Resolution of Singularities in Char. 0 (Pt. 2)

inv, and proof of global desingularization
llia Smirnov

University of Toronto

Feb. 26 and Mar. 2, 2010

Enticement

Want 'geometric desing.' of $X \subset M$, i.e. $\phi: M^{\prime} \rightarrow M$ with
$\operatorname{Sing}(X)=\operatorname{Sing}(\phi)$ and 'lifted' $X^{\prime}:=c l\left(\phi^{-1}(X \backslash \operatorname{Sing} X)\right)$ nonsing.

This talk: algebraic desing., i.e. $\operatorname{det}\left(J_{\phi}\right) \cdot\left(I_{X} \circ \phi\right)$ locally monomial and ϕ a composite of blowings-up with nonsing. centres

Remark. (Process of) algebraic desing. \Longrightarrow (Weak) geometric desing.:

Stop blowing up when invert constant on resp. $X^{\prime} \subset M^{\prime}$
invert constant on $X^{\prime} \Longrightarrow X^{\prime}$ nonsingular

Year 0. Effect of blowing-up revisited: 'maximal contact' N $N_{0}:=M \supset U_{0} \ni a ; \quad I_{X}=(f) ; \quad \mathcal{F}(a):=\left\{\left(f, \mu_{a}(f)\right)\right\} ; \quad \nu_{1}(a):=\mu_{a}(f)=: \mu_{1}(a)$ (in gen., $\mathcal{F}(a):=\left\{\left(f, \mu_{f}\right)\right\}$ e.g. $\left.I_{X}:=\left(f_{1}, \ldots, f_{k}\right), \quad \mu_{f_{i}}:=\min _{j} \mu_{a}\left(f_{j}\right)\right)$
$\mathcal{F}(a)$ is chosen s. th. $\quad \nu_{1}(\cdot)$ at $a \sim \mathcal{F}(a)$, i.e.

$$
\left\{x: \nu_{1}(x)=\nu_{1}(a)\right\}=: S_{\nu_{1}}(a) \stackrel{\text { 'stably' }}{=} S_{\mathcal{F}(a)}:=\left\{x: \mu_{x}(f) \geq \mu_{f},\left(f, \mu_{f}\right) \in \mathcal{F}(a)\right\}
$$

$$
\exists f_{*} \in \mathcal{F}(a) \text { s.th. } \mu_{a}\left(f_{*}\right)=\mu_{f_{*}}=: d \Longrightarrow \frac{\partial^{d} f_{*}}{\partial x_{n}{ }^{d}}(a) \neq 0 \text { (after lin. tran) }
$$

Passage to codim 1, same as Slide 6 of Talk 1 (in year $0, \mathcal{F}_{0}(a):=\mathcal{F}(a)$) :

$$
N_{1}:=\left\{\frac{\partial^{d-1} f_{*}}{\partial x_{n}^{d-1}}=0\right\} ; \quad \mathcal{G}_{1}(a):=\left\{\left(c_{f, q}:=\left.\frac{\partial^{q} f}{\partial x_{n}{ }^{q}}\right|_{N_{1}}, \mu_{f}-q\right): \begin{array}{l}
0 \leq q<\mu_{f}, \\
\left(f, \mu_{f}\right) \in \mathcal{F}_{0}(a)
\end{array}\right\}
$$

Ex. In year $0, f=x_{3}^{2}-x_{1}^{2} x_{2}^{3}$ at $a=0$; $N_{1}=\left\{x_{3}=0\right\} ; \quad \mathcal{G}_{1}(0)=\left\{\left(x_{1}^{2} x_{2}^{3}, 2\right)\right\}$

