}^{i-d}\left(c_{i} \circ \sigma\right)$
$\mu_{x}\left(c_{i}\right) \geq d-i \forall x \in C$, i.e.

$$
c_{i}=\sum_{|\alpha| \geq d-i} c_{i_{\alpha}}\left(x_{m+1}, \ldots, x_{n-1}\right) \cdot x_{1}^{\alpha_{1}} \ldots x_{m}^{\alpha_{m}}
$$

$\operatorname{Recall}\left(x_{1}, \ldots, x_{m}\right)=y_{n} \cdot\left(y_{1}, \ldots, y_{m}\right) \Longrightarrow$

$$
\left.\begin{array}{l}
c_{d}^{\prime}(y) \neq 0 \\
c_{j}^{\prime}(y)=0
\end{array}\right\} \Longrightarrow \mu_{y}\left(f^{\prime}\right)=0 \leq d
$$

Corollary. $d=\mu_{a}(f) \Longrightarrow \mu_{a^{\prime}}\left(f^{\prime}\right) \leq \mu_{a}(f) \forall a^{\prime} \in \sigma^{-1}(a)$.
In fact, $f^{\prime}(y) \neq 0$ for $y \in U_{n}^{\prime} \backslash \bigcup_{j \neq n} U_{j}^{\prime}$
Conclusion: we don't need to consider U_{n}^{\prime} chart.

9. Monomial assumption

Assumption: (proved later using induction on dimension) $\exists \Omega \in \mathbb{Q}^{n-1}$ such that $c_{i}(\tilde{x})^{d!/(d-i)}=\left(\tilde{x}^{\Omega}\right)^{d!} \cdot c_{i}^{*}(\tilde{x})$

Where $\tilde{x}^{\Omega}:=x_{1}^{\Omega_{1}} \ldots x_{n-1}^{\Omega_{n-1}}, \quad d!\Omega_{i} \in \mathbb{N}$ with some $c_{i}^{*}(\tilde{x}) \neq 0 \forall \tilde{x}$.
$S_{(f, d)}:=\left\{x: \mu_{x}(f)=d\right\}=\left\{x: x_{n}=0\right.$ and $\left.\mu_{\tilde{x}}\left(\tilde{x}^{\Omega}\right) \geq 1\right\}=\bigcup_{J} Z_{J}$
$Z_{J}:=\left\{x_{n}=0, x_{j}=0 \forall j \in J\right\}$, for J s.th. $\sum_{j \in J} \Omega_{j} \geq 1$
Suffices to consider J s.th. $0 \leq\left(\sum_{j \in J} \Omega_{j}\right)-1<\Omega_{k} \forall k$
Choose $C=Z_{J}$ for any such $J . \quad$ Say $J=\{1, \ldots, m\}$.

10. Multiplicity decreases.

We will show $|\Omega|:=\sum_{k=1}^{n-1} \Omega_{k}$ decreases at points $y \in \sigma^{-1}(a)$ with $\mu_{a^{\prime}}\left(f^{\prime}\right)=\mu_{a}(f)=d$. On U_{j}^{\prime} say $j=1$

Reminder: corollary $\Longrightarrow \mu_{y}\left(f^{\prime}\right) \leq d$.
Either multiplicity decreases (done) or multiplicities are equal.

$$
\begin{aligned}
c_{i}^{\prime}(\tilde{y})^{d!/(d-i)} & =\left(y_{1}^{(i-d) d!/(d-i)}\right)\left(\sigma(\tilde{y})^{\Omega}\right)^{d!}\left(c_{i}^{*} \circ \sigma(\tilde{y})\right) \\
& =\left(y_{1}^{\left(\sum_{k \in J} \Omega_{k}\right)-1} y_{2}^{\Omega_{2}} \ldots y_{n-1}^{\Omega_{n-1}}\right)^{d!}\left(c_{i}^{*} \circ \sigma(\tilde{y})\right)
\end{aligned}
$$

Recall:
$f^{\prime}=c_{0}^{\prime}(\tilde{y})+\ldots+c_{d-2}^{\prime}(\tilde{y}) y_{n}^{d-2}+c_{d}^{\prime}(y) y_{n}^{d} \quad$ with $\quad c_{d}^{\prime}(y) \neq 0 \forall y$
11. If $\mu_{a^{\prime}}\left(f^{\prime}\right)=d$ then $y_{n}=0$

$$
\Omega^{\prime}:=\left(\sum_{k=1}^{m} \Omega_{k}-1, \Omega_{2}, \ldots, \Omega_{n-1}\right)
$$

Then $\left(\tilde{y}^{\Omega^{\prime}}\right)^{d!} \mid\left(c_{i}^{\prime}\right)^{d!/(d-i)} \forall i \quad$ with some $\left(c_{i}^{*} \circ \sigma\right)(\tilde{y}) \neq 0 \forall \tilde{y}$ i.e. f^{\prime} satisfies monomial assumption
$\left|\Omega^{\prime}\right|<|\Omega|$ by choice of C (see inequality $\left.(*)\right) \Longrightarrow$ $\left(\mu_{a^{\prime}}\left(f^{\prime}\right),\left|\Omega^{\prime}\right|\right)<\left(\mu_{a}(f),|\Omega|\right) \quad$ (ordered lexicographically)

Conclusion: multiplicity d decreases when $\sum_{k=1}^{n+1} \Omega_{k}<1$.
After blowing up, $\left|\Omega^{\prime}\right|-|\Omega| \geq 1 / d!$ since $d!\Omega_{i} \in \mathbb{N}$
\Longrightarrow after at most $d!|\Omega|$ blowings-up, multiplicity decreases.