Year k. Set-up

$$
\begin{array}{ccccccccccccc}
a=: a_{k} & \mapsto & a_{k-1} & \mapsto & \cdots & \mapsto & a_{i} & \mapsto & a_{i-1} & \mapsto & \cdots & \mapsto & a_{0} \\
M_{k} & \xrightarrow{\sigma_{k}} & M_{k-1} & \xrightarrow{\sigma_{k-1}} & \cdots & \xrightarrow{\sigma_{i+1}} & M_{i} & \xrightarrow{\sigma_{i}} & M_{i-1} & \xrightarrow{\sigma_{i-1}} & \ldots & \xrightarrow{\sigma_{1}} & M_{0}:=U_{0} \\
\nu_{1}\left(a_{k}\right) & = & \nu_{1}\left(a_{k-1}\right) & = & \cdots & = & \nu_{1}\left(a_{i}\right) & < & \nu_{1}\left(a_{i-1}\right) & & E_{\text {old for }} \nu_{1} & := & \left\{H_{j}\right\}_{j \leq i}
\end{array}
$$

$\left(\sigma_{i}\right.$ bl.-up with centre $\left.C_{i-1}\right) \quad H_{i}:=\sigma_{i}^{-1}\left(C_{i-1}\right)$ (index 'lifted' to M_{k})

$$
\left.\begin{array}{r}
\mathcal{F}\left(a_{k}\right)=\mathcal{F}\left(a_{k-1}\right)^{\prime}:=\left\{\left(f^{\prime}:=y_{H_{k}}^{-\mu_{f}}\left(f \circ \sigma_{k}\right), \mu_{f^{\prime}}:=\mu_{f}\right)\right\} \text { for }\left(f, \mu_{f}\right) \in \mathcal{F}\left(a_{k-1}\right) \\
N_{1}\left(a_{k}\right)=N_{1}\left(a_{k-1}\right)^{\prime} \\
\mathcal{G}_{1}\left(a_{k}\right)=\mathcal{G}_{1}\left(a_{k-1}\right)^{\prime}
\end{array}\right\} k \geq j>i
$$

$$
E^{1}\left(a_{k}\right):=\left\{H \in E_{\text {old }} \text { for } \nu_{1}: a_{k} \in H\right\} \subset E\left(a_{k}\right), \quad s_{1}\left(a_{k}\right):=\# E^{1}\left(a_{k}\right)
$$

$$
\mathcal{E}_{1}\left(a_{k}\right):=E\left(a_{k}\right) \backslash E^{1}\left(a_{k}\right)
$$

Year k. Set-up cont'd. $\operatorname{inv}_{1.5}\left(a_{k}\right):=\left(\nu_{1}\left(a_{k}\right), s_{1}\left(a_{k}\right) ; \nu_{2}\left(a_{k}\right)\right)$

$$
\begin{aligned}
& \mu_{2}\left(a_{k}\right):=\min _{\left(g, \mu_{g}\right) \in \mathcal{G}_{1}\left(a_{k-1}\right)}\left(\frac{\mu_{a_{k-1}}(g)}{\mu_{g}}\right)=: \nu_{2}\left(a_{k}\right)+\sum_{H \in \mathcal{E}_{1}\left(a_{k}\right)} \mu_{2 H}\left(a_{k}\right), \text { where } \\
& \mu_{2 H}\left(a_{k}\right):=\min _{\left(g, \mu_{g}\right) \in \mathcal{G}_{1}\left(a_{k-1}\right)} \frac{\text { order to which } y_{H} \text { factors from } g}{\mu_{g}}, \quad I_{H}=\left(y_{H}\right) \\
& \mathcal{F}_{1}\left(a_{k}\right):=(*) \cup\left\{\left(D_{1}\left(a_{k}\right), 1-\nu_{2}\left(a_{k}\right)\right\}, \text { where } D_{1}\left(a_{k}\right):=\prod_{H \in \mathcal{E}_{1}\left(a_{k}\right)} y_{H}^{\mu_{2 H}\left(a_{k}\right)}\right. \\
& \text { and }(*):=\left\{\left(D_{1}\left(a_{k}\right)^{-\mu_{g}} \cdot g, \nu_{2}\left(a_{k}\right) \cdot \mu_{g}\right):\left(g, \mu_{g}\right) \in \mathcal{G}_{1}\left(a_{k}\right)\right\}
\end{aligned}
$$

Consequently $\operatorname{inv}_{1.5}(\cdot)$ at $a_{k} \sim \mathcal{F}_{1}\left(a_{k}\right)$

$$
E^{2}\left(a_{k}\right):=\left\{H \in E_{\text {old for } \operatorname{inv}_{1.5}}: a_{k} \in H\right\} \subset \mathcal{E}_{1}\left(a_{k}\right), \quad s_{2}\left(a_{k}\right):=\# E^{2}\left(a_{k}\right)
$$

$$
\mathcal{E}_{2}\left(a_{k}\right):=\mathcal{E}_{1}\left(a_{k}\right) \backslash E^{2}\left(a_{k}\right)
$$

Year 0. $\nu_{r}, E^{r}, s_{r}, \mathcal{E}_{r}$ at a defined recursively

Ex. In year 0,

$$
\nu_{2}(a)=\mu_{2}(a)=\frac{5}{2} ; \quad \mathcal{F}_{1}(a):=\left\{\left(x_{1}^{2} x_{2}^{3}, 5\right)\right\} \sim\left\{\left(x_{1}, 1\right),\left(x_{2}, 1\right)\right\}
$$

To N_{2} :

$$
\begin{array}{r}
N_{2}(a)=N_{1}(a) \cap\left\{x_{2}=0\right\} ; \quad \mathcal{G}_{2}(a)=\left\{\left(x_{1}, 1\right)\right\} ; \\
\operatorname{inv}_{1.5}(a)=(2,0 ; 5 / 2) ; \quad \operatorname{inv}_{2}(a)=\left(\operatorname{inv}_{1.5}(a), 0\right)
\end{array}
$$

$$
\mathcal{F}_{2}(a)=\mathcal{G}_{2}(a)
$$

To N_{3} :

$$
N_{3}(a)=N_{2}(a) \cap\left\{x_{1}=0\right\}=\{a\} ; \quad \mathcal{G}_{3}(a)=\emptyset=\mathcal{F}_{3}(a)
$$

$$
\operatorname{inv}_{l}(a)=\left(\operatorname{inv}_{2}(a) ; 1,0 ; \infty\right) .
$$

Year k: Last $\nu_{r+1}=\infty$ or 0 . If ∞, bl.-up with centre $S_{\text {inv, }}(a)=N_{r}$

Ex. In year $0, \sigma_{1}: M_{1} \rightarrow M_{0}$ with $C_{0}=\{\mathrm{a}\}$

Year 1. 'New' for $\mathrm{inv}_{0.5}$ and 'old' for inv $\mathrm{v}_{1.5}$ exc. div.

$$
\begin{array}{lll}
\text { Ex. } \ln \text { year } 1, M_{1}:=B I C_{0}\left(U_{0}\right) \supset U_{i} ; & y_{\text {exc }}=y_{i}, & H_{1}=\left\{y_{\text {exc }}=0\right\} \\
b:=0 \in U_{1} ; & \left.\sigma_{1}\right|_{U_{1}}: x_{1}=y_{1}, \quad x_{2}=y_{1} y_{2}, \quad x_{3}=y_{1} y_{3}
\end{array}
$$

$f_{1}:=f^{\prime}=y_{3}^{2}-y_{1}^{3} y_{2}^{3} \Longrightarrow \nu_{1}(b)=\nu_{1}(a)=2 \Longrightarrow H_{1} \in \mathcal{E}_{1}(b) ; \quad \quad \operatorname{inv}_{1}(b)=(2,0)$