12. Induction on dim. \Longrightarrow monomial assumption

$A_{f}(\tilde{x}):=\prod_{i=0}^{\prime d-2} c_{i}^{d!/(d-i)}(\tilde{x}) \times($ 'their' differences $)$
Π^{\prime} means include only nonzero factors
Desing. in $(n-1)$-dim $\Longrightarrow \exists \phi=\sigma_{1} \circ \cdots \circ \sigma_{\ell}$ such that $\left(A_{f} \circ \phi\right)(\tilde{y})$ is locally monomial

So, W.L.O.G. may assume each factor in the product is locally a monomial on $N=\left\{\frac{\partial^{d-1} f}{\partial x_{n}^{d-1}}(x)=0\right\}$.

Lemma (to come) \Longrightarrow exponents are totally ordered
$\Longrightarrow \exists \Omega$ such that $\left(\tilde{x}^{\Omega}\right)^{d!} \mid\left(c_{i}\right)^{d!/(d-i)}$

13. Lemma

$\alpha, \beta, \gamma \in \mathbb{N}^{n} \quad a(x), b(x), c(x)$ invertible
$a(x) x^{\alpha}-b(x) x^{\beta}=c(x) x^{\gamma} \Longrightarrow \begin{cases}\text { either } & \alpha_{i} \leq \beta_{i} \forall i \\ \text { or } & \beta_{i} \leq \alpha_{i} \forall i\end{cases}$
Proof. If $\alpha_{k} \leq \beta_{k} \forall k$ done. Otherwise $\exists k$ s.t. $\beta_{k}<\alpha_{k}$.
Write $\alpha-\beta_{k}=\left(\alpha_{1}, \ldots, \alpha_{k}-\beta_{k}, \ldots, \alpha_{n}\right)$
$a(x) x^{\alpha-\beta_{k}}-b(x) x^{\beta-\beta_{k}}=c(x) x^{\gamma-\beta_{k}}$. Evaluate at $x_{k}=0$
$\Longrightarrow c(x) x^{\gamma-\beta_{k}}=-b(x) x^{\beta-\beta_{k}} \neq 0 \Longrightarrow \beta=\gamma$
$\Longrightarrow a(x) x^{\alpha}=(b(x)+c(x)) x^{\beta}$.
If $\exists j$ s.t. $\alpha_{j}<\beta_{j}$, proceed similarly. Done

14. I cheated: used stronger induction than proved

I ignored exceptional factors that accumulated before the 'last' drop in multiplicity of $f \mapsto f^{\prime}:=y_{\text {exc }}^{-d}(f \circ \sigma) \quad$ (say 'old' exceptional divisors).

As a consequence, choices of centres might not have normal crossings with with 'old' exceptional divisors as well.

Say $E_{\text {old }}:=\left\{H_{k}: H_{k}\right.$ old exc. $\}$
$E_{\text {old }}(a):=\left\{H_{k} \in E_{\text {old }}: a \in H_{k}\right\} \quad s(a):=\# E_{\text {old }}(a)$
$\left\{g_{k}=0\right\}:=H_{k} \quad \Longrightarrow \quad \mathrm{~d} g_{k} \neq 0$

Choose x_{n} such that both

$$
\frac{\partial^{d} f}{\partial x_{n}^{d}}(a) \neq 0 \quad \text { and } \quad \frac{\partial g_{k}}{\partial x_{n}}(a) \neq 0 \quad \forall H_{k} \in E_{\text {old }}(a)
$$

Consider besides $c_{j}(\tilde{x})=\left.\frac{\partial i f}{\partial x_{n}^{j}}\right|_{N}, 0 \leq j \leq d-2$ all $a_{k}=\left.g_{k}\right|_{N}$.

Now,

$$
A_{f}(\tilde{x}):=\prod^{\prime} c_{j}^{d!/(d-j)}(\tilde{x}) \times \prod^{\prime} a_{k}^{d!}(\tilde{x}) \times\left(\text { 'their' }^{\prime} \text { differences }\right)
$$

Before: $\left(\mu_{a^{\prime}}\left(f^{\prime}\right),\left|\Omega^{\prime}\right|\right)<\left(\mu_{a}(f),|\Omega|\right)$ for $a^{\prime} \in \sigma^{-1}(a)$
Now: $\left(\mu_{a^{\prime}}\left(f^{\prime}\right), s\left(a^{\prime}\right),\left|\Omega^{\prime}\right|\right)<\left(\mu_{a}(f), s(a),|\Omega|\right)$