Year k: 'Account for' exc. hypersurfaces (similar to Slide 15 of Talk 1)

$$
\begin{gathered}
H \in \mathcal{E}_{1}\left(a_{k}\right) \text { ('new for inv } 0_{0.5} \text { '): } \quad \text { In def. of } \mathcal{F}_{1}\left(a_{k}\right) \\
H \in E^{2}\left(a_{k}\right)\left(\text { 'old for } \operatorname{inv}_{1.5} \text { '): } \quad \mathcal{F}_{1}^{s}\left(a_{k}\right):=\mathcal{F}_{1}\left(a_{k}\right) \cup\left(\bigcup_{H \in E^{2}\left(a_{k}\right)}\left\{\left(y_{H}, 1\right)\right\}\right)\right. \\
\operatorname{inv}_{2}(\cdot) \text { at } a_{k} \sim \mathcal{F}_{1}^{s}\left(a_{k}\right)
\end{gathered}
$$

Years 1 and 2. Case $\operatorname{inv}_{l}(a)=(\ldots ; 0)$

Ex. In year 1,

$$
N_{1}(b)=\left\{y_{3}=0\right\} ; \quad \mathcal{G}_{1}(b)=\left\{\left(y_{1}^{3} y_{2}^{3}, 2\right)\right\} ; \quad \quad \nu_{2}(b)=\frac{3}{2} \Longrightarrow H_{1} \in E^{2}(b)
$$

$D_{1}(b)=y_{1}^{3 / 2} ; \quad \mathcal{F}_{1}(b)=\left\{\left(y_{2}^{3}, 2 \cdot \frac{3}{2}\right)\right\} \sim\left\{\left(y_{2}, 1\right)\right\} ; \quad \mathcal{F}_{1}^{s}(b) \sim\left\{\left(y_{2}, 1\right),\left(y_{1}, 1\right)\right\}$

To N_{2} :

$$
N_{2}(b)=N_{1}(b) \cap\left\{y_{2}=0\right\} ; \quad \mathcal{G}_{2}(b)=\left\{\left(y_{1}, 1\right)\right\}=\mathcal{F}_{2}(b)=\mathcal{F}_{2}^{s}(b)
$$

$$
\text { Recursion: } \stackrel{\text { increase codim }(*-1)}{\longrightarrow} N_{*}\left(a_{k}\right) \rightarrow \mathcal{G}_{*}\left(a_{k}\right) \rightarrow D_{*}\left(a_{k}\right) \rightarrow \mathcal{F}_{*}\left(a_{k}\right) \rightarrow \mathcal{F}_{*}^{s}\left(a_{k}\right) \xrightarrow{\text { increase codim } *}
$$

Ex. In year 1,

$$
\operatorname{inv}_{l}(b)=\left(2,0 ; \frac{3}{2}, 1 ; 1,0 ; \infty\right)
$$

$$
C_{1}=\{b\}
$$

 $J:=\left\{H \in E\left(a_{k}\right): H \supset Z_{J}\right\}, \quad Z_{J}=S_{\mathrm{inv}_{l}}\left(a_{k}\right) \cap \bigcap_{H \in J} H$

Year 2. Case $\operatorname{inv}_{l}(a)=(\ldots ; 0)$ continued

Ex. In year 2, $\quad 0=: c \in U_{12} ;\left.\quad \sigma_{2}\right|_{U_{12}}: y_{1}=z_{2} z_{1}, \quad y_{2}=z_{2}, \quad y_{3}=z_{2} z_{3} ; \quad f_{2}=z_{3}^{2}-z_{1}^{3} z_{2}^{4}$
$E(c)=\mathcal{E}_{1}(c)=\left\{H_{1}, H_{2}\right\}, H_{i}=\left\{z_{i}=0\right\} ; \quad N_{1}(c)=\left\{z_{3}=0\right\} ; \mathcal{G}_{1}(c)=\left\{\left(z_{1}^{3} z_{2}^{4}, 2\right)\right\}$

$$
\begin{gathered}
\operatorname{inv}_{l}(c)=(2,0 ; 0) \text { because } D_{1}(c)=z_{1}^{\frac{3}{2}} z_{2}^{2} \Longrightarrow \mathcal{F}_{1}^{s}(c)=\left\{\left(D_{1}(c), 1\right)\right\} \\
S_{\mathrm{inv}_{l}}(c)=\left(S_{\mathrm{inv}_{l}}(c) \cap H_{1}\right) \bigcup\left(S_{\mathrm{inv}_{l}}(c) \cap H_{2}\right)
\end{gathered}
$$

Year k: Subsets of $E_{k}:=\left\{H_{j}\right\}_{1 \leq j \leq k}$ can be totally ordered
Take $C_{k}:=Z_{J\left(a_{k}\right)}$ for $J\left(a_{k}\right):=\max \left\{J: Z_{J}\right.$ is a component of $\left.S_{\text {inv }}\left(a_{k}\right)\right\}$

Ex. In year 2, $C_{2}:=S_{\mathrm{inv}_{1}}(c) \cap H_{1}$

Effect of blowing-up (Slides 6-8 \& 10-11 of Talk 1) shows

Year k: $\quad \operatorname{inv}_{l}\left(a_{k}\right)=\left(\ldots ; v_{r}\left(a_{k}\right)\right) ; \quad D_{r-1}\left(a_{k}\right)=\prod_{H \in \mathcal{E}_{r-1}\left(a_{k}\right)} y_{H}^{\mu_{r H}}$
Case 1: $v_{r}\left(a_{k}\right)=\infty \Longrightarrow S_{\text {inv }}\left(a_{k}\right)=N_{r}\left(a_{k}\right) \Longrightarrow$ inv, decreases ('above' a_{k})

Case 2: $v_{r}\left(a_{k}\right)=0 \Longrightarrow S_{\text {inv }}\left(a_{k}\right)=\cup_{J} Z_{J} \Longrightarrow$ inv, decreases after at most finitely many blowings-up 'controlled' by the numerator of $\sum_{H \in \mathcal{E}_{r-1}\left(a_{k}\right)} \mu_{r H}$
(Just as in Talk 1: decrease of $|\Omega|$ with $r=2$)

In each year: pass to higher codim. until Case 1 or Case 2 holds

Proof of invariance - main technique in an example

Ex. $M:=U:=\mathbb{A}^{2} ; \quad f:=f_{0}:=x_{2}^{p}-x_{1}^{q}, \quad p \leq q ; \quad 0=: a \in U$

Show $\mu_{2}(a)=\frac{q}{p}$ is invariant
$U_{0}:=U \times \mathbb{A}^{1} ; \gamma_{0}:=\{a\} \times \mathbb{A}^{1}$. For $j \geq 1, \gamma_{j}:=$ 'lifting' of γ_{j-1} to ${ }^{B \prime} C_{j-1}\left(U_{j-1}\right)$, where U_{j}
is coord. chart containing $\gamma_{j}(0)=: C_{j}$
$\ln U_{1}: \quad x_{1}=y_{1} z, \quad x_{2}=y_{2} z, \quad z=z \quad \Longrightarrow \quad f_{1}=y_{2}^{p}-y_{1}^{q} z^{(q-p)}$

After k such blowings-up, $f_{k}=y_{2}^{p}-y_{1}^{q} z^{(q-p) k}$ in U_{k}
$S_{\left(f_{k}, p\right)}=\left\{y:=\left(y_{1}, y_{2}, z\right): y_{2}=0, \quad \mu_{y}\left(y_{1}^{q} z^{(q-p) k}\right) \geq p\right\}$

Proof of invariance - continuation

$H_{k}:=$ 'Last exc. hypersurface' $=\{z=0\}$
'Invariant' question: Is $H_{k} \cap S_{\left(f_{k}, p\right)}$ nonsing. of codim. 1 in H_{k} ?

Yes $\Longleftrightarrow(q-p) k \geq p \Longleftrightarrow\left(\frac{q}{p}-1\right) k \geq 1$

If 'yes', $H_{k} \cap S_{\left(f_{k}, p\right)}$ coincides with $\left\{y_{2}=0, z=0\right\}=: C_{k, 0}$;
$U_{k, 0}:=U_{k}$
$\ln U_{k, 1}, \quad y_{1}=v_{1}, y_{2}=v_{2} z, z=z \Longrightarrow f_{k, 1}=v_{2}^{p}-v_{1}^{q} z^{(q-p) k-p}$

Proof of invariance - conclusion

After s such blowings-up, $f_{k, s}=v_{2}^{p}-v_{1}^{q} z^{(q-p) k-p s}$ in $U_{k, s}$
$\left.S_{\left(f_{k}, s\right.}, p\right)=\left\{v:=\left(v_{1}, v_{2}, z\right): v_{2}=0, \quad \mu_{v}\left(v_{1}^{q} z^{(q-p) k-p s}\right) \geq p\right\}$
$H_{k, s}=\{z=0\}$. Ask the same 'invariant question':

Yes $\Longleftrightarrow(q-p) k-p s \geq p \Longleftrightarrow\left(\frac{q}{p}-1\right) k-s \geq 1$
i.e. $\quad \frac{q}{p}=1+\sup _{k, s w_{i t h}{ }^{\prime} Y e s^{\prime}} \frac{s+1}{k} \quad$ Done

Globalization via invelt ${ }_{l}^{\text {ext }}\left(a_{k}\right):=\left(\operatorname{inv}_{l}\left(a_{k}\right), J\left(a_{k}\right)\right)$

General fact: $S_{\text {invert }}\left(a_{k}\right)=Z_{J_{\left(a_{k}\right)}}$, i.e. is nonsingular
(We used this to show "algebraic desing. \Longrightarrow (weak) geometric desing.")

In year k, M_{k} Compact \Longrightarrow invvil $_{\text {ext }}$ takes on maximum value $\operatorname{inv}_{l}^{\text {ext }}\left(M_{k}\right)$

Choose as 'global' centre $C_{k}:=S_{\operatorname{inv}_{l}^{\text {ext }}\left(M_{k}\right)}:=\left\{y \in M_{k}: \operatorname{inv}_{l}^{\operatorname{ext}}(y)=\operatorname{inv}_{l}^{\operatorname{ext}}\left(M_{k}\right)\right\}$

Nonsingular locally \Longrightarrow nonsingular

Algebraic desing.: $\operatorname{det}\left(J_{\phi}\right) \cdot\left(I_{X} \circ \phi\right)$ locally monomial in $y_{H_{j}}$

(i). From Talk 1: By construction, $\forall j \quad C_{j}$ has 'normal crossings' with exc. divisors E_{j}
(ii). After fin. many blowings-up $:=\phi, \max _{M^{\prime}} \operatorname{inv}_{0.5}=0 \Longleftrightarrow I_{X^{\prime}}$ loc. gen. by invertible f
(i) and (ii) $\Longrightarrow\left(I_{X} \circ \phi\right)$ loc. monomial in $y_{H_{j}}$ (up to an invertible factor)

Say $\phi:=\sigma_{1} \circ \cdots \circ \sigma_{q}$, where σ_{j} is bl.-up with centre $C_{j-1}:=\left\{x_{1}=\cdots=x_{m_{j}}=0\right\}$
$\left.\sigma_{1}\right|_{U_{1}}: x_{1}=y_{H}, \quad x_{i}=y_{i} y_{H}(1<i \leq m), \quad x_{i}=y_{i}(i>m) \Longrightarrow \operatorname{det}\left(J_{\sigma_{1}}\right)=y_{H}^{m-1}$

By Chain Rule and multiplicativity of det, $\quad \operatorname{det}\left(J_{\phi}\right)=\prod_{1 \leq j \leq q} \operatorname{det}\left(J_{\sigma_{j}}\right)=\prod_{1 \leq j \leq q} y_{H_{j}}^{m_{j}-1}$
with (i) \Longrightarrow Done

